首页 > 最新文献

Atomic Data and Nuclear Data Tables最新文献

英文 中文
Revised energy levels and hyperfine structure constants of Nb II Nb II 的修订能级和超频结构常数
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-06-29 DOI: 10.1016/j.adt.2024.101664
L. Windholz , S. Kröger

Using wave number calibrated Fourier transform spectra, ranging from the IR to the UV regions, we determined with high accuracy the energies of the levels of the first ion of Niobium. In order to increase the accuracy of the center of gravity wave numbers of the observed spectral lines, the hyperfine structure was taken into account. For this purpose, the magnetic dipole hyperfine constants A were determined for all involved levels. All but one of the previously known levels were included in the calculation. This level (at 91 493 cm−1) is considered to be non-existent. From the experimental center of gravity wave numbers of 1121 lines we deduced the energy values of 184 levels of even parity and 164 levels of odd parity in a global fit. A comparison between our results and all previously available literature values is provided.

利用波数校准的傅立叶变换光谱(从红外到紫外区域),我们高精度地确定了铌的第一个离子的能级。为了提高观测光谱线重心波数的精确度,我们考虑了超精细结构。为此,我们测定了所有相关水平的磁偶极子超细常数 A。除了一个以前已知的水平之外,其他所有水平都被纳入了计算。这个水平(91 493 cm-1)被认为是不存在的。根据 1121 条线的实验重心波数,我们推导出了 184 个偶奇偶水平和 164 个奇奇偶水平的全局拟合能量值。我们的结果与之前所有文献中的数值进行了比较。
{"title":"Revised energy levels and hyperfine structure constants of Nb II","authors":"L. Windholz ,&nbsp;S. Kröger","doi":"10.1016/j.adt.2024.101664","DOIUrl":"10.1016/j.adt.2024.101664","url":null,"abstract":"<div><p>Using wave number calibrated Fourier transform spectra, ranging from the IR to the UV regions, we determined with high accuracy the energies of the levels of the first ion of Niobium. In order to increase the accuracy of the center of gravity wave numbers of the observed spectral lines, the hyperfine structure was taken into account. For this purpose, the magnetic dipole hyperfine constants <span><math><mi>A</mi></math></span> were determined for all involved levels. All but one of the previously known levels were included in the calculation. This level (at 91<!--> <!-->493 cm<sup>−1</sup>) is considered to be non-existent. From the experimental center of gravity wave numbers of 1121 lines we deduced the energy values of 184 levels of even parity and 164 levels of odd parity in a global fit. A comparison between our results and all previously available literature values is provided.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"159 ","pages":"Article 101664"},"PeriodicalIF":2.7,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0092640X24000299/pdfft?md5=2e9a022e9b91a19797c9ff2996b8b830&pid=1-s2.0-S0092640X24000299-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental K-shell fluorescence cross sections for elements in the atomic number range 16 ≤ Z ≤ 92 by photon impact at various energies 不同能量下光子撞击原子序数范围 16 ≤ Z ≤ 92 的元素的 K 壳荧光实验截面
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-06-15 DOI: 10.1016/j.adt.2024.101662
<div><p>The main purpose of this paper is to collect from various sources over 3300 experimental values of K-shell fluorescence cross sections (<span><math><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>β</mi><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub></msub></msub></math></span><em>,</em><span><math><mrow><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>β</mi><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msub></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>α</mi><mn>1</mn></msub></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>α</mi><mn>2</mn></msub></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>β</mi><mn>1</mn></msub></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>β</mi><mn>2</mn></msub></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><msub><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow><mn>1</mn></msub></msub></msub><mo>,</mo><mspace></mspace><msub><mi>σ</mi><msub><mi>K</mi><msub><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow><mn>2</mn></msub></msub></msub><mo>,</mo><mspace></mspace><msub><mi>σ</mi><msub><mi>K</mi><mi>α</mi></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><mi>β</mi></msub></msub></mrow></math></span> and <span><math><msub><mi>σ</mi><msub><mi>K</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow></msub></msub></math></span>) of elements with atomic number in the range <span><math><mrow><mn>16</mn><mspace></mspace><mo>≤</mo><mspace></mspace><mi>Z</mi><mspace></mspace><mo>≤</mo><mspace></mspace><mn>92</mn><mspace></mspace></mrow></math></span>by photo-ionization in multiple excitation energy ranging from 5.46 to 661.6 keV, which are presented in a form of 11 tables. The experimental values reported in 96 papers by numerous researches were published between 1985 and 2023. Therefore, by considering in the same tables a calculation of weighted average fluorescence cross section <span><math><mrow><mrow><mo>(</mo><msub><mi>σ</mi><msub><mi>K</mi><mi>j</mi></msub></msub><mo>)</mo></mrow><msub><mspace></mspace><mi>W</mi></msub></mrow></math></span>, with <span><math><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><msub><mi>β</mi><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mi>β</mi><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>,</mo><msub><mi>α</mi><mn>1</mn></msub><mo>,</mo><msub><mi>α</mi><mn>2</mn></msub><mo>,</mo><msub><mi>β</mi><mn>1</mn></msub><mo>,</mo><msub><mi>β</mi><mn>2</mn></msub><mo>,</mo><msub><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow><mn>1</mn></msub><mo>,</mo><msub><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow><mn>2</mn></msub><mo>,</mo><mspace></mspace><mi>α</mi><mo>,</mo><mi>β</mi><mspace></mspace><mrow><mtext>and</mtext><mspace></mspace><mtext>tot</mtext></mrow></mrow><mo>)</mo></mrow></math></span> for each element; a full study of these data is carried out. However, dividing the measured values <span><math><mrow><msub><mrow><mo>(</mo><msub><mi>σ</mi><msub><mi>K</mi><mi>j</mi></msub></msub><mo>)</mo></mrow><mrow><mi>E<
本文的主要目的是从各种来源收集了 3300 多个 K 壳荧光截面的实验值(σKβ1,3,σKβ2,4,σKα1,σKα2,σKβ1、(σKβ1,3,σKβ2,4,σKα1,σKα2,σKβ1,σKβ1,σKβ2,σKβ′1,σKβ′2,σKα,σKβ 和 σKtot)的原子序数在 16≤Z≤92 范围内的元素,在 5.46 至 661.6 千伏,以 11 个表格的形式列出。1985 年至 2023 年间,许多研究人员在 96 篇论文中报告了实验值。因此,通过在这些表格中计算每种元素的加权平均荧光截面 (σKj)W,其中(j=β1,3,β2,4,α1,α2,β1,β2,β′1,β′2,α,βandtot),可以对这些数据进行全面研究。不过,将测量值 (σKj)Exp 除以加权平均值 (σKj)W 后,还研究了新的加权平均值比 SW=(σKj)Exp/(σKj)Ware。
{"title":"Experimental K-shell fluorescence cross sections for elements in the atomic number range 16 ≤ Z ≤ 92 by photon impact at various energies","authors":"","doi":"10.1016/j.adt.2024.101662","DOIUrl":"10.1016/j.adt.2024.101662","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The main purpose of this paper is to collect from various sources over 3300 experimental values of K-shell fluorescence cross sections (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;em&gt;,&lt;/em&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) of elements with atomic number in the range &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;16&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mn&gt;92&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;by photo-ionization in multiple excitation energy ranging from 5.46 to 661.6 keV, which are presented in a form of 11 tables. The experimental values reported in 96 papers by numerous researches were published between 1985 and 2023. Therefore, by considering in the same tables a calculation of weighted average fluorescence cross section &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mtext&gt;and&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;tot&lt;/mtext&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for each element; a full study of these data is carried out. However, dividing the measured values &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"159 ","pages":"Article 101662"},"PeriodicalIF":2.7,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141389603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmark calculation of electron-impact ionization cross sections and rate coefficients of atomic ions in Ar isonuclear sequence 氩等核序列中原子离子的电子撞击电离截面和速率系数的基准计算
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-06-08 DOI: 10.1016/j.adt.2024.101663

