首页 > 最新文献

Atomic Data and Nuclear Data Tables最新文献

英文 中文
Alpha-decay half-lives and alpha-capture cross-sections 衰变半衰期和俘获截面
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-08-30 DOI: 10.1016/j.adt.2024.101684
V.Yu. Denisov
The same alpha-nucleus interaction describes the alpha-decay and alpha-capture reactions in the Unified Model for Alpha-Decay and Alpha-Capture (UMADAC). The data for the ground-state-to-ground-state alpha-transition half-lives in 420 nuclei, the half-lives for alpha-transition from the ground state to the first excited 2+ state in 74 even–even nuclei, and the alpha-capture cross sections of 20 spherical and deformed nuclei are used for defining the parameters of the UMADAC. The pointed data are well described in the framework of the UMADAC utilizing the obtained parameters. The ground-state-to-ground-state alpha-transition half-lives in 3802 nuclei with the proton Z and nucleon A numbers in the ranges 50 Z 126 and 97 A 340 are calculated in the UMADAC and presented in the Table 1. The quadrupole and hexadecapole deformations of the daughter nucleus are considered in the UMADAC. The minimal values of the orbital momenta of the alpha-transition between the ground states are found using available experimental and theoretical data for the ground state spin and parity values of nuclei. The half-lives for 223 alpha-transitions from the ground-state of the parent even–even nuclei to the lowest 2+ state of the daughter nuclei with the proton Z and nucleon A numbers in the ranges 52 Z 102 and 108 A 254 are obtained in the UMADAC and given in the Table 2.
在α衰变和α捕获统一模型(UMADAC)中,相同的α -核相互作用描述了α衰变和α捕获反应。利用420个原子核的基态到基态α跃迁半衰期数据、74个偶偶核从基态到第一激发态α跃迁半衰期数据以及20个球形和变形原子核的α俘获截面数据来确定UMADAC的参数。利用所获得的参数,在UMADAC框架中很好地描述了点数据。质子Z和核子A在50≤Z≤126和97≤A≤340范围内的3802原子核的基态到基态α跃迁半衰期在UMADAC中计算,如表1所示。在UMADAC中考虑了子核的四极和六极变形。利用现有的基态自旋和原子核宇称值的实验和理论数据,找到了基态间α跃迁轨道动量的最小值。从母偶核基态到子核最低2+态的223个α跃迁的半衰期,质子Z和核子A在52≤Z≤102和108≤A≤254的范围内,在UMADAC中得到,并给出了表2。
{"title":"Alpha-decay half-lives and alpha-capture cross-sections","authors":"V.Yu. Denisov","doi":"10.1016/j.adt.2024.101684","DOIUrl":"10.1016/j.adt.2024.101684","url":null,"abstract":"<div><div>The same alpha-nucleus interaction describes the alpha-decay and alpha-capture reactions in the Unified Model for Alpha-Decay and Alpha-Capture (UMADAC). The data for the ground-state-to-ground-state alpha-transition half-lives in 420 nuclei, the half-lives for alpha-transition from the ground state to the first excited <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> state in 74 even–even nuclei, and the alpha-capture cross sections of 20 spherical and deformed nuclei are used for defining the parameters of the UMADAC. The pointed data are well described in the framework of the UMADAC utilizing the obtained parameters. The ground-state-to-ground-state alpha-transition half-lives in 3802 nuclei with the proton <span><math><mi>Z</mi></math></span> and nucleon <span><math><mi>A</mi></math></span> numbers in the ranges 50 <span><math><mrow><mo>≤</mo><mi>Z</mi><mo>≤</mo></mrow></math></span> 126 and 97 <span><math><mrow><mo>≤</mo><mi>A</mi><mo>≤</mo></mrow></math></span> 340 are calculated in the UMADAC and presented in the <span><span>Table 1</span></span>. The quadrupole and hexadecapole deformations of the daughter nucleus are considered in the UMADAC. The minimal values of the orbital momenta of the alpha-transition between the ground states are found using available experimental and theoretical data for the ground state spin and parity values of nuclei. The half-lives for 223 alpha-transitions from the ground-state of the parent even–even nuclei to the lowest <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span> state of the daughter nuclei with the proton <span><math><mi>Z</mi></math></span> and nucleon <span><math><mi>A</mi></math></span> numbers in the ranges 52 <span><math><mrow><mo>≤</mo><mi>Z</mi><mo>≤</mo></mrow></math></span> 102 and 108 <span><math><mrow><mo>≤</mo><mi>A</mi><mo>≤</mo></mrow></math></span> 254 are obtained in the UMADAC and given in the <span><span>Table 2</span></span>.</div></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"161 ","pages":"Article 101684"},"PeriodicalIF":2.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-empirical determination of radiative parameters for atomic cobalt 原子钴辐射参数的半经验测定
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-08-17 DOI: 10.1016/j.adt.2024.101683
M. Klempka , J. Ruczkowski , M. Elantkowska

The values of the radiative parameters for atomic cobalt were determined using a semi-empirical method. The eigenvector amplitudes determined in our previously published research were adopted. In most cases, the calculated values of the oscillator strengths and radiative lifetimes agree well with the experimental data. Predictions of the values of the radiative parameters are also provided.

