首页 > 最新文献

Applied and Computational Harmonic Analysis最新文献

英文 中文
Riesz transform associated with the fractional Fourier transform and applications in image edge detection Riesz变换与分数阶傅里叶变换的关联及其在图像边缘检测中的应用
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-01 DOI: 10.1016/j.acha.2023.05.003
Zunwei Fu , Loukas Grafakos , Yan Lin , Yue Wu , Shuhui Yang

The fractional Hilbert transform was introduced by Zayed [30, Zayed, 1998] and has been widely used in signal processing. In view of its connection with the fractional Fourier transform, Chen, the first, second and fourth authors of this paper in [6, Chen et al., 2021] studied the fractional Hilbert transform and other fractional multiplier operators on the real line. The present paper is concerned with a natural extension of the fractional Hilbert transform to higher dimensions: this extension is the fractional Riesz transform and is given by multiplication which a suitable chirp function on the fractional Fourier transform side. In addition to a thorough study of the fractional Riesz transform, in this work we also investigate the boundedness of singular integral operators with chirp functions on rotation invariant spaces, chirp Hardy spaces and their relation to chirp BMO spaces, as well as applications of the theory of fractional multipliers in partial differential equations. Through numerical simulation, we provide physical and geometric interpretations of high-dimensional fractional multipliers. Finally, we present an application of the fractional Riesz transforms in edge detection which verifies a hypothesis insinuated in [26, Xu et al., 2016]. In fact our numerical implementation confirms that amplitude, phase, and direction information can be simultaneously extracted by controlling the order of the fractional Riesz transform.

Zayed[30,Zayed,1998]引入了分数希尔伯特变换,并在信号处理中得到了广泛应用。鉴于其与分数傅立叶变换的联系,本文的第一、第二和第四作者Chen在[6,Chen et al.,2021]中研究了实数线上的分数希尔伯特变换和其他分数乘法器算子。本文讨论了分数希尔伯特变换向高维的一个自然扩展:该扩展是分数Riesz变换,并通过与分数傅立叶变换侧的适当线性调频函数相乘给出。除了深入研究分数阶Riesz变换外,本文还研究了具有线性调频函数的奇异积分算子在旋转不变空间、线性调频Hardy空间上的有界性及其与线性调频BMO空间的关系,以及分数乘子理论在偏微分方程中的应用。通过数值模拟,我们提供了高维分数乘法器的物理和几何解释。最后,我们提出了分数Riesz变换在边缘检测中的应用,验证了[26,Xu et al.,2016]中暗示的假设。事实上,我们的数值实现证实了可以通过控制分数Riesz变换的阶数来同时提取振幅、相位和方向信息。
{"title":"Riesz transform associated with the fractional Fourier transform and applications in image edge detection","authors":"Zunwei Fu ,&nbsp;Loukas Grafakos ,&nbsp;Yan Lin ,&nbsp;Yue Wu ,&nbsp;Shuhui Yang","doi":"10.1016/j.acha.2023.05.003","DOIUrl":"https://doi.org/10.1016/j.acha.2023.05.003","url":null,"abstract":"<div><p><span>The fractional Hilbert transform was introduced by Zayed </span><span>[30, Zayed, 1998]</span><span> and has been widely used in signal processing. In view of its connection with the fractional Fourier transform, Chen, the first, second and fourth authors of this paper in </span><span>[6, Chen et al., 2021]</span><span><span><span> studied the fractional Hilbert transform and other fractional multiplier operators on the real line. The present paper is concerned with a natural extension of the fractional Hilbert transform to higher dimensions: this extension is the fractional Riesz transform and is given by multiplication which a suitable chirp function on the fractional Fourier transform side. In addition to a thorough study of the fractional Riesz transform, in this work we also investigate the </span>boundedness<span> of singular integral operators<span> with chirp functions on rotation invariant spaces, chirp </span></span></span>Hardy spaces<span><span> and their relation to chirp BMO spaces, as well as applications of the theory of fractional multipliers in partial differential equations. Through numerical simulation, we provide physical and </span>geometric interpretations of high-dimensional fractional multipliers. Finally, we present an application of the fractional Riesz transforms in edge detection which verifies a hypothesis insinuated in </span></span><span>[26, Xu et al., 2016]</span>. In fact our numerical implementation confirms that amplitude, phase, and direction information can be simultaneously extracted by controlling the order of the fractional Riesz transform.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"66 ","pages":"Pages 211-235"},"PeriodicalIF":2.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49738503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
A simple approach for quantizing neural networks 一个量化神经网络的简单方法
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-01 DOI: 10.1016/j.acha.2023.04.004
Johannes Maly , Rayan Saab

