首页 > 最新文献

Applied and Computational Harmonic Analysis最新文献

英文 中文
Gaussian random field approximation via Stein's method with applications to wide random neural networks 通过斯坦因方法进行高斯随机场逼近并应用于宽随机神经网络
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-13 DOI: 10.1016/j.acha.2024.101668
Krishnakumar Balasubramanian , Larry Goldstein , Nathan Ross , Adil Salim

We derive upper bounds on the Wasserstein distance (W1), with respect to sup-norm, between any continuous Rd valued random field indexed by the n-sphere and the Gaussian, based on Stein's method. We develop a novel Gaussian smoothing technique that allows us to transfer a bound in a smoother metric to the W1 distance. The smoothing is based on covariance functions constructed using powers of Laplacian operators, designed so that the associated Gaussian process has a tractable Cameron-Martin or Reproducing Kernel Hilbert Space. This feature enables us to move beyond one dimensional interval-based index sets that were previously considered in the literature. Specializing our general result, we obtain the first bounds on the Gaussian random field approximation of wide random neural networks of any depth and Lipschitz activation functions at the random field level. Our bounds are explicitly expressed in terms of the widths of the network and moments of the random weights. We also obtain tighter bounds when the activation function has three bounded derivatives.

我们基于斯坦因方法,推导出以 n 球为索引的任何连续 Rd 值随机场与高斯之间的瓦瑟斯坦距离(W1)的上界。我们开发了一种新颖的高斯平滑技术,可以将平滑度量中的约束转移到 W1 距离上。这种平滑技术基于使用拉普拉斯算子幂构造的协方差函数,其设计使相关的高斯过程具有可处理的卡梅隆-马丁或再现核希尔伯特空间。这一特点使我们超越了以往文献中考虑的基于一维区间的索引集。根据我们的一般结果,我们首次获得了在随机场水平上对任意深度和 Lipschitz 激活函数的宽随机神经网络的高斯随机场近似的约束。我们的边界用网络宽度和随机权重矩明确表示。当激活函数有三个有界导数时,我们还得到了更严格的约束。
{"title":"Gaussian random field approximation via Stein's method with applications to wide random neural networks","authors":"Krishnakumar Balasubramanian ,&nbsp;Larry Goldstein ,&nbsp;Nathan Ross ,&nbsp;Adil Salim","doi":"10.1016/j.acha.2024.101668","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101668","url":null,"abstract":"<div><p>We derive upper bounds on the Wasserstein distance (<span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>), with respect to sup-norm, between any continuous <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> valued random field indexed by the <em>n</em>-sphere and the Gaussian, based on Stein's method. We develop a novel Gaussian smoothing technique that allows us to transfer a bound in a smoother metric to the <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> distance. The smoothing is based on covariance functions constructed using powers of Laplacian operators, designed so that the associated Gaussian process has a tractable Cameron-Martin or Reproducing Kernel Hilbert Space. This feature enables us to move beyond one dimensional interval-based index sets that were previously considered in the literature. Specializing our general result, we obtain the first bounds on the Gaussian random field approximation of wide random neural networks of any depth and Lipschitz activation functions at the random field level. Our bounds are explicitly expressed in terms of the widths of the network and moments of the random weights. We also obtain tighter bounds when the activation function has three bounded derivatives.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"72 ","pages":"Article 101668"},"PeriodicalIF":2.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentially private federated learning with Laplacian smoothing 利用拉普拉斯平滑法进行差异化私有联合学习
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-05-07 DOI: 10.1016/j.acha.2024.101660
Zhicong Liang , Bao Wang , Quanquan Gu , Stanley Osher , Yuan Yao

Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users. However, an adversary may still be able to infer the private training data by attacking the released model. Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models. In this paper, we investigate a utility enhancement scheme based on Laplacian smoothing for differentially private federated learning (DP-Fed-LS), to improve the statistical precision of parameter aggregation with injected Gaussian noise without losing privacy budget. Our key observation is that the aggregated gradients in federated learning often enjoy a type of smoothness, i.e. sparsity in a graph Fourier basis with polynomial decays of Fourier coefficients as frequency grows, which can be exploited by the Laplacian smoothing efficiently. Under a prescribed differential privacy budget, convergence error bounds with tight rates are provided for DP-Fed-LS with uniform subsampling of heterogeneous non-iid data, revealing possible utility improvement of Laplacian smoothing in effective dimensionality and variance reduction, among others. Experiments over MNIST, SVHN, and Shakespeare datasets show that the proposed method can improve model accuracy with DP-guarantee and membership privacy under both uniform and Poisson subsampling mechanisms.