原子钴的辐射参数值是用半经验方法确定的。采用了我们之前发表的研究中确定的特征向量振幅。在大多数情况下,振荡强度和辐射寿命的计算值与实验数据非常吻合。此外,还提供了辐射参数值的预测。
{"title":"Semi-empirical determination of radiative parameters for atomic cobalt","authors":"M. Klempka ,&nbsp;J. Ruczkowski ,&nbsp;M. Elantkowska","doi":"10.1016/j.adt.2024.101683","DOIUrl":"10.1016/j.adt.2024.101683","url":null,"abstract":"<div><p>The values of the radiative parameters for atomic cobalt were determined using a semi-empirical method. The eigenvector amplitudes determined in our previously published research were adopted. In most cases, the calculated values of the oscillator strengths and radiative lifetimes agree well with the experimental data. Predictions of the values of the radiative parameters are also provided.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"160 ","pages":"Article 101683"},"PeriodicalIF":2.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double helix level scheme of 171Yb nucleus 171Yb 核的双螺旋水平方案
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-08-05 DOI: 10.1016/j.adt.2024.101682
N. Nica
<div><p>We revisit the principles underlying high-spin level schemes, using the case of <sup>171</sup>Yb as an example. We first introduce the least-squares fit of the experimental <span><math><mi>γ</mi></math></span>-ray energy bands vs spin as a family of straight lines, <span><math><mrow><mn>2</mn><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>I</mi><mo>+</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. The fit captures the average rotational phenomenology of all the bands. The constant <span><math><mrow><mn>2</mn><mi>c</mi></mrow></math></span> average slope is the inverse of the effective moment of inertia <span><math><mrow><msubsup><mrow><mi>ℑ</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><msup><mrow><mo>ħ</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><mi>c</mi></mrow></math></span>. The inclusion of the additional integer parameter <span><math><mi>k</mi></math></span> transforms the Bohr–Mottelson ideal rotor into a double helix structure that can accommodate all combinations of spin, parity, and signature quantum numbers for the rotational levels. Finally, the experimental <span><math><mi>γ</mi></math></span>-ray energies can be parametrized as <span><math><mrow><mn>2</mn><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mi>I</mi><mo>+</mo><mi>k</mi><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, where the additional integer <span><math><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> contains the deviations of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi></mrow></msub></math></span> values from the fit lines and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub></math></span> is the band inertial parameter, which determines the band moments of inertia, <span><math><mrow><msubsup><mrow><mi>ℑ</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow><mrow><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><msup><mrow><mo>ħ</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub></mrow></math></span>. The new <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>=</mo><mn>2</mn><msub><mrow><mi>c</mi></mrow><mrow><mi>b</mi><mi>a</mi><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mi>I</mi><mo>+</mo><mi>k</mi><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> parametrization leads to a natural <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span> representation of the <sup>171</sup>Yb rotational bands as paths on the double helix structure. These paths contain
我们以 171Yb 为例,重温了高自旋水平方案的基本原理。我们首先将实验γ射线能带与自旋的最小二乘拟合介绍为一族直线--2c(2I+k-1)。该拟合捕捉到了所有能带的平均旋转现象。2c 的平均斜率常数是有效惯性矩ℑeff(2)=ħ2/2c 的倒数。 加入额外的整数参数 k 将玻尔-莫特森理想转子转换为双螺旋结构,可以容纳旋转水平的所有自旋、奇偶性和签名量子数组合。最后,实验γ射线能量可被参数化为 2cband(2I+k+k′-1),其中额外的整数 k′包含了 Eγ 值与拟合线的偏差,cband 是波段惯性参数,它决定了波段惯性矩ℑband(2)=2/2cband。新的 Eγ=2cband(2I+k+k′-1) 参数使得 171Yb 旋转带自然地以双螺旋结构上的路径进行三维表示。这些路径包含了 171Yb 核的宏观和微观运动的所有信息。
{"title":"Double helix level scheme of 171Yb nucleus","authors":"N. Nica","doi":"10.1016/j.adt.2024.101682","DOIUrl":"10.1016/j.adt.2024.101682","url":null,"abstract":"&lt;div&gt;&lt;p&gt;We revisit the principles underlying high-spin level schemes, using the case of &lt;sup&gt;171&lt;/sup&gt;Yb as an example. We first introduce the least-squares fit of the experimental &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-ray energy bands vs spin as a family of straight lines, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The fit captures the average rotational phenomenology of all the bands. The constant &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; average slope is the inverse of the effective moment of inertia &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;ℑ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;ħ&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The inclusion of the additional integer parameter &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; transforms the Bohr–Mottelson ideal rotor into a double helix structure that can accommodate all combinations of spin, parity, and signature quantum numbers for the rotational levels. Finally, the experimental &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-ray energies can be parametrized as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where the additional integer &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; contains the deviations of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; values from the fit lines and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is the band inertial parameter, which determines the band moments of inertia, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;ℑ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;ħ&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The new &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; parametrization leads to a natural &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; representation of the &lt;sup&gt;171&lt;/sup&gt;Yb rotational bands as paths on the double helix structure. These paths contain","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"160 ","pages":"Article 101682"},"PeriodicalIF":2.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoproduction of the 55−57Co nuclei on natNi at the bremsstrahlung end-point energy of 35–94 MeV 55-57Co 核在 <mml:math xmlns:mml="http://www.w3.org> 上的光生成
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-07-26 DOI: 10.1016/j.adt.2024.101674
I.S. Timchenko , O.S. Deiev , S.M. Olejnik , S.M. Potin , V.A. Kushnir , V.V. Mytrochenko , S.A. Perezhogin , A. Herzáň

