首页 > 最新文献

Applied and Computational Harmonic Analysis最新文献

英文 中文
Complex-order scale-invariant operators and self-similar processes 复阶尺度不变算子和自相似过程
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-04-04 DOI: 10.1016/j.acha.2024.101656
Arash Amini , Julien Fageot , Michael Unser

In this paper, we perform the joint study of scale-invariant operators and self-similar processes of complex order. More precisely, we introduce general families of scale-invariant complex-order fractional-derivation and integration operators by constructing them in the Fourier domain. We analyze these operators in detail, with special emphasis on the decay properties of their output. We further use them to introduce a family of complex-valued stable processes that are self-similar with complex-valued Hurst exponents. These random processes are expressed via their characteristic functionals over the Schwartz space of functions. They are therefore defined as generalized random processes in the sense of Gel'fand. Beside their self-similarity and stationarity, we study the Sobolev regularity of the proposed random processes. Our work illustrates the strong connection between scale-invariant operators and self-similar processes, with the construction of adequate complex-order scale-invariant integration operators being preparatory to the construction of the random processes.

在本文中,我们对尺度不变算子和复阶自相似过程进行了联合研究。更确切地说,我们通过在傅里叶域中构建尺度不变复阶分数衍生和积分算子,引入了一般的尺度不变复阶分数衍生和积分算子族。我们详细分析了这些算子,特别强调了它们输出的衰变特性。我们进一步利用它们引入了一系列复值稳定过程,这些过程具有复值赫斯特指数自相似性。这些随机过程通过它们在施瓦茨函数空间上的特征函数来表示。因此,它们被定义为 Gel'fand 意义上的广义随机过程。除了它们的自相似性和静止性,我们还研究了所提出的随机过程的索波列夫正则性。我们的工作说明了尺度不变算子与自相似过程之间的紧密联系,而构建适当的复阶尺度不变积分算子则是构建随机过程的准备工作。
{"title":"Complex-order scale-invariant operators and self-similar processes","authors":"Arash Amini ,&nbsp;Julien Fageot ,&nbsp;Michael Unser","doi":"10.1016/j.acha.2024.101656","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101656","url":null,"abstract":"<div><p>In this paper, we perform the joint study of scale-invariant operators and self-similar processes of complex order. More precisely, we introduce general families of scale-invariant complex-order fractional-derivation and integration operators by constructing them in the Fourier domain. We analyze these operators in detail, with special emphasis on the decay properties of their output. We further use them to introduce a family of complex-valued stable processes that are self-similar with complex-valued Hurst exponents. These random processes are expressed via their characteristic functionals over the Schwartz space of functions. They are therefore defined as generalized random processes in the sense of Gel'fand. Beside their self-similarity and stationarity, we study the Sobolev regularity of the proposed random processes. Our work illustrates the strong connection between scale-invariant operators and self-similar processes, with the construction of adequate complex-order scale-invariant integration operators being preparatory to the construction of the random processes.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"72 ","pages":"Article 101656"},"PeriodicalIF":2.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error bounds for kernel-based approximations of the Koopman operator 基于核的库普曼算子近似的误差范围
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-04-04 DOI: 10.1016/j.acha.2024.101657
Friedrich M. Philipp , Manuel Schaller , Karl Worthmann , Sebastian Peitz , Feliks Nüske

We consider the data-driven approximation of the Koopman operator for stochastic differential equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if the data are collected from long-term ergodic simulations. We derive both an exact expression for the variance of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, and probabilistic bounds for the finite-data estimation error. Moreover, we derive a bound on the prediction error of observables in the RKHS using a finite Mercer series expansion. Further, assuming Koopman-invariance of the RKHS, we provide bounds on the full approximation error. Numerical experiments using the Ornstein-Uhlenbeck process illustrate our results.