Argon is being considered as an injected impurity to mitigate damage to divertors of DEMO caused by excessive heat flux. For a comprehensive understanding of Ar plasma, carefully evaluated atomic data are required. In this study, the electron-impact ionization cross-sections and rate coefficients for all atomic ions in the argon isonuclear sequence are calculated using the level-to-level distorted wave approximation. The calculated cross-sections and rate coefficients are compared with experimental data and other theoretical calculations. The calculated values are consistent with results reported in the literature, with differences not exceeding 20%. We fit the calculated cross-sections using an empirical formula. Additionally, we combine our ionization rate coefficients with the dielectronic- and radiative-recombination rate coefficients from other studies to determine the ionization balance. The obtained data are expected to be useful for plasma modelling involving argon impurities.

目前正在考虑将氩作为一种注入杂质,以减轻 DEMO 分流器因热流量过大而造成的损坏。为了全面了解氩等离子体,需要仔细评估原子数据。在本研究中,使用级对级扭曲波近似法计算了氩等核序列中所有原子离子的电子撞击电离截面和速率系数。计算得到的截面和速率系数与实验数据和其他理论计算结果进行了比较。计算值与文献报道的结果一致,差异不超过 20%。我们用经验公式拟合了计算截面。此外,我们还将电离率系数与其他研究中的介电子和辐射对撞率系数相结合,以确定电离平衡。所获得的数据有望用于涉及氩杂质的等离子体建模。
{"title":"Benchmark calculation of electron-impact ionization cross sections and rate coefficients of atomic ions in Ar isonuclear sequence","authors":"","doi":"10.1016/j.adt.2024.101663","DOIUrl":"10.1016/j.adt.2024.101663","url":null,"abstract":"<div><p>Argon is being considered as an injected impurity to mitigate damage to divertors of DEMO caused by excessive heat flux. For a comprehensive understanding of Ar plasma, carefully evaluated atomic data are required. In this study, the electron-impact ionization cross-sections and rate coefficients for all atomic ions in the argon isonuclear sequence are calculated using the level-to-level distorted wave approximation. The calculated cross-sections and rate coefficients are compared with experimental data and other theoretical calculations. The calculated values are consistent with results reported in the literature, with differences not exceeding 20%. We fit the calculated cross-sections using an empirical formula. Additionally, we combine our ionization rate coefficients with the dielectronic- and radiative-recombination rate coefficients from other studies to determine the ionization balance. The obtained data are expected to be useful for plasma modelling involving argon impurities.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"159 ","pages":"Article 101663"},"PeriodicalIF":2.7,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141408579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, II: Even-Z nuclei 连续体中变形相对论哈特里-博戈柳博夫理论的核质量表,II:偶Z 核
IF 1.8 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-05-17 DOI: 10.1016/j.adt.2024.101661
Peng Guo , Xiaojie Cao , Kangmin Chen , Zhihui Chen , Myung-Ki Cheoun , Yong-Beom Choi , Pak Chung Lam , Wenmin Deng , Jianmin Dong , Pengxiang Du , Xiaokai Du , Kangda Duan , Xiaohua Fan , Wei Gao , Lisheng Geng , Eunja Ha , Xiao-Tao He , Jinniu Hu , Jingke Huang , Kun Huang , Lianjian Zou