In this short note, we propose a new method for quantizing the weights of a fully trained neural network. A simple deterministic pre-processing step allows us to quantize network layers via memoryless scalar quantization while preserving the network performance on given training data. On one hand, the computational complexity of this pre-processing slightly exceeds that of state-of-the-art algorithms in the literature. On the other hand, our approach does not require any hyper-parameter tuning and, in contrast to previous methods, allows a plain analysis. We provide rigorous theoretical guarantees in the case of quantizing single network layers and show that the relative error decays with the number of parameters in the network if the training data behave well, e.g., if it is sampled from suitable random distributions. The developed method also readily allows the quantization of deep networks by consecutive application to single layers.

在这篇短文中,我们提出了一种新的方法来量化完全训练的神经网络的权重。一个简单的确定性预处理步骤允许我们通过无记忆标量量化来量化网络层,同时保留给定训练数据上的网络性能。一方面,这种预处理的计算复杂度略高于文献中最先进的算法。另一方面,我们的方法不需要任何超参数调整,与以前的方法相比,可以进行简单的分析。在量化单个网络层的情况下,我们提供了严格的理论保证,并表明如果训练数据表现良好,例如,如果从合适的随机分布中采样,则相对误差会随着网络中参数的数量而衰减。所开发的方法还易于通过连续应用于单层来量化深度网络。
{"title":"A simple approach for quantizing neural networks","authors":"Johannes Maly ,&nbsp;Rayan Saab","doi":"10.1016/j.acha.2023.04.004","DOIUrl":"https://doi.org/10.1016/j.acha.2023.04.004","url":null,"abstract":"<div><p><span>In this short note, we propose a new method for quantizing the weights of a fully trained neural network. A simple deterministic pre-processing step allows us to quantize network layers via </span><span><em>memoryless </em><em>scalar quantization</em></span> while preserving the network performance on given training data. On one hand, the computational complexity of this pre-processing slightly exceeds that of state-of-the-art algorithms in the literature. On the other hand, our approach does not require any hyper-parameter tuning and, in contrast to previous methods, allows a plain analysis. We provide rigorous theoretical guarantees in the case of quantizing single network layers and show that the relative error decays with the number of parameters in the network if the training data behave well, e.g., if it is sampled from suitable random distributions. The developed method also readily allows the quantization of deep networks by consecutive application to single layers.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"66 ","pages":"Pages 138-150"},"PeriodicalIF":2.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49726859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unified approach to synchronization problems over subgroups of the orthogonal group 正交群子群上同步问题的统一方法
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-01 DOI: 10.1016/j.acha.2023.05.002
Huikang Liu , Man-Chung Yue , Anthony Man-Cho So

The problem of synchronization over a group G aims to estimate a collection of group elements G1,,GnG based on noisy observations of a subset of all pairwise ratios of the form GiGj1. Such a problem has gained much attention recently and finds many applications across a wide range of scientific and engineering areas. In this paper, we consider the class of synchronization problems in which the group is a closed subgroup of the orthogonal group. This class covers many group synchronization problems that arise in practice. Our contribution is fivefold. First, we propose a unified approach for solving this class of group synchronization problems, which consists of a suitable initialization step and an iterative refinement step based on the generalized power method, and show that it enjoys a strong theoretical guarantee on the estimation error under certain assumptions on the group, measurement graph, noise, and initialization. Second, we formulate two geometric conditions that are required by our approach and show that they hold for various practically relevant subgroups of the orthogonal group. The conditions are closely related to the error-bound geometry of the subgroup — an important notion in optimization. Third, we verify the assumptions on the measurement graph and noise for standard random graph and random matrix models. Fourth, based on the classic notion of metric entropy, we develop and analyze a novel spectral-type estimator. Finally, we show via extensive numerical experiments that our proposed non-convex approach outperforms existing approaches in terms of computational speed, scalability, and/or estimation error.