我们考虑的是重现核希尔伯特空间(RKHS)上随机微分方程库普曼算子的数据驱动近似。我们的重点是如果数据是从长期遍历模拟中收集的,那么估计误差就会很大。我们推导出了以希尔伯特-施密特规范衡量的核交叉协方差算子方差的精确表达式,以及有限数据估计误差的概率边界。此外,我们还利用有限梅塞尔数列展开推导出了 RKHS 中观测值预测误差的约束。此外,假设 RKHS 具有库普曼不变性,我们还提供了全近似误差的约束。使用 Ornstein-Uhlenbeck 过程进行的数值实验说明了我们的结果。
{"title":"Error bounds for kernel-based approximations of the Koopman operator","authors":"Friedrich M. Philipp ,&nbsp;Manuel Schaller ,&nbsp;Karl Worthmann ,&nbsp;Sebastian Peitz ,&nbsp;Feliks Nüske","doi":"10.1016/j.acha.2024.101657","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101657","url":null,"abstract":"<div><p>We consider the data-driven approximation of the Koopman operator for stochastic differential equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if the data are collected from long-term ergodic simulations. We derive both an exact expression for the variance of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, and probabilistic bounds for the finite-data estimation error. Moreover, we derive a bound on the prediction error of observables in the RKHS using a finite Mercer series expansion. Further, assuming Koopman-invariance of the RKHS, we provide bounds on the full approximation error. Numerical experiments using the Ornstein-Uhlenbeck process illustrate our results.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101657"},"PeriodicalIF":2.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000344/pdfft?md5=f01b4b57c82f431fd15e3f589cf72791&pid=1-s2.0-S1063520324000344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140542763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frame set for Gabor systems with Haar window 带 Haar 窗口的 Gabor 系统框架集
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-03-18 DOI: 10.1016/j.acha.2024.101655
Xin-Rong Dai , Meng Zhu

We describe the full structure of the frame set for the Gabor system G(g;α,β):={e2πimβg(nα):m,nZ} with the window being the Haar function g=χ[1/2,0)+χ[0,1/2). This is the first compactly supported window function for which the frame set is represented explicitly.

The strategy of this paper is to introduce the piecewise linear transformation M on the unit circle, and to provide a complete characterization of structures for its (symmetric) maximal invariant sets. This transformation is related to the famous three gap theorem of Steinhaus which may be of independent interest. Furthermore, a classical criterion on Gabor frames is improved, which allows us to establish a necessary and sufficient condition for the Gabor system G(g;α,β) to be a frame, i.e., the symmetric invariant set of the transformation M is empty.

我们描述了以 Haar 函数为窗口的 Gabor 系统帧集的完整结构。这是第一个明确表示帧集的紧凑支持窗口函数。
{"title":"Frame set for Gabor systems with Haar window","authors":"Xin-Rong Dai ,&nbsp;Meng Zhu","doi":"10.1016/j.acha.2024.101655","DOIUrl":"10.1016/j.acha.2024.101655","url":null,"abstract":"<div><p>We describe the full structure of the frame set for the Gabor system <span><math><mi>G</mi><mo>(</mo><mi>g</mi><mo>;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>2</mn><mi>π</mi><mi>i</mi><mi>m</mi><mi>β</mi><mo>⋅</mo></mrow></msup><mi>g</mi><mo>(</mo><mo>⋅</mo><mo>−</mo><mi>n</mi><mi>α</mi><mo>)</mo><mo>:</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></math></span> with the window being the Haar function <span><math><mi>g</mi><mo>=</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>+</mo><msub><mrow><mi>χ</mi></mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msub></math></span>. This is the first compactly supported window function for which the frame set is represented explicitly.</p><p>The strategy of this paper is to introduce the piecewise linear transformation <span><math><mi>M</mi></math></span> on the unit circle, and to provide a complete characterization of structures for its (symmetric) maximal invariant sets. This transformation is related to the famous three gap theorem of Steinhaus which may be of independent interest. Furthermore, a classical criterion on Gabor frames is improved, which allows us to establish a necessary and sufficient condition for the Gabor system <span><math><mi>G</mi><mo>(</mo><mi>g</mi><mo>;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> to be a frame, i.e., the symmetric invariant set of the transformation <span><math><mi>M</mi></math></span> is empty.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101655"},"PeriodicalIF":2.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frame set for shifted sinc-function 移位 sinc 函数的帧集
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-03-16 DOI: 10.1016/j.acha.2024.101654
Yurii Belov , Andrei V. Semenov

We prove that frame set Fg for imaginary shift of sinc-functiong(t)=sinπb(tiw)tiw,b,wR{0} can be described as Fg={(α,β):αβ1,β|b|}.