联合学习旨在通过协作学习模型来保护数据隐私,而不会在用户之间共享私人数据。然而,对手仍有可能通过攻击发布的模型来推断出私人训练数据。差异隐私提供了针对此类攻击的统计保护,但代价是大大降低了训练模型的准确性或实用性。在本文中,我们研究了一种基于拉普拉斯平滑的差异化隐私联合学习(DP-Fed-LS)的效用增强方案,以在不损失隐私预算的情况下提高注入高斯噪声的参数聚合的统计精度。我们的主要观点是,联合学习中的聚合梯度通常具有一种平滑性,即图傅里叶基础上的稀疏性,随着频率的增加,傅里叶系数呈多项式衰减,拉普拉斯平滑法可以有效地利用这种稀疏性。在规定的差分隐私预算下,DP-Fed-LS 对异构非 iid 数据进行了均匀子采样,并提供了收敛误差约束和严格的收敛率,揭示了拉普拉斯平滑法在有效降低维度和方差等方面可能的效用改进。在 MNIST、SVHN 和 Shakespeare 数据集上进行的实验表明,所提出的方法可以在均匀子采样和泊松子采样机制下提高具有 DP 保证的模型准确性和成员隐私性。
{"title":"Differentially private federated learning with Laplacian smoothing","authors":"Zhicong Liang ,&nbsp;Bao Wang ,&nbsp;Quanquan Gu ,&nbsp;Stanley Osher ,&nbsp;Yuan Yao","doi":"10.1016/j.acha.2024.101660","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101660","url":null,"abstract":"<div><p>Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users. However, an adversary may still be able to infer the private training data by attacking the released model. Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models. In this paper, we investigate a utility enhancement scheme based on Laplacian smoothing for differentially private federated learning (DP-Fed-LS), to improve the statistical precision of parameter aggregation with injected Gaussian noise without losing privacy budget. Our key observation is that the aggregated gradients in federated learning often enjoy a type of smoothness, <em>i.e.</em> sparsity in a graph Fourier basis with polynomial decays of Fourier coefficients as frequency grows, which can be exploited by the Laplacian smoothing efficiently. Under a prescribed differential privacy budget, convergence error bounds with tight rates are provided for DP-Fed-LS with uniform subsampling of heterogeneous <strong>non-iid</strong> data, revealing possible utility improvement of Laplacian smoothing in effective dimensionality and variance reduction, among others. Experiments over MNIST, SVHN, and Shakespeare datasets show that the proposed method can improve model accuracy with DP-guarantee and membership privacy under both uniform and Poisson subsampling mechanisms.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"72 ","pages":"Article 101660"},"PeriodicalIF":2.5,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140906086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mystery of Carleson frames 卡莱森框架之谜
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-04-17 DOI: 10.1016/j.acha.2024.101659
Ole Christensen , Marzieh Hasannasab , Friedrich M. Philipp , Diana Stoeva

In 2016 Aldroubi et al. constructed the first class of frames having the form {Tkφ}k=0 for a bounded linear operator on the underlying Hilbert space. In this paper we show that a subclass of these frames has a number of additional remarkable features that have not been identified for any other frames in the literature. Most importantly, the subfamily obtained by selecting each Nth element from the frame is itself a frame, regardless of the choice of NN. Furthermore, the frame property is kept upon removal of an arbitrarily finite number of elements.