群G上的同步问题旨在基于形式为Gi,Gj−1的所有成对比率的子集的噪声观测来估计群元素G1,…,Gn∈G的集合。这一问题最近引起了人们的广泛关注,并在广泛的科学和工程领域得到了许多应用。在本文中,我们考虑了一类同步问题,其中群是正交群的闭子群。本课程涵盖了实践中出现的许多组同步问题。我们的贡献是五倍。首先,我们提出了一种解决这类群同步问题的统一方法,该方法包括一个合适的初始化步骤和一个基于广义幂方法的迭代精化步骤,并表明在对群、测量图、噪声和初始化的某些假设下,它对估计误差有很强的理论保证。其次,我们公式化了我们的方法所需要的两个几何条件,并证明它们适用于正交群的各种实际相关子群。条件与子群的误差界几何密切相关,这是优化中的一个重要概念。第三,我们验证了标准随机图和随机矩阵模型对测量图和噪声的假设。第四,基于度量熵的经典概念,我们开发并分析了一种新的谱型估计器。最后,我们通过大量的数值实验表明,我们提出的非凸方法在计算速度、可扩展性和/或估计误差方面优于现有方法。
{"title":"A unified approach to synchronization problems over subgroups of the orthogonal group","authors":"Huikang Liu ,&nbsp;Man-Chung Yue ,&nbsp;Anthony Man-Cho So","doi":"10.1016/j.acha.2023.05.002","DOIUrl":"https://doi.org/10.1016/j.acha.2023.05.002","url":null,"abstract":"<div><p>The problem of synchronization over a group <span><math><mi>G</mi></math></span> aims to estimate a collection of group elements <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>G</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>∈</mo><mi>G</mi></math></span> based on noisy observations of a subset of all pairwise ratios of the form <span><math><msubsup><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><msup><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>j</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span><span>. Such a problem has gained much attention recently and finds many applications across a wide range of scientific and engineering areas. In this paper, we consider the class of synchronization problems in which the group is a closed subgroup of the orthogonal group<span>. This class covers many group synchronization problems that arise in practice. Our contribution is fivefold. First, we propose a unified approach for solving this class of group synchronization problems, which consists of a suitable initialization step and an iterative refinement step based on the generalized power method, and show that it enjoys a strong theoretical guarantee on the estimation error under certain assumptions on the group, measurement graph, noise, and initialization. Second, we formulate two geometric conditions that are required by our approach and show that they hold for various practically relevant subgroups of the orthogonal group. The conditions are closely related to the error-bound geometry of the subgroup — an important notion in optimization. Third, we verify the assumptions on the measurement graph and noise for standard random graph and random matrix models. Fourth, based on the classic notion of metric entropy, we develop and analyze a novel spectral-type estimator. Finally, we show via extensive numerical experiments that our proposed non-convex approach outperforms existing approaches in terms of computational speed, scalability, and/or estimation error.</span></span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"66 ","pages":"Pages 320-372"},"PeriodicalIF":2.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49726251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral graph wavelet packets frames 谱图小波包帧
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-01 DOI: 10.1016/j.acha.2023.04.003
Iulia Martina Bulai , Sandra Saliani

Classical wavelet, wavelet packets and time-frequency dictionaries have been generalized to the graph setting, the main goal being to obtain atoms which are jointly localized both in the vertex and the graph spectral domain. We present a new method to generate a whole dictionary of frames of wavelet packets defined in the graph spectral domain to represent signals on weighted graphs.

We will give some concrete examples on how the spectral graph wavelet packets can be used for compressing, denoising and reconstruction by considering a signal, given by the fRMI (functional magnetic resonance imaging) data, on the nodes of voxel-wise brain graph with 900760 nodes, representing the brain voxels.