The mass table in the deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc) with the PC-PK1 density functional has been established for even-Z nuclei with 8Z120, extended from the previous work for even–even nuclei (Zhang et al. (DRHBc mass table collaboration), At. Data Nucl. Data Tables 144, 101488 (2022)). The calculated binding energies, two-nucleon and one-neutron separation energies, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, quadrupole deformations, and neutron and proton Fermi surfaces are tabulated and compared with available experimental data. A total of 4829 even-Z nuclei are predicted to be bound, with an rms deviation of 1.433 MeV from the 1244 mass data. Good agreement with the available experimental odd–even mass differences, α decay energies, and charge radii is also achieved. The description accuracy for nuclear masses and nucleon separation energies as well as the prediction for drip lines is compared with the results obtained from other relativistic and nonrelativistic density functional. The comparison shows that the DRHBc theory with PC-PK1 provides an excellent microscopic description for the masses of even-Z nuclei. The systematics of the nucleon separation energies, odd–even mass differences, pairing energies, two-nucleon gaps, α decay energies, rms radii, quadrupole deformations, potential energy curves, neutron density distributions, and neutron mean-field potentials are discussed.

使用 PC-PK1 密度函数的变形相对论哈特里-波哥留波夫连续体理论(DRHBc)的质量表已经为 8≤Z≤120 的偶-Z 核建立,该质量表是在以前针对偶-偶核的工作基础上扩展而来的(Zhang 等人(DRHBc 质量表协作组),At.Data Nucl.Data Tables 144, 101488 (2022))。计算出的结合能、两核子和一中子分离能、中子、质子、物质和电荷分布的均方根半径、四极子变形以及中子和质子费米面都以表格形式列出,并与现有实验数据进行了比较。预测共有 4829 个偶 Z 核被束缚,与 1244 个质量数据的均方根偏差为 1.433 MeV。与现有的实验奇偶质量差、α 衰变能量和电荷半径也达到了很好的一致。核质量和核子分离能的描述精度以及滴流线的预测与其他相对论和非相对论密度泛函的结果进行了比较。比较结果表明,使用 PC-PK1 的 DRHBc 理论对偶数-Z 核的质量进行了出色的微观描述。讨论了核子分离能、奇偶质量差、配对能、双核间隙、α 衰变能、均方根半径、四极变形、势能曲线、中子密度分布和中子均场势能的系统性。
{"title":"Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, II: Even-Z nuclei","authors":"Peng Guo ,&nbsp;Xiaojie Cao ,&nbsp;Kangmin Chen ,&nbsp;Zhihui Chen ,&nbsp;Myung-Ki Cheoun ,&nbsp;Yong-Beom Choi ,&nbsp;Pak Chung Lam ,&nbsp;Wenmin Deng ,&nbsp;Jianmin Dong ,&nbsp;Pengxiang Du ,&nbsp;Xiaokai Du ,&nbsp;Kangda Duan ,&nbsp;Xiaohua Fan ,&nbsp;Wei Gao ,&nbsp;Lisheng Geng ,&nbsp;Eunja Ha ,&nbsp;Xiao-Tao He ,&nbsp;Jinniu Hu ,&nbsp;Jingke Huang ,&nbsp;Kun Huang ,&nbsp;Lianjian Zou","doi":"10.1016/j.adt.2024.101661","DOIUrl":"10.1016/j.adt.2024.101661","url":null,"abstract":"<div><p>The mass table in the deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc) with the PC-PK1 density functional has been established for even-<span><math><mi>Z</mi></math></span> nuclei with <span><math><mrow><mn>8</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>120</mn></mrow></math></span>, extended from the previous work for even–even nuclei (Zhang et al. (DRHBc mass table collaboration), At. Data Nucl. Data Tables 144, 101488 (2022)). The calculated binding energies, two-nucleon and one-neutron separation energies, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, quadrupole deformations, and neutron and proton Fermi surfaces are tabulated and compared with available experimental data. A total of 4829 even-<span><math><mi>Z</mi></math></span> nuclei are predicted to be bound, with an rms deviation of 1.433 MeV from the 1244 mass data. Good agreement with the available experimental odd–even mass differences, <span><math><mi>α</mi></math></span> decay energies, and charge radii is also achieved. The description accuracy for nuclear masses and nucleon separation energies as well as the prediction for drip lines is compared with the results obtained from other relativistic and nonrelativistic density functional. The comparison shows that the DRHBc theory with PC-PK1 provides an excellent microscopic description for the masses of even-<span><math><mi>Z</mi></math></span> nuclei. The systematics of the nucleon separation energies, odd–even mass differences, pairing energies, two-nucleon gaps, <span><math><mi>α</mi></math></span> decay energies, rms radii, quadrupole deformations, potential energy curves, neutron density distributions, and neutron mean-field potentials are discussed.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"158 ","pages":"Article 101661"},"PeriodicalIF":1.8,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141052880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale relativistic calculations of spectral data in Zr XXVIII, Nb XXIX and Tc XXXI of tokamak interest 对托卡马克感兴趣的锆 XXVIII、铌 XXIX 和锝 XXXI 光谱数据的大规模相对论计算
IF 1.8 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-05-02 DOI: 10.1016/j.adt.2024.101660
Z.B. Chen