2016 年,Aldroubi 等人构建了第一类框架,其形式为底层希尔伯特空间上有界线性算子的{Tkφ}k=0∞。在本文中,我们证明了这些框架的一个子类具有一些额外的显著特征,而这些特征在文献中还没有为任何其他框架所发现。最重要的是,无论选择 N∈N,从框架中选择第 N 个元素得到的子族本身就是一个框架。此外,在移除任意有限数量的元素后,框架属性仍然保持不变。
{"title":"The mystery of Carleson frames","authors":"Ole Christensen ,&nbsp;Marzieh Hasannasab ,&nbsp;Friedrich M. Philipp ,&nbsp;Diana Stoeva","doi":"10.1016/j.acha.2024.101659","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101659","url":null,"abstract":"<div><p>In 2016 Aldroubi et al. constructed the first class of frames having the form <span><math><msubsup><mrow><mo>{</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msup><mi>φ</mi><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> for a bounded linear operator on the underlying Hilbert space. In this paper we show that a subclass of these frames has a number of additional remarkable features that have not been identified for any other frames in the literature. Most importantly, the subfamily obtained by selecting each <em>N</em>th element from the frame is itself a frame, regardless of the choice of <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span>. Furthermore, the frame property is kept upon removal of an arbitrarily finite number of elements.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"72 ","pages":"Article 101659"},"PeriodicalIF":2.5,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of the tail-atomic norm in gridless spectrum estimation 无网格频谱估计中尾原子规范的有效性
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-04-16 DOI: 10.1016/j.acha.2024.101658
Wei Li , Shidong Li , Jun Xian

An effective tail-atomic norm methodology and algorithms for gridless spectral estimations are developed with a tail-minimization mechanism. We prove that the tail-atomic norm can be equivalently reformulated as a positive semi-definite programming (PSD) problem as well. Some delicate and critical weighting constraints are derived. Iterative tail-minimization algorithms based on PSD programming are also derived and implemented. Extensive simulation results demonstrate that the tail-atomic norm mechanism substantially outperforms state-of-the-art gridless spectral estimation techniques. Numerical studies also show that the tail-atomic norm approach is more robust to noisy measurements than other known related atomic norm methodologies.

通过尾部最小化机制,为无网格谱估计开发了一种有效的尾部原子规范方法和算法。我们证明,尾原子准则也可以等价地重新表述为一个正半有限编程(PSD)问题。我们还导出了一些微妙而关键的权重约束。我们还推导并实现了基于 PSD 编程的迭代尾部最小化算法。广泛的仿真结果表明,尾原子规范机制大大优于最先进的无网格谱估计技术。数值研究还表明,与其他已知的相关原子规范方法相比,尾原子规范方法对噪声测量具有更强的鲁棒性。
{"title":"Effectiveness of the tail-atomic norm in gridless spectrum estimation","authors":"Wei Li ,&nbsp;Shidong Li ,&nbsp;Jun Xian","doi":"10.1016/j.acha.2024.101658","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101658","url":null,"abstract":"<div><p>An effective tail-atomic norm methodology and algorithms for gridless spectral estimations are developed with a tail-minimization mechanism. We prove that the tail-atomic norm can be equivalently reformulated as a positive semi-definite programming (PSD) problem as well. Some delicate and critical weighting constraints are derived. Iterative tail-minimization algorithms based on PSD programming are also derived and implemented. Extensive simulation results demonstrate that the tail-atomic norm mechanism substantially outperforms state-of-the-art gridless spectral estimation techniques. Numerical studies also show that the tail-atomic norm approach is more robust to noisy measurements than other known related atomic norm methodologies.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"72 ","pages":"Article 101658"},"PeriodicalIF":2.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex-order scale-invariant operators and self-similar processes 复阶尺度不变算子和自相似过程
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-04-04 DOI: 10.1016/j.acha.2024.101656
Arash Amini , Julien Fageot , Michael Unser

In this paper, we perform the joint study of scale-invariant operators and self-similar processes of complex order. More precisely, we introduce general families of scale-invariant complex-order fractional-derivation and integration operators by constructing them in the Fourier domain. We analyze these operators in detail, with special emphasis on the decay properties of their output. We further use them to introduce a family of complex-valued stable processes that are self-similar with complex-valued Hurst exponents. These random processes are expressed via their characteristic functionals over the Schwartz space of functions. They are therefore defined as generalized random processes in the sense of Gel'fand. Beside their self-similarity and stationarity, we study the Sobolev regularity of the proposed random processes. Our work illustrates the strong connection between scale-invariant operators and self-similar processes, with the construction of adequate complex-order scale-invariant integration operators being preparatory to the construction of the random processes.