Production of the 5557Co nuclei on natNi in photonuclear reactions using bremsstrahlung gamma photon irradiation with end-point energy Eγmax between 35 and 94 MeV has been studied. The experiment was performed at the electron linear accelerator LUE-40 NSC KIPT using the methods of γ activation and off-line γ-ray spectroscopy. The obtained experimental flux-averaged cross-sections σ(Eγmax) agree with the data found in the literature. The theoretical flux-averaged cross-sections σ(Eγmax)th for the production of 5557Co and 5557Ni were estimated using the cross-section values σ(E) from the TALYS1.95 code and bremsstrahlung spectra of gamma photons calculated by GEANT4.9.2. The experimental results for 56,57Co agree with the cumulative σ(Eγmax)th. For the reactions with the production of 55Co nuclei, the theoretical values differ from experimental ones.

研究了利用轫致辐射伽马光子辐照,在端点能量 Eγmax 介于 35 和 94 MeV 之间的光核反应中,在铌上产生 55-57Co 原子核的情况。实验是在 LUE-40 NSC KIPT 电子直线加速器上进行的,采用了 γ 激活和离线 γ 射线光谱法。获得的实验通量平均截面〈σ(Eγmax)〉与文献中的数据一致。55-57Co 和 55-57Ni 产生的理论通量平均截面 〈σ(Eγmax)〉th 是利用 TALYS1.95 代码的截面值 σ(E)和 GEANT4.9.2 计算的伽马光子轫致辐射光谱估算的。56,57钴的实验结果与累积的〈σ(Eγmax)〉th一致。对于产生 55Co 原子核的反应,理论值与实验值不同。
{"title":"Photoproduction of the 55−57Co nuclei on natNi at the bremsstrahlung end-point energy of 35–94 MeV","authors":"I.S. Timchenko ,&nbsp;O.S. Deiev ,&nbsp;S.M. Olejnik ,&nbsp;S.M. Potin ,&nbsp;V.A. Kushnir ,&nbsp;V.V. Mytrochenko ,&nbsp;S.A. Perezhogin ,&nbsp;A. Herzáň","doi":"10.1016/j.adt.2024.101674","DOIUrl":"10.1016/j.adt.2024.101674","url":null,"abstract":"<div><p>Production of the <span><math><msup><mrow></mrow><mrow><mn>55</mn><mo>−</mo><mn>57</mn></mrow></msup></math></span>Co nuclei on <span><math><msup><mrow></mrow><mrow><mi>nat</mi></mrow></msup></math></span>Ni in photonuclear reactions using bremsstrahlung gamma photon irradiation with end-point energy <span><math><msub><mrow><mi>E</mi></mrow><mrow><mstyle><mstyle><mi>γ</mi></mstyle></mstyle><mi>max</mi></mrow></msub></math></span> between 35 and 94 MeV has been studied. The experiment was performed at the electron linear accelerator LUE-40 NSC KIPT using the methods of <span><math><mi>γ</mi></math></span> activation and off-line <span><math><mi>γ</mi></math></span>-ray spectroscopy. The obtained experimental flux-averaged cross-sections <span><math><mrow><mo>〈</mo><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mstyle><mstyle><mi>γ</mi></mstyle></mstyle><mi>max</mi></mrow></msub><mo>)</mo></mrow><mo>〉</mo></mrow></math></span> agree with the data found in the literature. The theoretical flux-averaged cross-sections <span><math><msub><mrow><mrow><mo>〈</mo><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mstyle><mstyle><mi>γ</mi></mstyle></mstyle><mi>max</mi></mrow></msub><mo>)</mo></mrow><mo>〉</mo></mrow></mrow><mrow><mi>th</mi></mrow></msub></math></span> for the production of <span><math><msup><mrow></mrow><mrow><mn>55</mn><mo>−</mo><mn>57</mn></mrow></msup></math></span>Co and <span><math><msup><mrow></mrow><mrow><mn>55</mn><mo>−</mo><mn>57</mn></mrow></msup></math></span>Ni were estimated using the cross-section values <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> from the TALYS1.95 code and bremsstrahlung spectra of gamma photons calculated by GEANT4.9.2. The experimental results for <span><math><msup><mrow></mrow><mrow><mn>56</mn><mo>,</mo><mn>57</mn></mrow></msup></math></span>Co agree with the cumulative <span><math><msub><mrow><mrow><mo>〈</mo><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mstyle><mstyle><mi>γ</mi></mstyle></mstyle><mi>max</mi></mrow></msub><mo>)</mo></mrow><mo>〉</mo></mrow></mrow><mrow><mi>th</mi></mrow></msub></math></span>. For the reactions with the production of <span><math><msup><mrow></mrow><mrow><mn>55</mn></mrow></msup></math></span>Co nuclei, the theoretical values differ from experimental ones.