Large-scale relativistic multiconfiguration Dirac–Fock calculations of energy levels and lifetimes of the 206 states arising from the 3s23p, 3p3, 3s3p3d, 3p3d2, 3s24p, 3s24f, 3s3p2, 3s23d, 3s3d2, 3s24d, 3s24s, 3s3p4s, 3s3p4d, 3p23d, 3d3, and 3s3p4p configurations of Zr XXVIII, Nb XXIX, and Tc XXXI of tokamak interest are carried out. The active space approximation is employed for the calculations. To obtain accurate and convergent results, the calculations take into account the valence and core-valence correlations within the n = 9 complex, as well as the Breit interaction, self-energy corrections, and vacuum polarization corrections. Detailed information regarding the decay properties of these ions is provided, including the transition wavelengths, line strengths, and radiative transition rates for various types (electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions) of transitions among the levels of the aforementioned configurations. The uncertainties of each dipole transition are evaluated. The present data sets are compared to previous results and a good agreement is observed, which is valuable for emission line identification and fusion modeling, especially in situations where experimental data are scarce.

3s24f, 3s3p2, 3s23d, 3s3d2, 3s24d, 3s24s, 3s3p4s, 3s3p4d, 3p23d, 3d3, 和 3s3p4p 配置所产生的 206 个状态的能级和寿命。计算采用了活动空间近似法。为了获得精确和收敛的结果,计算考虑了 n = 9 复合物内的价价和核价相关性,以及布雷特相互作用、自能修正和真空极化修正。研究还提供了有关这些离子衰变特性的详细信息,包括上述构型电平间各种类型(电偶极子、电四极子、磁偶极子和磁四极子转换)转换的转换波长、线强度和辐射转换率。评估了每种偶极转换的不确定性。本数据集与之前的结果进行了比较,结果表明两者具有良好的一致性,这对于发射线识别和聚变建模非常有价值,尤其是在缺乏实验数据的情况下。
{"title":"Large-scale relativistic calculations of spectral data in Zr XXVIII, Nb XXIX and Tc XXXI of tokamak interest","authors":"Z.B. Chen","doi":"10.1016/j.adt.2024.101660","DOIUrl":"10.1016/j.adt.2024.101660","url":null,"abstract":"<div><p>Large-scale relativistic multiconfiguration Dirac–Fock calculations of energy levels and lifetimes of the 206 states arising from the 3s<sup>2</sup>3p, 3p<sup>3</sup>, 3s3p3d, 3p3d<sup>2</sup>, 3s<sup>2</sup>4p, 3s<sup>2</sup>4f, 3s3p<sup>2</sup>, 3s<sup>2</sup>3d, 3s3d<sup>2</sup>, 3s<sup>2</sup>4d, 3s<sup>2</sup>4s, 3s3p4s, 3s3p4d, 3p<sup>2</sup>3d, 3d<sup>3</sup>, and 3s3p4p configurations of Zr XXVIII, Nb XXIX, and Tc XXXI of tokamak interest are carried out. The active space approximation is employed for the calculations. To obtain accurate and convergent results, the calculations take into account the valence and core-valence correlations within the <em>n</em> <span><math><mo>=</mo></math></span> 9 complex, as well as the Breit interaction, self-energy corrections, and vacuum polarization corrections. Detailed information regarding the decay properties of these ions is provided, including the transition wavelengths, line strengths, and radiative transition rates for various types (electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions) of transitions among the levels of the aforementioned configurations. The uncertainties of each dipole transition are evaluated. The present data sets are compared to previous results and a good agreement is observed, which is valuable for emission line identification and fusion modeling, especially in situations where experimental data are scarce.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"158 ","pages":"Article 101660"},"PeriodicalIF":1.8,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoionization cross-sections of valence shells of 3d-elements in VUV-soft X-ray spectral region 紫外-软 X 射线光谱区 3d 元素价壳的光电离截面
IF 1.8 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-04-27 DOI: 10.1016/j.adt.2024.101650
L.V. Chernysheva , V.G. Yarzhemsky

