Pub Date : 2023-12-01Epub Date: 2022-04-19DOI: 10.1097/WNO.0000000000001590
Yujia Zhou, Siva S Iyer, Esther Osuji, Bryce E Buchowicz
{"title":"Idiopathic Orbital Inflammation in the Postpartum Period Associated With Preeclampsia.","authors":"Yujia Zhou, Siva S Iyer, Esther Osuji, Bryce E Buchowicz","doi":"10.1097/WNO.0000000000001590","DOIUrl":"10.1097/WNO.0000000000001590","url":null,"abstract":"","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"49 1","pages":"e239-e241"},"PeriodicalIF":2.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78957733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.1007/s10463-023-00888-0
Davy Paindaveine
For two-sided hypothesis testing in location families, the classical optimality criterion is the one leading to uniformly most powerful unbiased (UMPU) tests. Such optimal tests, however, are constructed in exponential models only. We argue that if the base distribution is symmetric, then it is natural to consider uniformly most powerful symmetric (UMPS) tests, that is, tests that are uniformly most powerful in the class of level-(alpha ) tests whose power function is symmetric. For single-observation models, we provide a condition ensuring existence of UMPS tests and give their explicit form. When this condition is not met, UMPS tests may fail to exist and we provide a weaker condition under which there exist UMP tests in the class of level-(alpha ) tests whose power function is symmetric and U-shaped. In the multi-observation case, we obtain results in exponential models that also allow for non-location families.
{"title":"On UMPS hypothesis testing","authors":"Davy Paindaveine","doi":"10.1007/s10463-023-00888-0","DOIUrl":"10.1007/s10463-023-00888-0","url":null,"abstract":"<div><p>For two-sided hypothesis testing in location families, the classical optimality criterion is the one leading to <i>uniformly most powerful unbiased (UMPU)</i> tests. Such optimal tests, however, are constructed in exponential models only. We argue that if the base distribution is symmetric, then it is natural to consider <i>uniformly most powerful symmetric (UMPS)</i> tests, that is, tests that are uniformly most powerful in the class of level-<span>(alpha )</span> tests whose power function is symmetric. For single-observation models, we provide a condition ensuring existence of UMPS tests and give their explicit form. When this condition is not met, UMPS tests may fail to exist and we provide a weaker condition under which there exist UMP tests in the class of level-<span>(alpha )</span> tests whose power function is symmetric and U-shaped. In the multi-observation case, we obtain results in exponential models that also allow for non-location families.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"76 2","pages":"289 - 312"},"PeriodicalIF":0.8,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1007/s10463-023-00883-5
Michel Carbon, Thierry Duchesne
The purpose of this paper is to investigate the multivariate frequency polygon as a density estimator for stationary random fields indexed by multidimensional lattice points space. Optimal cell widths that asymptotically minimize integrated mean square error (IMSE) are derived. Under weak conditions, the IMSE of frequency polygons achieves the same rate of convergence to zero as that of kernel estimators. The frequency polygon can also attain the optimal uniform rate of convergence and the almost sure convergence under general conditions. Finally, a result of (L^1) convergence is given. Frequency polygons thus appear to be very good density estimators with respect to the criteria of IMSE, of uniform convergence, of almost sure convergence and of (L^1) convergence. We apply our results to simulated data and real data.