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"160 ","pages":"Article 101674"},"PeriodicalIF":2.7,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141841338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relativistic calculations for total energies, ionization energies, and one-electron binding energies for Neodymium ions Nd I to Nd59+ 钕离子 Nd I 至 Nd59+ 的总能量、电离能和单电子结合能的相对论计算</mml
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-07-14 DOI: 10.1016/j.adt.2024.101673
F.F. Goryaev , I.I. Tupitsyn

We present the results of calculations for the total energies, ionization energies, and one-electron binding energies for ground-state configurations of neodymium ions Nd I to Nd59+. These calculations are based on the Dirac–Fock approximation taking the Breit and quantum electrodynamics corrections into account. The configuration interaction method, taking into account all relativistic configurations corresponding to the non-relativistic one, is used to obtain total energies and wave functions in the intermediate coupling scheme. Comparison is given with other available data.

我们介绍了钕离子 Nd I 至 Nd59+ 基态构型的总能量、电离能和单电子结合能的计算结果。这些计算基于狄拉克-福克近似,并考虑了布雷特和量子电动力学修正。在中间耦合方案中,采用了构型相互作用方法,考虑了与非相对论构型相对应的所有相对论构型,从而获得了总能量和波函数。并与其他可用数据进行了比较。
{"title":"Relativistic calculations for total energies, ionization energies, and one-electron binding energies for Neodymium ions Nd I to Nd59+","authors":"F.F. Goryaev ,&nbsp;I.I. Tupitsyn","doi":"10.1016/j.adt.2024.101673","DOIUrl":"10.1016/j.adt.2024.101673","url":null,"abstract":"<div><p><span>We present the results of calculations for the total energies, ionization energies, and one-electron binding energies for ground-state configurations of neodymium ions Nd I to Nd</span><span><math><msup><mrow></mrow><mrow><mn>59</mn><mo>+</mo></mrow></msup></math></span><span>. These calculations are based on the Dirac–Fock approximation taking the Breit and quantum electrodynamics corrections into account. The configuration interaction method, taking into account all relativistic configurations corresponding to the non-relativistic one, is used to obtain total energies and wave functions in the intermediate coupling scheme. Comparison is given with other available data.</span></p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"160 ","pages":"Article 101673"},"PeriodicalIF":2.7,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141706288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting the nuclear magnetic octupole moment 重温核磁八极矩
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-07-03 DOI: 10.1016/j.adt.2024.101672
S. Bofos , T.J. Mertzimekis

The nuclear magnetic octupole moment is revisited as a potentially useful observable for nuclear structure studies. The magnetic octupole moment, Ω, is examined in terms of the nuclear collective model including weak and strong coupling. Single-particle formulation is additionally considered in the overall comparison of theoretical predictions with available experimental data. Mirror nuclei symmetry is examined in terms of the magnetic octupole moment isoscalar and isovector terms. A full list of predictions for Ω of odd–proton and odd–neutron nuclei in medium–heavy mass regimes of the nuclear chart is produced aiming at providing starting values for future experimental endeavors.