在本文中,我们对尺度不变算子和复阶自相似过程进行了联合研究。更确切地说,我们通过在傅里叶域中构建尺度不变复阶分数衍生和积分算子,引入了一般的尺度不变复阶分数衍生和积分算子族。我们详细分析了这些算子,特别强调了它们输出的衰变特性。我们进一步利用它们引入了一系列复值稳定过程,这些过程具有复值赫斯特指数自相似性。这些随机过程通过它们在施瓦茨函数空间上的特征函数来表示。因此,它们被定义为 Gel'fand 意义上的广义随机过程。除了它们的自相似性和静止性,我们还研究了所提出的随机过程的索波列夫正则性。我们的工作说明了尺度不变算子与自相似过程之间的紧密联系,而构建适当的复阶尺度不变积分算子则是构建随机过程的准备工作。
{"title":"Complex-order scale-invariant operators and self-similar processes","authors":"Arash Amini ,&nbsp;Julien Fageot ,&nbsp;Michael Unser","doi":"10.1016/j.acha.2024.101656","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101656","url":null,"abstract":"<div><p>In this paper, we perform the joint study of scale-invariant operators and self-similar processes of complex order. More precisely, we introduce general families of scale-invariant complex-order fractional-derivation and integration operators by constructing them in the Fourier domain. We analyze these operators in detail, with special emphasis on the decay properties of their output. We further use them to introduce a family of complex-valued stable processes that are self-similar with complex-valued Hurst exponents. These random processes are expressed via their characteristic functionals over the Schwartz space of functions. They are therefore defined as generalized random processes in the sense of Gel'fand. Beside their self-similarity and stationarity, we study the Sobolev regularity of the proposed random processes. Our work illustrates the strong connection between scale-invariant operators and self-similar processes, with the construction of adequate complex-order scale-invariant integration operators being preparatory to the construction of the random processes.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"72 ","pages":"Article 101656"},"PeriodicalIF":2.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error bounds for kernel-based approximations of the Koopman operator 基于核的库普曼算子近似的误差范围
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-04-04 DOI: 10.1016/j.acha.2024.101657
Friedrich M. Philipp , Manuel Schaller , Karl Worthmann , Sebastian Peitz , Feliks Nüske

We consider the data-driven approximation of the Koopman operator for stochastic differential equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if the data are collected from long-term ergodic simulations. We derive both an exact expression for the variance of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, and probabilistic bounds for the finite-data estimation error. Moreover, we derive a bound on the prediction error of observables in the RKHS using a finite Mercer series expansion. Further, assuming Koopman-invariance of the RKHS, we provide bounds on the full approximation error. Numerical experiments using the Ornstein-Uhlenbeck process illustrate our results.

我们考虑的是重现核希尔伯特空间(RKHS)上随机微分方程库普曼算子的数据驱动近似。我们的重点是如果数据是从长期遍历模拟中收集的,那么估计误差就会很大。我们推导出了以希尔伯特-施密特规范衡量的核交叉协方差算子方差的精确表达式,以及有限数据估计误差的概率边界。此外,我们还利用有限梅塞尔数列展开推导出了 RKHS 中观测值预测误差的约束。此外,假设 RKHS 具有库普曼不变性,我们还提供了全近似误差的约束。使用 Ornstein-Uhlenbeck 过程进行的数值实验说明了我们的结果。
{"title":"Error bounds for kernel-based approximations of the Koopman operator","authors":"Friedrich M. Philipp ,&nbsp;Manuel Schaller ,&nbsp;Karl Worthmann ,&nbsp;Sebastian Peitz ,&nbsp;Feliks Nüske","doi":"10.1016/j.acha.2024.101657","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101657","url":null,"abstract":"<div><p>We consider the data-driven approximation of the Koopman operator for stochastic differential equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if the data are collected from long-term ergodic simulations. We derive both an exact expression for the variance of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, and probabilistic bounds for the finite-data estimation error. Moreover, we derive a bound on the prediction error of observables in the RKHS using a finite Mercer series expansion. Further, assuming Koopman-invariance of the RKHS, we provide bounds on the full approximation error. Numerical experiments using the Ornstein-Uhlenbeck process illustrate our results.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101657"},"PeriodicalIF":2.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000344/pdfft?md5=f01b4b57c82f431fd15e3f589cf72791&pid=1-s2.0-S1063520324000344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140542763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frame set for Gabor systems with Haar window 带 Haar 窗口的 Gabor 系统框架集
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-03-18 DOI: 10.1016/j.acha.2024.101655
Xin-Rong Dai , Meng Zhu