In addition, we prove that Fg={(α,β):αβ1} for window functions g of the form1tiw(1k=1ake2πibkt), such that k1|ak|e2π|wbk|<1, wbk<0.

我们证明,sinc 函数g(t)=sinπb(t-iw)t-iw,b,w∈R∖{0}的虚移帧集 Fg 可描述为 Fg={(α,β):αβ⩽1,β⩽|b|}。此外,我们还证明,Fg={(α,β):αβ⩽1}为窗函数 g 的形式1t-iw(1-∑k=1∞ake2πibkt),使得∑k⩾1|ak|e2π|wbk|<1,wbk<0。
{"title":"Frame set for shifted sinc-function","authors":"Yurii Belov ,&nbsp;Andrei V. Semenov","doi":"10.1016/j.acha.2024.101654","DOIUrl":"10.1016/j.acha.2024.101654","url":null,"abstract":"<div><p>We prove that frame set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> for imaginary shift of sinc-function<span><span><span><math><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>sin</mi><mo>⁡</mo><mi>π</mi><mi>b</mi><mo>(</mo><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi><mo>)</mo></mrow><mrow><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi></mrow></mfrac><mo>,</mo><mspace></mspace><mi>b</mi><mo>,</mo><mi>w</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span></span></span> can be described as <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mi>α</mi><mi>β</mi><mo>⩽</mo><mn>1</mn><mo>,</mo><mi>β</mi><mo>⩽</mo><mo>|</mo><mi>b</mi><mo>|</mo><mo>}</mo></math></span>.</p><p>In addition, we prove that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mi>α</mi><mi>β</mi><mo>⩽</mo><mn>1</mn><mo>}</mo></math></span> for window functions <em>g</em> of the form<span><span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi></mrow></mfrac><mo>(</mo><mn>1</mn><mo>−</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>t</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> such that <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>⩾</mo><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mo>|</mo><mi>w</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo></mrow></msup><mo>&lt;</mo><mn>1</mn></math></span>, <span><math><mi>w</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&lt;</mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101654"},"PeriodicalIF":2.5,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eigenmatrix for unstructured sparse recovery 非结构稀疏恢复的特征矩阵
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-03-14 DOI: 10.1016/j.acha.2024.101653
Lexing Ying

This note considers the unstructured sparse recovery problems in a general form. Examples include rational approximation, spectral function estimation, Fourier inversion, Laplace inversion, and sparse deconvolution. The main challenges are the noise in the sample values and the unstructured nature of the sample locations. This note proposes the eigenmatrix, a data-driven construction with desired approximate eigenvalues and eigenvectors. The eigenmatrix offers a new way for these sparse recovery problems. Numerical results are provided to demonstrate the efficiency of the proposed method.

本说明考虑了一般形式的非结构稀疏恢复问题。例子包括有理近似、频谱函数估计、傅立叶反演、拉普拉斯反演和稀疏解卷积。主要挑战在于样本值的噪声和样本位置的非结构性。本说明提出了特征矩阵,这是一种数据驱动的结构,具有所需的近似特征值和特征向量。特征矩阵为这些稀疏恢复问题提供了一种新的方法。本文提供了数值结果,以证明所提方法的效率。
{"title":"Eigenmatrix for unstructured sparse recovery","authors":"Lexing Ying","doi":"10.1016/j.acha.2024.101653","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101653","url":null,"abstract":"<div><p>This note considers the unstructured sparse recovery problems in a general form. Examples include rational approximation, spectral function estimation, Fourier inversion, Laplace inversion, and sparse deconvolution. The main challenges are the noise in the sample values and the unstructured nature of the sample locations. This note proposes the eigenmatrix, a data-driven construction with desired approximate eigenvalues and eigenvectors. The eigenmatrix offers a new way for these sparse recovery problems. Numerical results are provided to demonstrate the efficiency of the proposed method.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101653"},"PeriodicalIF":2.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving PDEs on unknown manifolds with machine learning 用机器学习解决未知流形上的多项式方程
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-29 DOI: 10.1016/j.acha.2024.101652
Senwei Liang , Shixiao W. Jiang , John Harlim , Haizhao Yang