核磁八极矩作为核结构研究的潜在有用观测指标被重新审视。根据包括弱耦合和强耦合在内的核集体模型对磁性八极矩 Ω 进行了研究。在将理论预测与现有实验数据进行全面比较时,还考虑了单粒子公式。从磁性八极矩等标量和等矢量的角度研究了镜核对称性。在核图的中重质量范围内,对奇质子核和奇中子核的Ω进行了全面的预测,旨在为未来的实验工作提供起始值。
{"title":"Revisiting the nuclear magnetic octupole moment","authors":"S. Bofos ,&nbsp;T.J. Mertzimekis","doi":"10.1016/j.adt.2024.101672","DOIUrl":"10.1016/j.adt.2024.101672","url":null,"abstract":"<div><p>The nuclear magnetic octupole moment is revisited as a potentially useful observable for nuclear structure studies. The magnetic octupole moment, <span><math><mi>Ω</mi></math></span>, is examined in terms of the nuclear collective model including weak and strong coupling. Single-particle formulation is additionally considered in the overall comparison of theoretical predictions with available experimental data. Mirror nuclei symmetry is examined in terms of the magnetic octupole moment isoscalar and isovector terms. A full list of predictions for <span><math><mi>Ω</mi></math></span> of odd–proton and odd–neutron nuclei in medium–heavy mass regimes of the nuclear chart is produced aiming at providing starting values for future experimental endeavors.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"159 ","pages":"Article 101672"},"PeriodicalIF":2.7,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revised energy levels and hyperfine structure constants of Nb II Nb II 的修订能级和超频结构常数
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-06-29 DOI: 10.1016/j.adt.2024.101664
L. Windholz , S. Kröger

Using wave number calibrated Fourier transform spectra, ranging from the IR to the UV regions, we determined with high accuracy the energies of the levels of the first ion of Niobium. In order to increase the accuracy of the center of gravity wave numbers of the observed spectral lines, the hyperfine structure was taken into account. For this purpose, the magnetic dipole hyperfine constants A were determined for all involved levels. All but one of the previously known levels were included in the calculation. This level (at 91 493 cm−1) is considered to be non-existent. From the experimental center of gravity wave numbers of 1121 lines we deduced the energy values of 184 levels of even parity and 164 levels of odd parity in a global fit. A comparison between our results and all previously available literature values is provided.