We describe the full structure of the frame set for the Gabor system G(g;α,β):={e2πimβg(nα):m,nZ} with the window being the Haar function g=χ[1/2,0)+χ[0,1/2). This is the first compactly supported window function for which the frame set is represented explicitly.

The strategy of this paper is to introduce the piecewise linear transformation M on the unit circle, and to provide a complete characterization of structures for its (symmetric) maximal invariant sets. This transformation is related to the famous three gap theorem of Steinhaus which may be of independent interest. Furthermore, a classical criterion on Gabor frames is improved, which allows us to establish a necessary and sufficient condition for the Gabor system G(g;α,β) to be a frame, i.e., the symmetric invariant set of the transformation M is empty.

我们描述了以 Haar 函数为窗口的 Gabor 系统帧集的完整结构。这是第一个明确表示帧集的紧凑支持窗口函数。
{"title":"Frame set for Gabor systems with Haar window","authors":"Xin-Rong Dai ,&nbsp;Meng Zhu","doi":"10.1016/j.acha.2024.101655","DOIUrl":"10.1016/j.acha.2024.101655","url":null,"abstract":"<div><p>We describe the full structure of the frame set for the Gabor system <span><math><mi>G</mi><mo>(</mo><mi>g</mi><mo>;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>2</mn><mi>π</mi><mi>i</mi><mi>m</mi><mi>β</mi><mo>⋅</mo></mrow></msup><mi>g</mi><mo>(</mo><mo>⋅</mo><mo>−</mo><mi>n</mi><mi>α</mi><mo>)</mo><mo>:</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>Z</mi><mo>}</mo></math></span> with the window being the Haar function <span><math><mi>g</mi><mo>=</mo><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></msub><mo>+</mo><msub><mrow><mi>χ</mi></mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></msub></math></span>. This is the first compactly supported window function for which the frame set is represented explicitly.</p><p>The strategy of this paper is to introduce the piecewise linear transformation <span><math><mi>M</mi></math></span> on the unit circle, and to provide a complete characterization of structures for its (symmetric) maximal invariant sets. This transformation is related to the famous three gap theorem of Steinhaus which may be of independent interest. Furthermore, a classical criterion on Gabor frames is improved, which allows us to establish a necessary and sufficient condition for the Gabor system <span><math><mi>G</mi><mo>(</mo><mi>g</mi><mo>;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo></math></span> to be a frame, i.e., the symmetric invariant set of the transformation <span><math><mi>M</mi></math></span> is empty.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101655"},"PeriodicalIF":2.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frame set for shifted sinc-function 移位 sinc 函数的帧集
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-03-16 DOI: 10.1016/j.acha.2024.101654
Yurii Belov , Andrei V. Semenov

We prove that frame set Fg for imaginary shift of sinc-functiong(t)=sinπb(tiw)tiw,b,wR{0} can be described as Fg={(α,β):αβ1,β|b|}.

In addition, we prove that Fg={(α,β):αβ1} for window functions g of the form1tiw(1k=1ake2πibkt), such that k1|ak|e2π|wbk|<1, wbk<0.