{"title":"Multivariate frequency polygon for stationary random fields","authors":"Michel Carbon, Thierry Duchesne","doi":"10.1007/s10463-023-00883-5","DOIUrl":"10.1007/s10463-023-00883-5","url":null,"abstract":"<div><p>The purpose of this paper is to investigate the multivariate frequency polygon as a density estimator for stationary random fields indexed by multidimensional lattice points space. Optimal cell widths that asymptotically minimize integrated mean square error (IMSE) are derived. Under weak conditions, the IMSE of frequency polygons achieves the same rate of convergence to zero as that of kernel estimators. The frequency polygon can also attain the optimal uniform rate of convergence and the almost sure convergence under general conditions. Finally, a result of <span>(L^1)</span> convergence is given. Frequency polygons thus appear to be very good density estimators with respect to the criteria of IMSE, of uniform convergence, of almost sure convergence and of <span>(L^1)</span> convergence. We apply our results to simulated data and real data.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"76 2","pages":"263 - 287"},"PeriodicalIF":0.8,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135390910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-04DOI: 10.1007/s10463-023-00884-4
Aapo Hyvärinen, Ilyes Khemakhem, Ricardo Monti
An old problem in multivariate statistics is that linear Gaussian models are often unidentifiable. In factor analysis, an orthogonal rotation of the factors is unidentifiable, while in linear regression, the direction of effect cannot be identified. For such linear models, non-Gaussianity of the (latent) variables has been shown to provide identifiability. In the case of factor analysis, this leads to independent component analysis, while in the case of the direction of effect, non-Gaussian versions of structural equation modeling solve the problem. More recently, we have shown how even general nonparametric nonlinear versions of such models can be estimated. Non-Gaussianity is not enough in this case, but assuming we have time series, or that the distributions are suitably modulated by observed auxiliary variables, the models are identifiable. This paper reviews the identifiability theory for the linear and nonlinear cases, considering both factor analytic and structural equation models.
{"title":"Identifiability of latent-variable and structural-equation models: from linear to nonlinear","authors":"Aapo Hyvärinen, Ilyes Khemakhem, Ricardo Monti","doi":"10.1007/s10463-023-00884-4","DOIUrl":"10.1007/s10463-023-00884-4","url":null,"abstract":"<div><p>An old problem in multivariate statistics is that linear Gaussian models are often unidentifiable. In factor analysis, an orthogonal rotation of the factors is unidentifiable, while in linear regression, the direction of effect cannot be identified. For such linear models, non-Gaussianity of the (latent) variables has been shown to provide identifiability. In the case of factor analysis, this leads to independent component analysis, while in the case of the direction of effect, non-Gaussian versions of structural equation modeling solve the problem. More recently, we have shown how even general nonparametric nonlinear versions of such models can be estimated. Non-Gaussianity is not enough in this case, but assuming we have time series, or that the distributions are suitably modulated by observed auxiliary variables, the models are identifiable. This paper reviews the identifiability theory for the linear and nonlinear cases, considering both factor analytic and structural equation models.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"76 1","pages":"1 - 33"},"PeriodicalIF":0.8,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135774127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1007/s10463-023-00887-1
Aapo Hyvärinen
{"title":"Rejoinder of “Identifiability of latent-variable and structural-equation models: from linear to nonlinear\"","authors":"Aapo Hyvärinen","doi":"10.1007/s10463-023-00887-1","DOIUrl":"10.1007/s10463-023-00887-1","url":null,"abstract":"","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"76 1","pages":"43 - 46"},"PeriodicalIF":0.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135221090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1007/s10463-023-00886-2
Hiroshi Morioka
{"title":"Discussion of “Identifiability of latent-variable and structural-equation models: from linear to nonlinear”","authors":"Hiroshi Morioka","doi":"10.1007/s10463-023-00886-2","DOIUrl":"10.1007/s10463-023-00886-2","url":null,"abstract":"","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"76 1","pages":"35 - 37"},"PeriodicalIF":0.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135221260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1007/s10463-023-00885-3
Takeru Matsuda
{"title":"Discussion of “Identifiability of latent-variable and structural-equation models: from linear to nonlinear”","authors":"Takeru Matsuda","doi":"10.1007/s10463-023-00885-3","DOIUrl":"10.1007/s10463-023-00885-3","url":null,"abstract":"","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"76 1","pages":"39 - 42"},"PeriodicalIF":0.8,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135221084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-26DOI: 10.1007/s10463-023-00882-6
Qi Zheng, Yunwei Cui, Rongning Wu
The nonparametric regression model with correlated errors is a powerful tool for time series forecasting. We are interested in the estimation of such a model, where the errors follow an autoregressive and moving average (ARMA) process, and the covariates can also be correlated. Instead of estimating the constituent parts of the model in a sequential fashion, we propose a spline-based method to estimate the mean function and the parameters of the ARMA process jointly. We establish the desirable asymptotic properties of the proposed approach under mild regularity conditions. Extensive simulation studies demonstrate that our proposed method performs well and generates strong evidence supporting the established theoretical results. Our method provides a new addition to the arsenal of tools for analyzing serially correlated data. We further illustrate the practical usefulness of our method by modeling and forecasting the weekly natural gas scraping data for the state of Iowa.