利用波数校准的傅立叶变换光谱(从红外到紫外区域),我们高精度地确定了铌的第一个离子的能级。为了提高观测光谱线重心波数的精确度,我们考虑了超精细结构。为此,我们测定了所有相关水平的磁偶极子超细常数 A。除了一个以前已知的水平之外,其他所有水平都被纳入了计算。这个水平(91 493 cm-1)被认为是不存在的。根据 1121 条线的实验重心波数,我们推导出了 184 个偶奇偶水平和 164 个奇奇偶水平的全局拟合能量值。我们的结果与之前所有文献中的数值进行了比较。
{"title":"Revised energy levels and hyperfine structure constants of Nb II","authors":"L. Windholz ,&nbsp;S. Kröger","doi":"10.1016/j.adt.2024.101664","DOIUrl":"10.1016/j.adt.2024.101664","url":null,"abstract":"<div><p>Using wave number calibrated Fourier transform spectra, ranging from the IR to the UV regions, we determined with high accuracy the energies of the levels of the first ion of Niobium. In order to increase the accuracy of the center of gravity wave numbers of the observed spectral lines, the hyperfine structure was taken into account. For this purpose, the magnetic dipole hyperfine constants <span><math><mi>A</mi></math></span> were determined for all involved levels. All but one of the previously known levels were included in the calculation. This level (at 91<!--> <!-->493 cm<sup>−1</sup>) is considered to be non-existent. From the experimental center of gravity wave numbers of 1121 lines we deduced the energy values of 184 levels of even parity and 164 levels of odd parity in a global fit. A comparison between our results and all previously available literature values is provided.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"159 ","pages":"Article 101664"},"PeriodicalIF":2.7,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0092640X24000299/pdfft?md5=2e9a022e9b91a19797c9ff2996b8b830&pid=1-s2.0-S0092640X24000299-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental K-shell fluorescence cross sections for elements in the atomic number range 16 ≤ Z ≤ 92 by photon impact at various energies 不同能量下光子撞击原子序数范围 16 ≤ Z ≤ 92 的元素的 K 壳荧光实验截面
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-06-15 DOI: 10.1016/j.adt.2024.101662
<div><p>The main purpose of this paper is to collect from various sources over 3300 experimental values of K-shell fluorescence cross sections (<span><math><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>β</mi><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub></msub></msub></math></span><em>,</em><span><math><mrow><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>β</mi><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msub></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>α</mi><mn>1</mn></msub></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>α</mi><mn>2</mn></msub></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>β</mi><mn>1</mn></msub></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><msub><mi>β</mi><mn>2</mn></msub></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><msub><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow><mn>1</mn></msub></msub></msub><mo>,</mo><mspace></mspace><msub><mi>σ</mi><msub><mi>K</mi><msub><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow><mn>2</mn></msub></msub></msub><mo>,</mo><mspace></mspace><msub><mi>σ</mi><msub><mi>K</mi><mi>α</mi></msub></msub><mo>,</mo><msub><mi>σ</mi><msub><mi>K</mi><mi>β</mi></msub></msub></mrow></math></span> and <span><math><msub><mi>σ</mi><msub><mi>K</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi></mrow></msub></msub></math></span>) of elements with atomic number in the range <span><math><mrow><mn>16</mn><mspace></mspace><mo>≤</mo><mspace></mspace><mi>Z</mi><mspace></mspace><mo>≤</mo><mspace></mspace><mn>92</mn><mspace></mspace></mrow></math></span>by photo-ionization in multiple excitation energy ranging from 5.46 to 661.6 keV, which are presented in a form of 11 tables. The experimental values reported in 96 papers by numerous researches were published between 1985 and 2023. Therefore, by considering in the same tables a calculation of weighted average fluorescence cross section <span><math><mrow><mrow><mo>(</mo><msub><mi>σ</mi><msub><mi>K</mi><mi>j</mi></msub></msub><mo>)</mo></mrow><msub><mspace></mspace><mi>W</mi></msub></mrow></math></span>, with <span><math><mrow><mo>(</mo><mrow><mi>j</mi><mo>=</mo><msub><mi>β</mi><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mi>β</mi><mrow><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msub><mo>,</mo><msub><mi>α</mi><mn>1</mn></msub><mo>,</mo><msub><mi>α</mi><mn>2</mn></msub><mo>,</mo><msub><mi>β</mi><mn>1</mn></msub><mo>,</mo><msub><mi>β</mi><mn>2</mn></msub><mo>,</mo><msub><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow><mn>1</mn></msub><mo>,</mo><msub><mrow><msup><mi>β</mi><mo>′</mo></msup></mrow><mn>2</mn></msub><mo>,</mo><mspace></mspace><mi>α</mi><mo>,</mo><mi>β</mi><mspace></mspace><mrow><mtext>and</mtext><mspace></mspace><mtext>tot</mtext></mrow></mrow><mo>)</mo></mrow></math></span> for each element; a full study of these data is carried out. However, dividing the measured values <span><math><mrow><msub><mrow><mo>(</mo><msub><mi>σ</mi><msub><mi>K</mi><mi>j</mi></msub></msub><mo>)</mo></mrow><mrow><mi>E<
本文的主要目的是从各种来源收集了 3300 多个 K 壳荧光截面的实验值(σKβ1,3,σKβ2,4,σKα1,σKα2,σKβ1、(σKβ1,3,σKβ2,4,σKα1,σKα2,σKβ1,σKβ1,σKβ2,σKβ′1,σKβ′2,σKα,σKβ 和 σKtot)的原子序数在 16≤Z≤92 范围内的元素,在 5.46 至 661.6 千伏,以 11 个表格的形式列出。1985 年至 2023 年间,许多研究人员在 96 篇论文中报告了实验值。因此,通过在这些表格中计算每种元素的加权平均荧光截面 (σKj)W,其中(j=β1,3,β2,4,α1,α2,β1,β2,β′1,β′2,α,βandtot),可以对这些数据进行全面研究。不过,将测量值 (σKj)Exp 除以加权平均值 (σKj)W 后,还研究了新的加权平均值比 SW=(σKj)Exp/(σKj)Ware。
{"title":"Experimental K-shell fluorescence cross sections for elements in the atomic number range 16 ≤ Z ≤ 92 by photon impact at various energies","authors":"","doi":"10.1016/j.adt.2024.101662","DOIUrl":"10.1016/j.adt.2024.101662","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The main purpose of this paper is to collect from various sources over 3300 experimental values of K-shell fluorescence cross sections (&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;em&gt;,&lt;/em&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) of elements with atomic number in the range &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;16&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mn&gt;92&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;by photo-ionization in multiple excitation energy ranging from 5.46 to 661.6 keV, which are presented in a form of 11 tables. The experimental values reported in 96 papers by numerous researches were published between 1985 and 2023. Therefore, by considering in the same tables a calculation of weighted average fluorescence cross section &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mtext&gt;and&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;tot&lt;/mtext&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for each element; a full study of these data is carried out. However, dividing the measured values &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"159 ","pages":"Article 101662"},"PeriodicalIF":2.7,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141389603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmark calculation of electron-impact ionization cross sections and rate coefficients of atomic ions in Ar isonuclear sequence 氩等核序列中原子离子的电子撞击电离截面和速率系数的基准计算
IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-06-08 DOI: 10.1016/j.adt.2024.101663