Theoretical photoionization cross-sections and angular distribution parameters for valence and subvalence shells of 3d-elements from Sc to Zn are calculated with account for intrachannel and interchannel interactions for the energy region from threshold up to 400 eV. Many-electron effects were accounted for within the framework of RPAE (random phase approximation with exchange) method, which is extended for average terms of unfilled shells. Calculations demonstrate a decrease of σ(3 s) by approximately 25 %- 30 % for photon energies up to 24 Ry. and significant increase of σ(4s) for photon energies up tp 4 Ry and also a small decrease σ(3p) relative to the HFS results of Yeh and Lindau, whereas the influence of correlations on σ(3d) is negligible

计算了从阈值到 400 eV 的能量区域中从 Sc 到 Zn 的 3 种元素的价壳和亚价壳的理论光电离截面和角分布参数,并考虑了通道内和通道间的相互作用。在 RPAE(带交换的随机相近似)方法框架内考虑了多电子效应,并对未填充壳的平均项进行了扩展。计算表明,当光子能量高达 24 Ry 时,σ(3 s) 下降了约 25%-30% ;当光子能量高达 4 Ry 时,σ(4s) 显著增加;与 Yeh 和 Lindau 的 HFS 结果相比,σ(3) 也略有下降,而相关性对σ(3) 的影响可以忽略不计。
{"title":"Photoionization cross-sections of valence shells of 3d-elements in VUV-soft X-ray spectral region","authors":"L.V. Chernysheva ,&nbsp;V.G. Yarzhemsky","doi":"10.1016/j.adt.2024.101650","DOIUrl":"10.1016/j.adt.2024.101650","url":null,"abstract":"<div><p>Theoretical photoionization cross-sections and angular distribution parameters for valence and subvalence shells of 3<em>d</em>-elements from Sc to Zn are calculated with account for intrachannel and interchannel interactions for the energy region from threshold up to 400 eV. Many-electron effects were accounted for within the framework of RPAE (random phase approximation with exchange) method, which is extended for average terms of unfilled shells. Calculations demonstrate a decrease of σ(3 s) by approximately 25 %- 30 % for photon energies up to 24 Ry. and significant increase of σ(4s) for photon energies up tp 4 Ry and also a small decrease σ(3<em>p</em>) relative to the HFS results of Yeh and Lindau, whereas the influence of correlations on σ(3<em>d</em>) is negligible</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"158 ","pages":"Article 101650"},"PeriodicalIF":1.8,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141195725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise structure calculations of 1,3Fe states of helium atom under exponentially screened Coulomb potential 1,3F</m 的精确结构计算
IF 1.8 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-04-21 DOI: 10.1016/j.adt.2024.101649
A.N. Sil , S. Dutta , D. Ghosh , J.K. Saha , S. Bhattacharyya , T.K. Mukhopadhyay

The structural properties of doubly excited 1,3Fe metastable-bound and resonance states of neutral helium atom under exponentially screened Coulomb potential are studied using explicitly correlated multi-exponent Hylleraas type basis set. Precise energy eigenvalues of 2pnf(1,3Fe) states n=415 are estimated in the framework of Ritz variational principle. Stabilization method has been employed to calculate the resonance parameters (energy and width) of 1,3Fe states below He+(3p) and He+(4p) thresholds for different screening conditions. The resonance parameters above He+(3p) threshold under screened Coulomb environment are reported for the first time in literature. Furthermore, pioneering calculations for the variation of structural properties such as one- and two-particle moments and inter-electronic angles are carried out for both metastable-bound and resonance 1,3Fe states of He atom under screened Coulomb potential. The present results may serve as benchmark for future references.