具有相关误差的非参数回归模型是时间序列预测的有力工具。我们对这种模型的估计很感兴趣,在这种模型中,误差遵循自回归移动平均(ARMA)过程,协变量也可能是相关的。我们提出了一种基于样条的方法来联合估计 ARMA 过程的均值函数和参数,而不是按顺序估计模型的各个组成部分。在温和的正则条件下,我们建立了所提方法的理想渐近特性。广泛的模拟研究表明,我们提出的方法性能良好,并产生了支持既定理论结果的有力证据。我们的方法为分析序列相关数据提供了新的工具。我们通过对爱荷华州每周的天然气废气数据进行建模和预测,进一步说明了我们的方法的实用性。
{"title":"On estimation of nonparametric regression models with autoregressive and moving average errors","authors":"Qi Zheng, Yunwei Cui, Rongning Wu","doi":"10.1007/s10463-023-00882-6","DOIUrl":"10.1007/s10463-023-00882-6","url":null,"abstract":"<div><p>The nonparametric regression model with correlated errors is a powerful tool for time series forecasting. We are interested in the estimation of such a model, where the errors follow an autoregressive and moving average (ARMA) process, and the covariates can also be correlated. Instead of estimating the constituent parts of the model in a sequential fashion, we propose a spline-based method to estimate the mean function and the parameters of the ARMA process jointly. We establish the desirable asymptotic properties of the proposed approach under mild regularity conditions. Extensive simulation studies demonstrate that our proposed method performs well and generates strong evidence supporting the established theoretical results. Our method provides a new addition to the arsenal of tools for analyzing serially correlated data. We further illustrate the practical usefulness of our method by modeling and forecasting the weekly natural gas scraping data for the state of Iowa.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"76 2","pages":"235 - 262"},"PeriodicalIF":0.8,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-11DOI: 10.1007/s10463-023-00881-7
Hélène Halconruy, Nicolas Marie
This paper deals with a projection least squares estimator of the drift function of a jump diffusion process X computed from multiple independent copies of X observed on [0, T]. Risk bounds are established on this estimator and on an associated adaptive estimator. Finally, some numerical experiments are provided.
本文论述了根据在 [0, T] 上观测到的多个独立 X 副本计算的跃迁扩散过程 X 漂移函数的投影最小二乘估计器。本文建立了该估计器和相关自适应估计器的风险边界。最后,还提供了一些数值实验。
{"title":"On a projection least squares estimator for jump diffusion processes","authors":"Hélène Halconruy, Nicolas Marie","doi":"10.1007/s10463-023-00881-7","DOIUrl":"10.1007/s10463-023-00881-7","url":null,"abstract":"<div><p>This paper deals with a projection least squares estimator of the drift function of a jump diffusion process <i>X</i> computed from multiple independent copies of <i>X</i> observed on [0, <i>T</i>]. Risk bounds are established on this estimator and on an associated adaptive estimator. Finally, some numerical experiments are provided.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"76 2","pages":"209 - 234"},"PeriodicalIF":0.8,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135938166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30DOI: 10.1007/s10463-023-00880-8
Patrick Bastian, Holger Dette, Lukas Koletzko, Kathrin Möllenhoff
In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their (L^1)-distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.
{"title":"Comparing regression curves: an L1-point of view","authors":"Patrick Bastian, Holger Dette, Lukas Koletzko, Kathrin Möllenhoff","doi":"10.1007/s10463-023-00880-8","DOIUrl":"10.1007/s10463-023-00880-8","url":null,"abstract":"<div><p>In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their <span>(L^1)</span>-distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"76 1","pages":"159 - 183"},"PeriodicalIF":0.8,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52265286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}