Argon is being considered as an injected impurity to mitigate damage to divertors of DEMO caused by excessive heat flux. For a comprehensive understanding of Ar plasma, carefully evaluated atomic data are required. In this study, the electron-impact ionization cross-sections and rate coefficients for all atomic ions in the argon isonuclear sequence are calculated using the level-to-level distorted wave approximation. The calculated cross-sections and rate coefficients are compared with experimental data and other theoretical calculations. The calculated values are consistent with results reported in the literature, with differences not exceeding 20%. We fit the calculated cross-sections using an empirical formula. Additionally, we combine our ionization rate coefficients with the dielectronic- and radiative-recombination rate coefficients from other studies to determine the ionization balance. The obtained data are expected to be useful for plasma modelling involving argon impurities.

目前正在考虑将氩作为一种注入杂质,以减轻 DEMO 分流器因热流量过大而造成的损坏。为了全面了解氩等离子体,需要仔细评估原子数据。在本研究中,使用级对级扭曲波近似法计算了氩等核序列中所有原子离子的电子撞击电离截面和速率系数。计算得到的截面和速率系数与实验数据和其他理论计算结果进行了比较。计算值与文献报道的结果一致,差异不超过 20%。我们用经验公式拟合了计算截面。此外,我们还将电离率系数与其他研究中的介电子和辐射对撞率系数相结合,以确定电离平衡。所获得的数据有望用于涉及氩杂质的等离子体建模。
{"title":"Benchmark calculation of electron-impact ionization cross sections and rate coefficients of atomic ions in Ar isonuclear sequence","authors":"","doi":"10.1016/j.adt.2024.101663","DOIUrl":"10.1016/j.adt.2024.101663","url":null,"abstract":"<div><p>Argon is being considered as an injected impurity to mitigate damage to divertors of DEMO caused by excessive heat flux. For a comprehensive understanding of Ar plasma, carefully evaluated atomic data are required. In this study, the electron-impact ionization cross-sections and rate coefficients for all atomic ions in the argon isonuclear sequence are calculated using the level-to-level distorted wave approximation. The calculated cross-sections and rate coefficients are compared with experimental data and other theoretical calculations. The calculated values are consistent with results reported in the literature, with differences not exceeding 20%. We fit the calculated cross-sections using an empirical formula. Additionally, we combine our ionization rate coefficients with the dielectronic- and radiative-recombination rate coefficients from other studies to determine the ionization balance. The obtained data are expected to be useful for plasma modelling involving argon impurities.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"159 ","pages":"Article 101663"},"PeriodicalIF":2.7,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141408579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, II: Even-Z nuclei 连续体中变形相对论哈特里-博戈柳博夫理论的核质量表,II:偶Z 核
IF 1.8 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Pub Date : 2024-05-17 DOI: 10.1016/j.adt.2024.101661
Peng Guo , Xiaojie Cao , Kangmin Chen , Zhihui Chen , Myung-Ki Cheoun , Yong-Beom Choi , Pak Chung Lam , Wenmin Deng , Jianmin Dong , Pengxiang Du , Xiaokai Du , Kangda Duan , Xiaohua Fan , Wei Gao , Lisheng Geng , Eunja Ha , Xiao-Tao He , Jinniu Hu , Jingke Huang , Kun Huang , Lianjian Zou

The mass table in the deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc) with the PC-PK1 density functional has been established for even-Z nuclei with 8Z120, extended from the previous work for even–even nuclei (Zhang et al. (DRHBc mass table collaboration), At. Data Nucl. Data Tables 144, 101488 (2022)). The calculated binding energies, two-nucleon and one-neutron separation energies, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, quadrupole deformations, and neutron and proton Fermi surfaces are tabulated and compared with available experimental data. A total of 4829 even-Z nuclei are predicted to be bound, with an rms deviation of 1.433 MeV from the 1244 mass data. Good agreement with the available experimental odd–even mass differences, α decay energies, and charge radii is also achieved. The description accuracy for nuclear masses and nucleon separation energies as well as the prediction for drip lines is compared with the results obtained from other relativistic and nonrelativistic density functional. The comparison shows that the DRHBc theory with PC-PK1 provides an excellent microscopic description for the masses of even-Z nuclei. The systematics of the nucleon separation energies, odd–even mass differences, pairing energies, two-nucleon gaps, α decay energies, rms radii, quadrupole deformations, potential energy curves, neutron density distributions, and neutron mean-field potentials are discussed.