This paper proposes a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion maps (DM) and deep learning. The PDE solver is formulated as a supervised learning task to solve a least-squares regression problem that imposes an algebraic equation approximating a PDE (and boundary conditions if applicable). This algebraic equation involves a graph-Laplacian type matrix obtained via DM asymptotic expansion, which is a consistent estimator of second-order elliptic differential operators. The resulting numerical method is to solve a highly non-convex empirical risk minimization problem subjected to a solution from a hypothesis space of neural networks (NNs). In a well-posed elliptic PDE setting, when the hypothesis space consists of neural networks with either infinite width or depth, we show that the global minimizer of the empirical loss function is a consistent solution in the limit of large training data. When the hypothesis space is a two-layer neural network, we show that for a sufficiently large width, gradient descent can identify a global minimizer of the empirical loss function. Supporting numerical examples demonstrate the convergence of the solutions, ranging from simple manifolds with low and high co-dimensions, to rough surfaces with and without boundaries. We also show that the proposed NN solver can robustly generalize the PDE solution on new data points with generalization errors that are almost identical to the training errors, superseding a Nyström-based interpolation method.

本文基于扩散图(DM)和深度学习,提出了一种无网格计算框架和机器学习理论,用于求解未知流形上的椭圆 PDE,该流形由点云识别。PDE 求解器被表述为一项监督学习任务,用于求解最小二乘回归问题,该问题施加了一个近似 PDE 的代数方程(以及适用的边界条件)。该代数方程涉及一个通过 DM 渐近展开得到的图-拉普拉斯矩阵,它是二阶椭圆微分算子的一致估计值。由此产生的数值方法是解决一个高度非凸的经验风险最小化问题,该问题受制于神经网络(NN)假设空间的解决方案。在条件良好的椭圆 PDE 设置中,当假设空间由无限宽或无限深的神经网络组成时,我们证明经验损失函数的全局最小值是大量训练数据极限下的一致解。当假设空间是一个双层神经网络时,我们证明了在宽度足够大的情况下,梯度下降可以识别经验损失函数的全局最小值。从具有低维度和高维度的简单流形,到有边界和无边界的粗糙表面,辅助数值示例证明了解决方案的收敛性。我们还证明,所提出的 NN 求解器可以在新数据点上稳健地泛化 PDE 解法,泛化误差与训练误差几乎相同,超越了基于 Nyström 的插值方法。
{"title":"Solving PDEs on unknown manifolds with machine learning","authors":"Senwei Liang ,&nbsp;Shixiao W. Jiang ,&nbsp;John Harlim ,&nbsp;Haizhao Yang","doi":"10.1016/j.acha.2024.101652","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101652","url":null,"abstract":"<div><p>This paper proposes a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion maps (DM) and deep learning. The PDE solver is formulated as a supervised learning task to solve a least-squares regression problem that imposes an algebraic equation approximating a PDE (and boundary conditions if applicable). This algebraic equation involves a graph-Laplacian type matrix obtained via DM asymptotic expansion, which is a consistent estimator of second-order elliptic differential operators. The resulting numerical method is to solve a highly non-convex empirical risk minimization problem subjected to a solution from a hypothesis space of neural networks (NNs). In a well-posed elliptic PDE setting, when the hypothesis space consists of neural networks with either infinite width or depth, we show that the global minimizer of the empirical loss function is a consistent solution in the limit of large training data. When the hypothesis space is a two-layer neural network, we show that for a sufficiently large width, gradient descent can identify a global minimizer of the empirical loss function. Supporting numerical examples demonstrate the convergence of the solutions, ranging from simple manifolds with low and high co-dimensions, to rough surfaces with and without boundaries. We also show that the proposed NN solver can robustly generalize the PDE solution on new data points with generalization errors that are almost identical to the training errors, superseding a Nyström-based interpolation method.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101652"},"PeriodicalIF":2.5,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separation-free spectral super-resolution via convex optimization 通过凸优化实现无分离光谱超分辨率
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-29 DOI: 10.1016/j.acha.2024.101650
Zai Yang , Yi-Lin Mo , Zongben Xu