我们证明,sinc 函数g(t)=sinπb(t-iw)t-iw,b,w∈R∖{0}的虚移帧集 Fg 可描述为 Fg={(α,β):αβ⩽1,β⩽|b|}。此外,我们还证明,Fg={(α,β):αβ⩽1}为窗函数 g 的形式1t-iw(1-∑k=1∞ake2πibkt),使得∑k⩾1|ak|e2π|wbk|<1,wbk<0。
{"title":"Frame set for shifted sinc-function","authors":"Yurii Belov ,&nbsp;Andrei V. Semenov","doi":"10.1016/j.acha.2024.101654","DOIUrl":"10.1016/j.acha.2024.101654","url":null,"abstract":"<div><p>We prove that frame set <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> for imaginary shift of sinc-function<span><span><span><math><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>sin</mi><mo>⁡</mo><mi>π</mi><mi>b</mi><mo>(</mo><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi><mo>)</mo></mrow><mrow><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi></mrow></mfrac><mo>,</mo><mspace></mspace><mi>b</mi><mo>,</mo><mi>w</mi><mo>∈</mo><mi>R</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span></span></span> can be described as <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mi>α</mi><mi>β</mi><mo>⩽</mo><mn>1</mn><mo>,</mo><mi>β</mi><mo>⩽</mo><mo>|</mo><mi>b</mi><mo>|</mo><mo>}</mo></math></span>.</p><p>In addition, we prove that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>)</mo><mo>:</mo><mi>α</mi><mi>β</mi><mo>⩽</mo><mn>1</mn><mo>}</mo></math></span> for window functions <em>g</em> of the form<span><span><span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi><mo>−</mo><mi>i</mi><mi>w</mi></mrow></mfrac><mo>(</mo><mn>1</mn><mo>−</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></munderover><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>t</mi></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> such that <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>⩾</mo><mn>1</mn></mrow></msub><mo>|</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mo>|</mo><mi>w</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>|</mo></mrow></msup><mo>&lt;</mo><mn>1</mn></math></span>, <span><math><mi>w</mi><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&lt;</mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101654"},"PeriodicalIF":2.5,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eigenmatrix for unstructured sparse recovery 非结构稀疏恢复的特征矩阵
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-03-14 DOI: 10.1016/j.acha.2024.101653
Lexing Ying

This note considers the unstructured sparse recovery problems in a general form. Examples include rational approximation, spectral function estimation, Fourier inversion, Laplace inversion, and sparse deconvolution. The main challenges are the noise in the sample values and the unstructured nature of the sample locations. This note proposes the eigenmatrix, a data-driven construction with desired approximate eigenvalues and eigenvectors. The eigenmatrix offers a new way for these sparse recovery problems. Numerical results are provided to demonstrate the efficiency of the proposed method.

本说明考虑了一般形式的非结构稀疏恢复问题。例子包括有理近似、频谱函数估计、傅立叶反演、拉普拉斯反演和稀疏解卷积。主要挑战在于样本值的噪声和样本位置的非结构性。本说明提出了特征矩阵,这是一种数据驱动的结构,具有所需的近似特征值和特征向量。特征矩阵为这些稀疏恢复问题提供了一种新的方法。本文提供了数值结果,以证明所提方法的效率。
{"title":"Eigenmatrix for unstructured sparse recovery","authors":"Lexing Ying","doi":"10.1016/j.acha.2024.101653","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101653","url":null,"abstract":"<div><p>This note considers the unstructured sparse recovery problems in a general form. Examples include rational approximation, spectral function estimation, Fourier inversion, Laplace inversion, and sparse deconvolution. The main challenges are the noise in the sample values and the unstructured nature of the sample locations. This note proposes the eigenmatrix, a data-driven construction with desired approximate eigenvalues and eigenvectors. The eigenmatrix offers a new way for these sparse recovery problems. Numerical results are provided to demonstrate the efficiency of the proposed method.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101653"},"PeriodicalIF":2.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving PDEs on unknown manifolds with machine learning 用机器学习解决未知流形上的多项式方程
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-29 DOI: 10.1016/j.acha.2024.101652
Senwei Liang , Shixiao W. Jiang , John Harlim , Haizhao Yang