利用显式相关多分量海勒拉斯(Hylleraas)型基集,研究了指数屏蔽库仑势下中性氦原子的双激发 1,3Fe 可转移束缚态和共振态的结构特性。在里兹变分原理的框架内估算了 2pnf(1,3Fe)态 n=4-15 的精确能量特征值。采用稳定法计算了不同屏蔽条件下低于 He+(3p)和 He+(4p)阈值的 1,3Fe 状态的共振参数(能量和宽度)。在文献中首次报道了屏蔽库仑环境下高于 He+(3p)阈值的共振参数。此外,还开创性地计算了屏蔽库仑势下氦原子的可蜕变束缚态和共振 1,3Fe 态的结构特性变化,如单粒子矩、双粒子矩和电子间角。本研究结果可作为今后参考的基准。
{"title":"Precise structure calculations of 1,3Fe states of helium atom under exponentially screened Coulomb potential","authors":"A.N. Sil ,&nbsp;S. Dutta ,&nbsp;D. Ghosh ,&nbsp;J.K. Saha ,&nbsp;S. Bhattacharyya ,&nbsp;T.K. Mukhopadhyay","doi":"10.1016/j.adt.2024.101649","DOIUrl":"10.1016/j.adt.2024.101649","url":null,"abstract":"<div><p>The structural properties of doubly excited <span><math><mrow><msup><mrow></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span> metastable-bound and resonance states of neutral helium atom under exponentially screened Coulomb potential are studied using explicitly correlated multi-exponent Hylleraas type basis set. Precise energy eigenvalues of <span><math><mrow><mn>2</mn><mi>p</mi><mi>n</mi><mi>f</mi><mrow><mo>(</mo><msup><mrow></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mi>e</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> states <span><math><mfenced><mrow><mi>n</mi><mo>=</mo><mn>4</mn><mo>−</mo><mn>15</mn></mrow></mfenced></math></span> are estimated in the framework of Ritz variational principle. Stabilization method has been employed to calculate the resonance parameters (energy and width) of <span><math><mrow><msup><mrow></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span> states below <span><math><mrow><mi>H</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mi>p</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>H</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>4</mn><mi>p</mi><mo>)</mo></mrow></mrow></math></span> thresholds for different screening conditions. The resonance parameters above <span><math><mrow><mi>H</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mi>p</mi><mo>)</mo></mrow></mrow></math></span> threshold under screened Coulomb environment are reported for the first time in literature. Furthermore, pioneering calculations for the variation of structural properties such as one- and two-particle moments and inter-electronic angles are carried out for both metastable-bound and resonance <span><math><mrow><msup><mrow></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mi>e</mi></mrow></msup></mrow></math></span> states of He atom under screened Coulomb potential. The present results may serve as benchmark for future references.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"158 ","pages":"Article 101649"},"PeriodicalIF":1.8,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140763755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Databases of L-shell X-ray intensity ratios for various elements after photon excitation 光子激发后各种元素的 L 壳 X 射线强度比数据库
IF 1.8 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-03-26 DOI: 10.1016/j.adt.2024.101645
A. Zidi , A. Kahoul , J.P. Marques , S. Daoudi , J.M. Sampaio , F. Parente , A. Hamidani , S. Croft , A. Favalli , Y. Kasri , K. Amari , B. Berkani
<div><p>In this study, a comprehensive dataset of X-ray emission intensity ratios has been compiled, including <span><math><mrow><msub><mi>I</mi><mrow><mi>L</mi><mi>β</mi></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>α</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>I</mi><mrow><mi>L</mi><mi>γ</mi></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>α</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>I</mi><mtext>Ll</mtext></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>α</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>I</mi><mrow><mi>L</mi><mi>γ</mi></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>β</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>I</mi><mtext>Ll</mtext></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>γ</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>I</mi><mtext>Ll</mtext></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>β</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>I</mi><mrow><mrow><mi>L</mi><mi>γ</mi></mrow><mn>5</mn></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>α</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>I</mi><mrow><mrow><mi>L</mi><mi>γ</mi></mrow><mn>44</mn><msup><mrow></mrow><mo>′</mo></msup></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>α</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>I</mi><mrow><mi>L</mi><mi>η</mi></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>α</mi></mrow></msub></mrow></math></span>, and <span><math><mrow><msub><mi>I</mi><mrow><mrow><mi>L</mi><mi>γ</mi></mrow><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>α</mi></mrow></msub></mrow></math></span>, extracted from literature spanning the years 1971 to 2023, and encompassing 83 research papers. Over this timeframe, a total of 2600 values were collected, comprising some 678 values for <span><math><mrow><msub><mi>I</mi><mrow><mi>L</mi><mi>β</mi></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>α</mi></mrow></msub></mrow></math></span>, 696 values for <span><math><mrow><msub><mi>I</mi><mrow><mi>L</mi><mi>γ</mi></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>α</mi></mrow></msub></mrow></math></span>, 617 values for <span><math><mrow><msub><mi>I</mi><mtext>Ll</mtext></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>α</mi></mrow></msub></mrow></math></span>, along with 132, 132, 89, 60, 70, 71, and 55 data points for <span><math><mrow><msub><mi>I</mi><mrow><mi>L</mi><mi>γ</mi></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>β</mi></mrow></msub></mrow></math></span>,<span><math><mrow><mspace></mspace><msub><mi>I</mi><mtext>Ll</mtext></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>γ</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mi>I</mi><mtext>Ll</mtext></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>L</mi><mi>β</mi></mrow></ms
本研究汇编了一个全面的 X 射线发射强度比数据集,包括 ILβ/ILα、ILγ/ILα、ILl/ILα、ILγ/ILβ、ILl/ILγ、ILl/ILβ、ILγ5/ILα、ILγ44′/ILα、ILη/ILα 和 ILγ1/ILα,这些数据是从 1971 年至 2023 年的文献中提取的,包含 83 篇研究论文。在这段时间内,共收集了 2600 个值,其中包括 ILβ/ILα 的 678 个值、ILγ/ILα 的 696 个值、ILl/ILα 的 617 个值,以及 ILγ/ILβ、ILl/ILγ、ILl/ILβ、ILγ5/ILα、ILγ44′/ILα、ILη/ILα 和 ILγ1/ILα 的 132、132、89、60、70、71 和 55 个数据点。报告的数值精确到小数点后三到四位,并附有相关的不确定性。此外,表格还包括这些强度比的计算加权平均值 (ILi/ILj)W、不确定值 (εISD, εESD)、综合标准偏差 (zISD, zESD) 和平均 z 分数 (z¯ISD,z¯ESD)。这些数据涵盖了光子轰击激发时从 39Y 到 94Pu 的元素。对这些实验数据值如何按原子序数分布进行的评估表明,它们广泛覆盖了大多数元素。不过,也发现了一些没有数据或数据值少于两个的个别情况。
{"title":"Databases of L-shell X-ray intensity ratios for various elements after photon excitation","authors":"A. Zidi ,&nbsp;A. Kahoul ,&nbsp;J.P. Marques ,&nbsp;S. Daoudi ,&nbsp;J.M. Sampaio ,&nbsp;F. Parente ,&nbsp;A. Hamidani ,&nbsp;S. Croft ,&nbsp;A. Favalli ,&nbsp;Y. Kasri ,&nbsp;K. Amari ,&nbsp;B. Berkani","doi":"10.1016/j.adt.2024.101645","DOIUrl":"10.1016/j.adt.2024.101645","url":null,"abstract":"&lt;div&gt;&lt;p&gt;In this study, a comprehensive dataset of X-ray emission intensity ratios has been compiled, including &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mtext&gt;Ll&lt;/mtext&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mtext&gt;Ll&lt;/mtext&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mtext&gt;Ll&lt;/mtext&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mn&gt;44&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, extracted from literature spanning the years 1971 to 2023, and encompassing 83 research papers. Over this timeframe, a total of 2600 values were collected, comprising some 678 values for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, 696 values for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, 617 values for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mtext&gt;Ll&lt;/mtext&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, along with 132, 132, 89, 60, 70, 71, and 55 data points for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;,&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mtext&gt;Ll&lt;/mtext&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mtext&gt;Ll&lt;/mtext&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/ms","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"157 ","pages":"Article 101645"},"PeriodicalIF":1.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140405183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The study of atomic structure parameters for n = 4 - n = 3 transitions in Mg-like ions with 15≤Z≤30 n = 4 - <mm 的原子结构参数研究
IF 1.8 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-03-13 DOI: 10.1016/j.adt.2024.101648
Shiying Jiang, Banglin Deng, Guosheng Zhang, Yunping Wang, Shihui Nie, Xinyi Wang