Atomic norm methods have recently been proposed for spectral super-resolution with flexibility in dealing with missing data and miscellaneous noises. A notorious drawback of these convex optimization methods however is their lower resolution in the high signal-to-noise (SNR) regime as compared to conventional methods such as ESPRIT. In this paper, we devise a simple weighting scheme in existing atomic norm methods and show that in theory the resolution of the resulting convex optimization method can be made arbitrarily high in the absence of noise, achieving the so-called separation-free super-resolution. This is proved by a novel, kernel-free construction of the dual certificate whose existence guarantees exact super-resolution using the proposed method. Numerical results corroborating our analysis are provided.

最近有人提出了原子规范方法,用于灵活处理缺失数据和各种噪声的光谱超分辨率。然而,与 ESPRIT 等传统方法相比,这些凸优化方法一个众所周知的缺点是在高信噪比(SNR)条件下分辨率较低。在本文中,我们在现有的原子规范方法中设计了一个简单的加权方案,并证明在理论上,由此产生的凸优化方法的分辨率可以在没有噪声的情况下任意提高,实现所谓的无分离超分辨率。这一点通过一种新颖、无内核的对偶证书构造得到了证明,该证书的存在保证了所提方法的精确超分辨率。我们提供的数值结果证实了我们的分析。
{"title":"Separation-free spectral super-resolution via convex optimization","authors":"Zai Yang ,&nbsp;Yi-Lin Mo ,&nbsp;Zongben Xu","doi":"10.1016/j.acha.2024.101650","DOIUrl":"10.1016/j.acha.2024.101650","url":null,"abstract":"<div><p>Atomic norm methods have recently been proposed for spectral super-resolution with flexibility in dealing with missing data and miscellaneous noises. A notorious drawback of these convex optimization methods however is their lower resolution in the high signal-to-noise (SNR) regime as compared to conventional methods such as ESPRIT. In this paper, we devise a simple weighting scheme in existing atomic norm methods and show that in theory the resolution of the resulting convex optimization method can be made arbitrarily high in the absence of noise, achieving the so-called separation-free super-resolution. This is proved by a novel, kernel-free construction of the dual certificate whose existence guarantees exact super-resolution using the proposed method. Numerical results corroborating our analysis are provided.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101650"},"PeriodicalIF":2.5,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140043807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marcinkiewicz–Zygmund inequalities for scattered and random data on the q-sphere q 球上分散和随机数据的 Marcinkiewicz-Zygmund 不等式
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-29 DOI: 10.1016/j.acha.2024.101651
Frank Filbir , Ralf Hielscher , Thomas Jahn , Tino Ullrich

The recovery of multivariate functions and estimating their integrals from finitely many samples is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves on the q-dimensional sphere Sq, and investigate how well continuous Lp-norms of polynomials f of maximum degree n on the sphere Sq can be discretized by positively weighted Lp-sum of finitely many samples, and discuss the distortion between the continuous and discrete quantities, the number and distribution of the (deterministic or randomly chosen) sample points ξ1,,ξN on Sq, the dimension q, and the degree n of the polynomials.