经典的小波、小波包和时频字典已被推广到图设置中,主要目标是获得在顶点和图谱域中联合定位的原子。我们提出了一种新的方法来生成在图谱域中定义的小波包帧的完整字典,以表示加权图上的信号。我们将给出一些具体的例子,说明如何通过考虑由fRMI(功能磁共振成像)数据在具有900760个节点的体素脑图节点上给出的信号,将频谱图小波包用于压缩、去噪和重建,表示脑体素。
{"title":"Spectral graph wavelet packets frames","authors":"Iulia Martina Bulai ,&nbsp;Sandra Saliani","doi":"10.1016/j.acha.2023.04.003","DOIUrl":"https://doi.org/10.1016/j.acha.2023.04.003","url":null,"abstract":"<div><p>Classical wavelet, wavelet packets<span> and time-frequency dictionaries have been generalized to the graph setting, the main goal being to obtain atoms which are jointly localized both in the vertex and the graph spectral domain. We present a new method to generate a whole dictionary of frames of wavelet packets defined in the graph spectral domain to represent signals on weighted graphs.</span></p><p>We will give some concrete examples on how the spectral graph wavelet packets can be used for compressing, denoising and reconstruction by considering a signal, given by the fRMI (functional magnetic resonance imaging) data, on the nodes of voxel-wise brain graph with 900760 nodes, representing the brain voxels.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"66 ","pages":"Pages 18-45"},"PeriodicalIF":2.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49754455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double preconditioning for Gabor frame operators: Algebraic, functional analytic and numerical aspects Gabor框架算子的双重预处理:代数、泛函解析和数值方面
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-09-01 DOI: 10.1016/j.acha.2023.04.001
Hans G. Feichtinger , Peter Balazs , Daniel Haider

This paper provides algebraic and analytic, as well as numerical arguments why and how double preconditioning of the Gabor frame operator yields an efficient method to compute approximate dual (respectively tight) Gabor atoms for a given time-frequency lattice. We extend the definition of the approach to the continuous setting, making use of the so-called Banach Gelfand Triple, based on the Segal algebra (S0(Rd), ⋅ S0) and show the continuous dependency of the double preconditioning operators on their parameters. The generalization allows to investigate the influence of the order of the two main single preconditioners (diagonal and convolutional). In the applied section we demonstrate the quality of double preconditioning over all possible lattices and adapt the method to approximate the canonical tight Gabor window, which yields a significant generalization of the FAB-method used in OFDM-applications. Finally, we demonstrate that our approach provides a way to efficiently compute approximate dual families for Gabor families which arise from a slowly varying pattern instead of a regular lattice.

本文提供了代数的、解析的以及数值的论证,为什么以及如何对Gabor框架算子进行双重预处理,从而产生一种有效的方法来计算给定时频晶格的近似对偶(分别是紧的)Gabor原子。我们利用基于Segal代数(S0(Rd),‖ ⋅ ‖S0)的所谓的Banach Gelfand三重,将该方法的定义扩展到连续设置,并展示了双预处理算子对其参数的连续依赖性。推广允许研究两个主要的单预条件(对角和卷积)的顺序的影响。在应用部分,我们展示了在所有可能的格上的双重预处理的质量,并使该方法适应于近似正则紧Gabor窗口,这产生了在ofdm应用中使用的fab -方法的重要推广。最后,我们证明了我们的方法提供了一种有效地计算Gabor族的近似对偶族的方法,这些家族是由缓慢变化的图案而不是规则晶格产生的。
{"title":"Double preconditioning for Gabor frame operators: Algebraic, functional analytic and numerical aspects","authors":"Hans G. Feichtinger ,&nbsp;Peter Balazs ,&nbsp;Daniel Haider","doi":"10.1016/j.acha.2023.04.001","DOIUrl":"10.1016/j.acha.2023.04.001","url":null,"abstract":"<div><p><span>This paper provides algebraic and analytic, as well as numerical arguments why and how double preconditioning of the Gabor frame operator yields an efficient method to compute approximate dual (respectively tight) Gabor atoms for a given time-frequency lattice. We extend the definition of the approach to the continuous setting, making use of the so-called Banach Gelfand Triple, based on the Segal algebra </span><span><math><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>,</mo><msub><mrow><mo>‖</mo><mtext> ⋅ </mtext><mo>‖</mo></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>)</mo></math></span> and show the continuous dependency of the double preconditioning operators on their parameters. The generalization allows to investigate the influence of the order of the two main single preconditioners (diagonal and convolutional). In the applied section we demonstrate the quality of double preconditioning over all possible lattices and adapt the method to approximate the canonical tight Gabor window, which yields a significant generalization of the FAB-method used in OFDM-applications. Finally, we demonstrate that our approach provides a way to efficiently compute approximate dual families for Gabor families which arise from a slowly varying pattern instead of a regular lattice.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"66 ","pages":"Pages 101-137"},"PeriodicalIF":2.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42369158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal analysis using Riemannian composition of diffusion operators 利用扩散算子的黎曼组成进行时空分析
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-08-21 DOI: 10.1016/j.acha.2023.101583
Tal Shnitzer , Hau-Tieng Wu , Ronen Talmon