Multiconfiguration Dirac–Hartree–Fock (MCDHF) and relativistic configuration interaction (RCI) methods are utilized for theoretical calculations of energy levels, wavelengths, line strengths, absorption oscillator strengths, and transition probabilities in 3s2-3s4p, 3s3p-3s4s, 3s3p-3s4d, 3s3p-3p4p, 3s3d-3s4f, 3p2-3p4s, 3p2-3p4d, and 3p3d-3p4f transitions in Mg-like ions with 15Z30. The calculations of energies account for Breit interaction and quantum electrodynamics (QED) contributions. The active space approximation is employed for the calculations, and energy converges when the active orbital set is increased to n = 7. The calculated lowest 78 levels including valence and core–valence correlations in Mg-like ions with Z=15–30 show good agreement with experiment results and other calculations. The relative difference between calculated wavelengths and experiment values exhibits a decreasing trend as the atomic numbers increase, and the difference is better than 1% for a majority of transitions. To evaluate the accuracy of the wave functions and transition parameters, the quantity dT is analyzed within 0.1 for most strong transitions. The transition probabilities are compared with other theoretical values to analyze with line strength S. Such calculations may provide valuable data for the experimental study of plasma diagnostics and modeling as there are others.

利用 MCDHFock(MCDHF)和相对论构型相互作用(RCI)方法,对 15≤Z≤30 的类镁离子中 3s2-3s4p、3s3p-3s4s、3s3p-3s4d、3s3p-3p4p、3s3d-3s4f、3p2-3p4s、3p2-3p4d 和 3p3d-3p4f 转变的能级、波长、线强度、吸收振荡器强度和转变概率进行了理论计算。能量计算考虑了布雷特相互作用和量子电动力学(QED)的贡献。计算中采用了有源空间近似,当有源轨道集增加到 n = 7 时,能量收敛。 Z=15-30 的类镁离子的最低 78 级(包括价和核-价相关性)的计算结果与实验结果和其他计算结果显示出良好的一致性。随着原子序数的增加,计算波长与实验值之间的相对差值呈下降趋势,大多数转变的差值优于 1%。为了评估波函数和跃迁参数的准确性,对大多数强跃迁的 dT 量进行了分析,结果在 0.1 以内。这些计算可为等离子体诊断和建模的实验研究提供有价值的数据。
{"title":"The study of atomic structure parameters for n = 4 - n = 3 transitions in Mg-like ions with 15≤Z≤30","authors":"Shiying Jiang,&nbsp;Banglin Deng,&nbsp;Guosheng Zhang,&nbsp;Yunping Wang,&nbsp;Shihui Nie,&nbsp;Xinyi Wang","doi":"10.1016/j.adt.2024.101648","DOIUrl":"10.1016/j.adt.2024.101648","url":null,"abstract":"<div><p>Multiconfiguration Dirac–Hartree–Fock (MCDHF) and relativistic configuration interaction (RCI) methods are utilized for theoretical calculations of energy levels, wavelengths, line strengths, absorption oscillator strengths, and transition probabilities in 3s<sup>2</sup>-3s4p, 3s3p-3s4s, 3s3p-3s4d, 3s3p-3p4p, 3s3d-3s4f, 3p<sup>2</sup>-3p4s, 3p<sup>2</sup>-3p4d, and 3p3d-3p4f transitions in Mg-like ions with <span><math><mrow><mn>15</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>30</mn></mrow></math></span>. The calculations of energies account for Breit interaction and quantum electrodynamics (QED) contributions. The active space approximation is employed for the calculations, and energy converges when the active orbital set is increased to <span><math><mi>n</mi></math></span> = 7. The calculated lowest 78 levels including valence and core–valence correlations in Mg-like ions with Z=15–30 show good agreement with experiment results and other calculations. The relative difference between calculated wavelengths and experiment values exhibits a decreasing trend as the atomic numbers increase, and the difference is better than 1% for a majority of transitions. To evaluate the accuracy of the wave functions and transition parameters, the quantity <span><math><mrow><mi>d</mi><mi>T</mi></mrow></math></span> is analyzed within 0.1 for most strong transitions. The transition probabilities are compared with other theoretical values to analyze with line strength S. Such calculations may provide valuable data for the experimental study of plasma diagnostics and modeling as there are others.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"157 ","pages":"Article 101648"},"PeriodicalIF":1.8,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140268676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MCDHF and RCI calculations of energies and radiative rates of Mn VI and Cr V 六价锰和五价铬的能量和辐射率的 MCDHF 和 RCI 计算
IF 1.8 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-02-16 DOI: 10.1016/j.adt.2024.101637
Bowen Li, Ximeng Chen