从有限多个样本中恢复多元函数并估计其积分是现代近似理论的核心任务之一。Marcinkiewicz-Zygmund 不等式为恢复和正交两方面提供了答案。在本文中,我们将自己置于 q 维球面 Sq 上,研究球面 Sq 上最大度数为 n 的多项式 f 的连续 Lp-norms 如何通过有限多个样本的正加权 Lp-sum 离散化,并讨论连续和离散量之间的失真、球面 Sq 上(确定或随机选择的)样本点 ξ1,...,ξN 的数量和分布、维数 q 和多项式的度数 n。
{"title":"Marcinkiewicz–Zygmund inequalities for scattered and random data on the q-sphere","authors":"Frank Filbir ,&nbsp;Ralf Hielscher ,&nbsp;Thomas Jahn ,&nbsp;Tino Ullrich","doi":"10.1016/j.acha.2024.101651","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101651","url":null,"abstract":"<div><p>The recovery of multivariate functions and estimating their integrals from finitely many samples is one of the central tasks in modern approximation theory. Marcinkiewicz–Zygmund inequalities provide answers to both the recovery and the quadrature aspect. In this paper, we put ourselves on the <em>q</em>-dimensional sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, and investigate how well continuous <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norms of polynomials <em>f</em> of maximum degree <em>n</em> on the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> can be discretized by positively weighted <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-sum of finitely many samples, and discuss the distortion between the continuous and discrete quantities, the number and distribution of the (deterministic or randomly chosen) sample points <span><math><msub><mrow><mi>ξ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, the dimension <em>q</em>, and the degree <em>n</em> of the polynomials.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101651"},"PeriodicalIF":2.5,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000289/pdfft?md5=c98b0bf5b8b162d91ccc058130ea9e34&pid=1-s2.0-S1063520324000289-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140042516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exponential lower bound for the eigenvalues of the time-frequency localization operator before the plunge region 坠落区域前时频定位算子特征值的指数下限
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-28 DOI: 10.1016/j.acha.2024.101639
Aleksei Kulikov

For a pair of sets T,ΩR the time-frequency localization operator is defined as ST,Ω=PTF1PΩFPT, where F is the Fourier transform and PT,PΩ are projection operators onto T and Ω, respectively. We show that in the case when both T and Ω are intervals, the eigenvalues of ST,Ω satisfy λn(T,Ω)1δ|T||Ω| if n(1ε)|T||Ω|, where ε>0 is arbitrary and δ=δ(ε)<1, provided that |T||Ω|>cε. This improves the result of Bonami, Jaming and Karoui, who proved it for ε0.42. The proof is based on the properties of the Bargmann transform.

对于一对集合 T,Ω⊂R,时频定位算子定义为 ST,Ω=PTF-1PΩFPT,其中 F 是傅立叶变换,PT,PΩ 分别是 T 和 Ω 上的投影算子。我们证明,在 T 和 Ω 都是区间的情况下,如果 n≤(1-ε)|T||Ω| ,ST,Ω 的特征值满足 λn(T,Ω)≥1-δ|T||Ω| ,其中 ε>0 是任意的,δ=δ(ε)<1,条件是 |T||Ω|>cε。这改进了博纳米、贾明和卡鲁伊的结果,他们是在ε≥0.42 时证明的。证明基于巴格曼变换的性质。
{"title":"Exponential lower bound for the eigenvalues of the time-frequency localization operator before the plunge region","authors":"Aleksei Kulikov","doi":"10.1016/j.acha.2024.101639","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101639","url":null,"abstract":"<div><p>For a pair of sets <span><math><mi>T</mi><mo>,</mo><mi>Ω</mi><mo>⊂</mo><mi>R</mi></math></span> the time-frequency localization operator is defined as <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi><mo>,</mo><mi>Ω</mi></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msub><msup><mrow><mi>F</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mi>P</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mi>F</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>, where <span><math><mi>F</mi></math></span> is the Fourier transform and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> are projection operators onto <em>T</em> and Ω, respectively. We show that in the case when both <em>T</em> and Ω are intervals, the eigenvalues of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi><mo>,</mo><mi>Ω</mi></mrow></msub></math></span> satisfy <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>,</mo><mi>Ω</mi><mo>)</mo><mo>≥</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>δ</mi></mrow><mrow><mo>|</mo><mi>T</mi><mo>|</mo><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></msup></math></span> if <span><math><mi>n</mi><mo>≤</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>ε</mi><mo>)</mo><mo>|</mo><mi>T</mi><mo>|</mo><mo>|</mo><mi>Ω</mi><mo>|</mo></math></span>, where <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> is arbitrary and <span><math><mi>δ</mi><mo>=</mo><mi>δ</mi><mo>(</mo><mi>ε</mi><mo>)</mo><mo>&lt;</mo><mn>1</mn></math></span>, provided that <span><math><mo>|</mo><mi>T</mi><mo>|</mo><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>&gt;</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>ε</mi></mrow></msub></math></span>. This improves the result of Bonami, Jaming and Karoui, who proved it for <span><math><mi>ε</mi><mo>≥</mo><mn>0.42</mn></math></span>. The proof is based on the properties of the Bargmann transform.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101639"},"PeriodicalIF":2.5,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform approximation of common Gaussian process kernels using equispaced Fourier grids 利用等距傅里叶网格均匀逼近普通高斯过程核
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-27 DOI: 10.1016/j.acha.2024.101640
Alex Barnett , Philip Greengard , Manas Rachh