Multivariate time-series have become abundant in recent years, as many data-acquisition systems record information through multiple sensors simultaneously. In this paper, we assume the variables pertain to some geometry and present an operator-based approach for spatiotemporal analysis. Our approach combines three components that are often considered separately: (i) manifold learning for building operators representing the geometry of the variables, (ii) Riemannian geometry of symmetric positive-definite matrices for multiscale composition of operators corresponding to different time samples, and (iii) spectral analysis of the composite operators for extracting different dynamic modes. We propose a method that is analogous to the classical wavelet analysis, which we term Riemannian multi-resolution analysis (RMRA). We provide some theoretical results on the spectral analysis of the composite operators, and we demonstrate the proposed method on simulations and on real data.

近年来,随着许多数据采集系统同时通过多个传感器记录信息,多变量时间序列变得丰富起来。在本文中,我们假设变量与某些几何体有关,并提出了一种基于算子的时空分析方法。我们的方法结合了通常单独考虑的三个组成部分:(i)用于构建表示变量几何的算子的流形学习,(ii)用于对应于不同时间样本的算子的多尺度合成的对称正定矩阵的黎曼几何,以及(iii)用于提取不同动态模式的复合算子的谱分析。我们提出了一种类似于经典小波分析的方法,我们称之为黎曼多分辨率分析(RMRA)。我们提供了一些关于复合算子谱分析的理论结果,并在模拟和实际数据上证明了所提出的方法。
{"title":"Spatiotemporal analysis using Riemannian composition of diffusion operators","authors":"Tal Shnitzer ,&nbsp;Hau-Tieng Wu ,&nbsp;Ronen Talmon","doi":"10.1016/j.acha.2023.101583","DOIUrl":"https://doi.org/10.1016/j.acha.2023.101583","url":null,"abstract":"<div><p>Multivariate time-series have become abundant in recent years, as many data-acquisition systems record information through multiple sensors simultaneously. In this paper, we assume the variables pertain to some geometry and present an operator-based approach for spatiotemporal analysis. Our approach combines three components that are often considered separately: (i) <em>manifold learning</em> for building operators representing the geometry of the variables, (ii) <em>Riemannian geometry of symmetric positive-definite matrices</em> for multiscale composition of operators corresponding to different time samples, and (iii) <em>spectral analysis</em> of the composite operators for extracting different dynamic modes. We propose a method that is analogous to the classical wavelet analysis, which we term Riemannian multi-resolution analysis (RMRA). We provide some theoretical results on the spectral analysis of the composite operators, and we demonstrate the proposed method on simulations and on real data.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101583"},"PeriodicalIF":2.5,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49819290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Performance bounds of the intensity-based estimators for noisy phase retrieval 噪声相位恢复中基于强度估计器的性能边界
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-08-19 DOI: 10.1016/j.acha.2023.101584
Meng Huang , Zhiqiang Xu
<div><p>The aim of noisy phase retrieval is to estimate a signal <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> from <em>m</em> noisy intensity measurements <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>=</mo><msup><mrow><mo>|</mo><mo>〈</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>〉</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> are known measurement vectors and <span><math><mi>η</mi><mo>=</mo><msup><mrow><mo>(</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>⊤</mo></mrow></msup><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> is a noise vector. A commonly used estimator for <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is to minimize the intensity-based loss function, i.e., <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><mo>=</mo><msub><mrow><mtext>argmin</mtext></mrow><mrow><mi>x</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msup><mrow><mo>(</mo><msup><mrow><mo>|</mo><mo>〈</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>〉</mo><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Although