使用 PC-PK1 密度函数的变形相对论哈特里-波哥留波夫连续体理论(DRHBc)的质量表已经为 8≤Z≤120 的偶-Z 核建立,该质量表是在以前针对偶-偶核的工作基础上扩展而来的(Zhang 等人(DRHBc 质量表协作组),At.Data Nucl.Data Tables 144, 101488 (2022))。计算出的结合能、两核子和一中子分离能、中子、质子、物质和电荷分布的均方根半径、四极子变形以及中子和质子费米面都以表格形式列出,并与现有实验数据进行了比较。预测共有 4829 个偶 Z 核被束缚,与 1244 个质量数据的均方根偏差为 1.433 MeV。与现有的实验奇偶质量差、α 衰变能量和电荷半径也达到了很好的一致。核质量和核子分离能的描述精度以及滴流线的预测与其他相对论和非相对论密度泛函的结果进行了比较。比较结果表明,使用 PC-PK1 的 DRHBc 理论对偶数-Z 核的质量进行了出色的微观描述。讨论了核子分离能、奇偶质量差、配对能、双核间隙、α 衰变能、均方根半径、四极变形、势能曲线、中子密度分布和中子均场势能的系统性。
{"title":"Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, II: Even-Z nuclei","authors":"Peng Guo ,&nbsp;Xiaojie Cao ,&nbsp;Kangmin Chen ,&nbsp;Zhihui Chen ,&nbsp;Myung-Ki Cheoun ,&nbsp;Yong-Beom Choi ,&nbsp;Pak Chung Lam ,&nbsp;Wenmin Deng ,&nbsp;Jianmin Dong ,&nbsp;Pengxiang Du ,&nbsp;Xiaokai Du ,&nbsp;Kangda Duan ,&nbsp;Xiaohua Fan ,&nbsp;Wei Gao ,&nbsp;Lisheng Geng ,&nbsp;Eunja Ha ,&nbsp;Xiao-Tao He ,&nbsp;Jinniu Hu ,&nbsp;Jingke Huang ,&nbsp;Kun Huang ,&nbsp;Lianjian Zou","doi":"10.1016/j.adt.2024.101661","DOIUrl":"10.1016/j.adt.2024.101661","url":null,"abstract":"<div><p>The mass table in the deformed relativistic Hartree–Bogoliubov theory in continuum (DRHBc) with the PC-PK1 density functional has been established for even-<span><math><mi>Z</mi></math></span> nuclei with <span><math><mrow><mn>8</mn><mo>≤</mo><mi>Z</mi><mo>≤</mo><mn>120</mn></mrow></math></span>, extended from the previous work for even–even nuclei (Zhang et al. (DRHBc mass table collaboration), At. Data Nucl. Data Tables 144, 101488 (2022)). The calculated binding energies, two-nucleon and one-neutron separation energies, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, quadrupole deformations, and neutron and proton Fermi surfaces are tabulated and compared with available experimental data. A total of 4829 even-<span><math><mi>Z</mi></math></span> nuclei are predicted to be bound, with an rms deviation of 1.433 MeV from the 1244 mass data. Good agreement with the available experimental odd–even mass differences, <span><math><mi>α</mi></math></span> decay energies, and charge radii is also achieved. The description accuracy for nuclear masses and nucleon separation energies as well as the prediction for drip lines is compared with the results obtained from other relativistic and nonrelativistic density functional. The comparison shows that the DRHBc theory with PC-PK1 provides an excellent microscopic description for the masses of even-<span><math><mi>Z</mi></math></span> nuclei. The systematics of the nucleon separation energies, odd–even mass differences, pairing energies, two-nucleon gaps, <span><math><mi>α</mi></math></span> decay energies, rms radii, quadrupole deformations, potential energy curves, neutron density distributions, and neutron mean-field potentials are discussed.</p></div>","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"158 ","pages":"Article 101661"},"PeriodicalIF":1.8,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141052880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Atomic Data and Nuclear Data Tables
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1