This paper proposes a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion maps (DM) and deep learning. The PDE solver is formulated as a supervised learning task to solve a least-squares regression problem that imposes an algebraic equation approximating a PDE (and boundary conditions if applicable). This algebraic equation involves a graph-Laplacian type matrix obtained via DM asymptotic expansion, which is a consistent estimator of second-order elliptic differential operators. The resulting numerical method is to solve a highly non-convex empirical risk minimization problem subjected to a solution from a hypothesis space of neural networks (NNs). In a well-posed elliptic PDE setting, when the hypothesis space consists of neural networks with either infinite width or depth, we show that the global minimizer of the empirical loss function is a consistent solution in the limit of large training data. When the hypothesis space is a two-layer neural network, we show that for a sufficiently large width, gradient descent can identify a global minimizer of the empirical loss function. Supporting numerical examples demonstrate the convergence of the solutions, ranging from simple manifolds with low and high co-dimensions, to rough surfaces with and without boundaries. We also show that the proposed NN solver can robustly generalize the PDE solution on new data points with generalization errors that are almost identical to the training errors, superseding a Nyström-based interpolation method.

本文基于扩散图(DM)和深度学习,提出了一种无网格计算框架和机器学习理论,用于求解未知流形上的椭圆 PDE,该流形由点云识别。PDE 求解器被表述为一项监督学习任务,用于求解最小二乘回归问题,该问题施加了一个近似 PDE 的代数方程(以及适用的边界条件)。该代数方程涉及一个通过 DM 渐近展开得到的图-拉普拉斯矩阵,它是二阶椭圆微分算子的一致估计值。由此产生的数值方法是解决一个高度非凸的经验风险最小化问题,该问题受制于神经网络(NN)假设空间的解决方案。在条件良好的椭圆 PDE 设置中,当假设空间由无限宽或无限深的神经网络组成时,我们证明经验损失函数的全局最小值是大量训练数据极限下的一致解。当假设空间是一个双层神经网络时,我们证明了在宽度足够大的情况下,梯度下降可以识别经验损失函数的全局最小值。从具有低维度和高维度的简单流形,到有边界和无边界的粗糙表面,辅助数值示例证明了解决方案的收敛性。我们还证明,所提出的 NN 求解器可以在新数据点上稳健地泛化 PDE 解法,泛化误差与训练误差几乎相同,超越了基于 Nyström 的插值方法。
{"title":"Solving PDEs on unknown manifolds with machine learning","authors":"Senwei Liang ,&nbsp;Shixiao W. Jiang ,&nbsp;John Harlim ,&nbsp;Haizhao Yang","doi":"10.1016/j.acha.2024.101652","DOIUrl":"https://doi.org/10.1016/j.acha.2024.101652","url":null,"abstract":"<div><p>This paper proposes a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion maps (DM) and deep learning. The PDE solver is formulated as a supervised learning task to solve a least-squares regression problem that imposes an algebraic equation approximating a PDE (and boundary conditions if applicable). This algebraic equation involves a graph-Laplacian type matrix obtained via DM asymptotic expansion, which is a consistent estimator of second-order elliptic differential operators. The resulting numerical method is to solve a highly non-convex empirical risk minimization problem subjected to a solution from a hypothesis space of neural networks (NNs). In a well-posed elliptic PDE setting, when the hypothesis space consists of neural networks with either infinite width or depth, we show that the global minimizer of the empirical loss function is a consistent solution in the limit of large training data. When the hypothesis space is a two-layer neural network, we show that for a sufficiently large width, gradient descent can identify a global minimizer of the empirical loss function. Supporting numerical examples demonstrate the convergence of the solutions, ranging from simple manifolds with low and high co-dimensions, to rough surfaces with and without boundaries. We also show that the proposed NN solver can robustly generalize the PDE solution on new data points with generalization errors that are almost identical to the training errors, superseding a Nyström-based interpolation method.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"71 ","pages":"Article 101652"},"PeriodicalIF":2.5,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied and Computational Harmonic Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1