Energies, wavelengths and transition rates in Mn VI and Cr V have been calculated using the multiconfiguration Dirac-Hartree–Fock (MCDHF) and relativistic configuration interaction (RCI) methods. The present calculations have been compared with the available data from the NIST ASD and other calculations to evaluate the accuracy of the present calculations. The calculated 25 lowest energy levels have good agreement with the data from the NIST ASD and should provide missing data, especially for levels of the 3p53d3 configuration in the NIST ASD. The calculated E1 transitions of the type 3p63d2 - 3p63d4p and E2 transitions of the types 3p63d2 - 3p63d4s and 3p63d2 - 3p63d3 are in excellent agreement with the NIST ASD. The consistence between present calculated E2 and M1 transitions within the 3d2 configuration are worse with the NIST ASD. The data obtained are expected to be useful for nebula and supernovae analyses.

使用多构型狄拉克-哈特里-福克(MCDHF)和相对论构型相互作用(RCI)方法计算了六价锰和五价铬的能量、波长和转变率。为了评估本计算的准确性,我们将本计算与来自 NIST ASD 和其他计算的可用数据进行了比较。计算出的 25 个最低能级与 NIST ASD 的数据有很好的一致性,尤其是对于 NIST ASD 中 3p53d3 构型的能级,应能提供缺失的数据。计算得出的 3p63d2 - 3p63d4p 类型的 E1 转变以及 3p63d2 - 3p63d4s 和 3p63d2 - 3p63d3 类型的 E2 转变与 NIST ASD 的数据非常一致。目前计算的 3d2 构型内的 E2 和 M1 转变与 NIST ASD 的一致性较差。所获得的数据有望用于星云和超新星分析。
{"title":"MCDHF and RCI calculations of energies and radiative rates of Mn VI and Cr V","authors":"Bowen Li,&nbsp;Ximeng Chen","doi":"10.1016/j.adt.2024.101637","DOIUrl":"10.1016/j.adt.2024.101637","url":null,"abstract":"<div><p>Energies, wavelengths and transition rates in Mn VI and Cr V have been calculated using the multiconfiguration Dirac-Hartree–Fock (MCDHF) and relativistic configuration interaction (RCI) methods. The present calculations have been compared with the available data from the NIST ASD and other calculations to evaluate the accuracy of the present calculations. The calculated 25 lowest energy levels have good agreement with the data from the NIST ASD and should provide missing data, especially for levels of the <span><math><mrow><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>5</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> configuration in the NIST ASD. The calculated <span><math><mrow><mi>E</mi><mn>1</mn></mrow></math></span> transitions of the type <span><math><mrow><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>6</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> - <span><math><mrow><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>6</mn></mrow></msup><mn>3</mn><mi>d</mi><mn>4</mn><mi>p</mi></mrow></math></span> and <span><math><mrow><mi>E</mi><mn>2</mn></mrow></math></span> transitions of the types <span><math><mrow><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>6</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> - <span><math><mrow><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>6</mn></mrow></msup><mn>3</mn><mi>d</mi><mn>4</mn><mi>s</mi></mrow></math></span> and <span><math><mrow><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>6</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> - <span><math><mrow><mn>3</mn><msup><mrow><mi>p</mi></mrow><mrow><mn>6</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> are in excellent agreement with the NIST ASD. The consistence between present calculated <span><math><mrow><mi>E</mi><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>M</mi><mn>1</mn></mrow></math></span> transitions within the <span><math><mrow><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> configuration are worse with the NIST ASD. The data obtained are expected to be useful for nebula and supernovae analyses.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"157 ","pages":"Article 101637"},"PeriodicalIF":1.8,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Atomic Data and Nuclear Data Tables
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1