many algorithms for solving the intensity-based estimator have been developed, there are very few results about its estimation performance. In this paper, we focus on the performance of the intensity-based estimator and prove that the error bound satisfies <span><math><msub><mrow><mi>min</mi></mrow><mrow><mi>θ</mi><mo>∈</mo><mi>R</mi></mrow></msub><mo>⁡</mo><msub><mrow><mo>‖</mo><mover><mrow><mi>x</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><mo>≲</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><msqrt><mrow><msub><mrow><mo>‖</mo><mi>η</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow></msqrt></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</
噪声相位恢复的目的是从m个噪声强度测量值中估计信号x0∈Cd bj=| < aj,x0 > |2+ηj,j=1,…,m,其中aj∈Cd是已知的测量向量,η =(η1,…,ηm)∈Rm是噪声向量。x0的一个常用估计量是最小化基于强度的损失函数,即x:=argminx∈Cd∑j=1m(| < aj,x > |2 - bj)2。虽然已经开发了许多求解基于强度的估计器的算法,但关于其估计性能的结果很少。在本文中,我们重点研究了基于强度的估计器的性能,并证明了误差界满足在m≥d和aj∈Cd,j=1,…,m为复高斯随机向量的假设下,minθ∈R∈‖x φ−eiθx0‖2≤min∈{‖η‖2m1/4,‖η‖2‖x0‖2⋅m}。我们还证明了误差界在m≤log²m时是率最优的。在x0是s-稀疏信号的情况下,我们在m±slog (ed/s)的假设下给出了类似的结果。据我们所知,我们的结果为基于强度的估计器及其稀疏版本提供了第一个理论保证。
{"title":"Performance bounds of the intensity-based estimators for noisy phase retrieval","authors":"Meng Huang ,&nbsp;Zhiqiang Xu","doi":"10.1016/j.acha.2023.101584","DOIUrl":"10.1016/j.acha.2023.101584","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The aim of noisy phase retrieval is to estimate a signal &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; from &lt;em&gt;m&lt;/em&gt; noisy intensity measurements &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; are known measurement vectors and &lt;span&gt;&lt;math&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;⊤&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is a noise vector. A commonly used estimator for &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is to minimize the intensity-based loss function, i.e., &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˆ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mtext&gt;argmin&lt;/mtext&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. Although many algorithms for solving the intensity-based estimator have been developed, there are very few results about its estimation performance. In this paper, we focus on the performance of the intensity-based estimator and prove that the error bound satisfies &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;ˆ&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≲&lt;/mo&gt;&lt;mi&gt;min&lt;/mi&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;4&lt;/","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101584"},"PeriodicalIF":2.5,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45881107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning ability of interpolating deep convolutional neural networks 插值深度卷积神经网络的学习能力
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-08-16 DOI: 10.1016/j.acha.2023.101582
Tian-Yi Zhou, Xiaoming Huo

It is frequently observed that overparameterized neural networks generalize well. Regarding such phenomena, existing theoretical work mainly devotes to linear settings or fully-connected neural networks. This paper studies the learning ability of an important family of deep neural networks, deep convolutional neural networks (DCNNs), under both underparameterized and overparameterized settings. We establish the first learning rates of underparameterized DCNNs without parameter or function variable structure restrictions presented in the literature. We also show that by adding well-defined layers to a non-interpolating DCNN, we can obtain some interpolating DCNNs that maintain the good learning rates of the non-interpolating DCNN. This result is achieved by a novel network deepening scheme designed for DCNNs. Our work provides theoretical verification of how overfitted DCNNs generalize well.