The high efficiency of a recently proposed method for computing with Gaussian processes relies on expanding a (translationally invariant) covariance kernel into complex exponentials, with frequencies lying on a Cartesian equispaced grid. Here we provide rigorous error bounds for this approximation for two popular kernels—Matérn and squared exponential—in terms of the grid spacing and size. The kernel error bounds are uniform over a hypercube centered at the origin. Our tools include a split into aliasing and truncation errors, and bounds on sums of Gaussians or modified Bessel functions over various lattices. For the Matérn case, motivated by numerical study, we conjecture a stronger Frobenius-norm bound on the covariance matrix error for randomly-distributed data points. Lastly, we prove bounds on, and study numerically, the ill-conditioning of the linear systems arising in such regression problems.

最近提出的一种高斯过程计算方法的高效率依赖于将一个(平移不变的)协方差核展开为复指数,其频率位于笛卡尔等距网格上。在此,我们根据网格间距和大小,为两个常用核--马特恩核和平方指数核的近似提供了严格的误差边界。核误差边界在以原点为中心的超立方体上是均匀的。我们的工具包括将误差分为别离误差和截断误差,以及各种网格上的高斯函数或修正贝塞尔函数之和的边界。对于马特恩案例,在数值研究的激励下,我们猜想随机分布数据点的协方差矩阵误差有更强的弗罗贝尼斯正则约束。最后,我们证明了此类回归问题中出现的线性系统的条件不完善约束,并对其进行了数值研究。
{"title":"Uniform approximation of common Gaussian process kernels using equispaced Fourier grids","authors":"Alex Barnett ,&nbsp;Philip Greengard ,&nbsp;Manas Rachh","doi":"10.1016/j.acha.2024.101640","DOIUrl":"10.1016/j.acha.2024.101640","url":null,"abstract":"<div><p>The high efficiency of a recently proposed method for computing with Gaussian processes relies on expanding a (translationally invariant) covariance kernel into complex exponentials, with frequencies lying on a Cartesian equispaced grid. Here we provide rigorous error bounds for this approximation for two popular kernels—Matérn and squared exponential—in terms of the grid spacing and size. The kernel error bounds are uniform over a hypercube centered at the origin. Our tools include a split into aliasing and truncation errors, and bounds on sums of Gaussians or modified Bessel functions over various lattices. For the Matérn case, motivated by numerical study, we conjecture a stronger Frobenius-norm bound on the covariance matrix error for randomly-distributed data points. Lastly, we prove bounds on, and study numerically, the ill-conditioning of the linear systems arising in such regression problems.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101640"},"PeriodicalIF":2.5,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139994414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied and Computational Harmonic Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1