人们经常观察到,过参数化的神经网络可以很好地推广。对于这种现象,现有的理论工作主要致力于线性设置或全连接神经网络。本文研究了一个重要的深度神经网络家族——深度卷积神经网络(DCNN)在低参数和高参数设置下的学习能力。我们建立了文献中没有参数或函数可变结构限制的低参数DCNN的首次学习率。我们还证明,通过在非插值DCNN中添加定义良好的层,我们可以获得一些插值DCNN,这些插值DCNN保持了非插值DCNN的良好学习率。这一结果是通过为DCNN设计的一种新的网络深化方案实现的。我们的工作为过拟合的DCNN如何很好地泛化提供了理论验证。
{"title":"Learning ability of interpolating deep convolutional neural networks","authors":"Tian-Yi Zhou,&nbsp;Xiaoming Huo","doi":"10.1016/j.acha.2023.101582","DOIUrl":"https://doi.org/10.1016/j.acha.2023.101582","url":null,"abstract":"<div><p><span>It is frequently observed that overparameterized neural networks generalize well. Regarding such phenomena, existing theoretical work mainly devotes to linear settings or fully-connected neural networks. This paper studies the learning ability of an important family of </span>deep neural networks<span>, deep convolutional neural networks (DCNNs), under both underparameterized and overparameterized settings. We establish the first learning rates of underparameterized DCNNs without parameter or function variable structure restrictions presented in the literature. We also show that by adding well-defined layers to a non-interpolating DCNN, we can obtain some interpolating DCNNs that maintain the good learning rates of the non-interpolating DCNN. This result is achieved by a novel network deepening scheme designed for DCNNs. Our work provides theoretical verification of how overfitted DCNNs generalize well.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101582"},"PeriodicalIF":2.5,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49778392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable parameterization of continuous and piecewise-linear functions 连续和分段线性函数的稳定参数化
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-08-09 DOI: 10.1016/j.acha.2023.101581
Alexis Goujon, Joaquim Campos, Michael Unser

Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep learning, generate continuous and piecewise-linear (CPWL) functions. While they provide a powerful parametric representation, the mapping between the parameter and function spaces lacks stability. In this paper, we investigate an alternative representation of CPWL functions that relies on local hat basis functions and that is applicable to low-dimensional regression problems. It is predicated on the fact that any CPWL function can be specified by a triangulation and its values at the grid points. We give the necessary and sufficient condition on the triangulation (in any number of dimensions and with any number of vertices) for the hat functions to form a Riesz basis, which ensures that the link between the parameters and the corresponding CPWL function is stable and unique. In addition, we provide an estimate of the 2L2 condition number of this local representation. As a special case of our framework, we focus on a systematic parameterization of Rd with control points placed on a uniform grid. In particular, we choose hat basis functions that are shifted replicas of a single linear box spline. In this setting, we prove that our general estimate of the condition number is exact. We also relate the local representation to a nonlocal one based on shifts of a causal ReLU-like function. Finally, we indicate how to efficiently estimate the Lipschitz constant of the CPWL mapping.

整流线性单元(ReLU)神经网络可以生成连续和分段线性(CPWL)函数,在深度学习中发挥着重要作用。虽然它们提供了强大的参数表示,但参数和函数空间之间的映射缺乏稳定性。在本文中,我们研究了一种CPWL函数的替代表示,它依赖于局部帽基函数,并且适用于低维回归问题。它是基于这样一个事实,即任何CPWL函数都可以通过三角测量及其在网格点上的值来指定。给出了帽函数(任意维数、任意顶点数)三角剖分形成Riesz基的充分必要条件,保证了参数与相应CPWL函数之间的联系是稳定唯一的。此外,我们给出了该局部表示的L2→L2条件数的估计。作为我们框架的一个特例,我们将重点放在一个均匀网格上的控制点的Rd的系统参数化上。特别地,我们选择的基函数是单个线性盒样条的移位副本。在这种情况下,我们证明了我们对条件数的一般估计是准确的。我们还将局部表示与基于因果类relu函数的移位的非局部表示联系起来。最后,给出了如何有效地估计CPWL映射的Lipschitz常数。
{"title":"Stable parameterization of continuous and piecewise-linear functions","authors":"Alexis Goujon,&nbsp;Joaquim Campos,&nbsp;Michael Unser","doi":"10.1016/j.acha.2023.101581","DOIUrl":"10.1016/j.acha.2023.101581","url":null,"abstract":"<div><p>Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep learning, generate continuous and piecewise-linear (CPWL) functions. While they provide a powerful parametric representation, the mapping between the parameter and function spaces lacks stability. In this paper, we investigate an alternative representation of CPWL functions that relies on local hat basis functions and that is applicable to low-dimensional regression problems. It is predicated on the fact that any CPWL function can be specified by a triangulation and its values at the grid points. We give the necessary and sufficient condition on the triangulation (in any number of dimensions and with any number of vertices) for the hat functions to form a Riesz basis, which ensures that the link between the parameters and the corresponding CPWL function is stable and unique. In addition, we provide an estimate of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>→</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> condition number of this local representation. As a special case of our framework, we focus on a systematic parameterization of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with control points placed on a uniform grid. In particular, we choose hat basis functions that are shifted replicas of a single linear box spline. In this setting, we prove that our general estimate of the condition number is exact. We also relate the local representation to a nonlocal one based on shifts of a causal ReLU-like function. Finally, we indicate how to efficiently estimate the Lipschitz constant of the CPWL mapping.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"67 ","pages":"Article 101581"},"PeriodicalIF":2.5,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48880442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Detecting whether a stochastic process is finitely expressed in a basis 检测随机过程是否在基中有限表示
IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-08-04 DOI: 10.1016/j.acha.2023.101578
Neda Mohammadi, Victor M. Panaretos

Is it possible to detect if the sample paths of a stochastic process almost surely admit a finite expansion with respect to some/any basis? The determination is to be made on the basis of a finite collection of discretely/noisily observed sample paths. We show that it is indeed possible to construct a hypothesis testing scheme that is almost surely guaranteed to make only finite many incorrect decisions as more data are collected. Said differently, our scheme almost certainly detects whether the process has a finite or infinite basis expansion for all sufficiently large sample sizes. Our approach relies on Cover's classical test for the irrationality of a mean, combined with tools for the non-parametric estimation of covariance operators.

是否有可能检测到随机过程的样本路径是否几乎肯定地承认相对于某些/任何基的有限扩展?该决定是在有限的离散/噪声观测样本路径的基础上做出的。我们表明,确实有可能构建一个假设检验方案,几乎可以肯定地保证,随着收集的数据越来越多,只会做出有限的错误决策。换句话说,我们的方案几乎可以肯定地检测到该过程对于所有足够大的样本量是否具有有限或无限的基展开。我们的方法依赖于Cover对平均值的非理性的经典检验,并结合了协方差算子的非参数估计工具。
{"title":"Detecting whether a stochastic process is finitely expressed in a basis","authors":"Neda Mohammadi,&nbsp;Victor M. Panaretos","doi":"10.1016/j.acha.2023.101578","DOIUrl":"10.1016/j.acha.2023.101578","url":null,"abstract":"<div><p>Is it possible to detect if the sample paths of a stochastic process almost surely admit a finite expansion with respect to some/any basis? The determination is to be made on the basis of a finite collection of discretely/noisily observed sample paths. We show that it is indeed possible to construct a hypothesis testing<span> scheme that is almost surely guaranteed to make only finite many incorrect decisions as more data are collected. Said differently, our scheme almost certainly detects whether the process has a finite or infinite basis expansion for all sufficiently large sample sizes. Our approach relies on Cover's classical test for the irrationality of a mean, combined with tools for the non-parametric estimation of covariance operators.</span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"67 ","pages":"Article 101578"},"PeriodicalIF":2.5,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41695556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied and Computational Harmonic Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1