Pub Date : 2024-09-09DOI: 10.1007/s10694-024-01638-1
Ebba Henrekson, Rebecka Andersen, Kenny Turesson, Finn Nilson
Previous research has identified sociodemographic inequalities in fire prevention measures. This study examined whether sociodemographic differences persist in the Swedish population concerning fire prevention measures and particularly whether there remains an inverted u-curve related to age in protection habits. Additionally, it investigated whether fire protection practices are influenced by the level of societal protection. The research utilised survey data and register data from The Swedish Civil Contingencies Agency and Statistics Sweden. A latent class analysis was conducted, dividing respondents into four latent classes, followed by two binomial regression analyses. The study revealed three key findings regarding fire protection measures. First, certain demographic groups, namely the young, women, single and childfree households, low-income and low-education individuals, immigrants, and urban residents, are disproportionately lacking optimal fire safety measures. Second, although a safety maturity curve is still observed, older adults in Sweden today are considerably more protected compared to 15–20 years ago, indicating that safety practices employed during middle age continue into old age. Third, a trend is observed where individuals living in areas with more efficient professional rescue services tend to have lower levels of personal fire protection, suggesting a rational choice based on the perceived level of societal protection.
以往的研究发现了防火措施方面的社会人口不平等现象。本研究探讨了瑞典人口在防火措施方面是否仍然存在社会人口差异,特别是在防火习惯方面是否仍然存在与年龄相关的倒 U 曲线。此外,研究还探讨了防火措施是否受社会保护水平的影响。研究利用了瑞典民事应急署和瑞典统计局的调查数据和登记数据。研究进行了潜类分析,将受访者分为四个潜类,然后进行了两次二项式回归分析。研究揭示了有关防火措施的三个主要发现。首先,某些人口群体,即年轻人、妇女、单身和无子女家庭、低收入和低学历者、移民和城市居民,过多地缺乏最佳消防安全措施。其次,尽管安全成熟度曲线仍然存在,但与 15-20 年前相比,如今瑞典老年人的防护能力要强得多,这表明中年时期采用的安全措施一直延续到老年。第三,可以观察到这样一种趋势,即生活在专业救援服务效率较高地区的人,其个人消防保护水平往往较低,这表明他们会根据所感知的社会保护水平做出理性选择。
{"title":"Fire Safety Disparities in Sweden: Sociodemographic Influences and the Impact of Societal Protection on Personal Fire Prevention Measures","authors":"Ebba Henrekson, Rebecka Andersen, Kenny Turesson, Finn Nilson","doi":"10.1007/s10694-024-01638-1","DOIUrl":"https://doi.org/10.1007/s10694-024-01638-1","url":null,"abstract":"<p>Previous research has identified sociodemographic inequalities in fire prevention measures. This study examined whether sociodemographic differences persist in the Swedish population concerning fire prevention measures and particularly whether there remains an inverted u-curve related to age in protection habits. Additionally, it investigated whether fire protection practices are influenced by the level of societal protection. The research utilised survey data and register data from The Swedish Civil Contingencies Agency and Statistics Sweden. A latent class analysis was conducted, dividing respondents into four latent classes, followed by two binomial regression analyses. The study revealed three key findings regarding fire protection measures. First, certain demographic groups, namely the young, women, single and childfree households, low-income and low-education individuals, immigrants, and urban residents, are disproportionately lacking optimal fire safety measures. Second, although a safety maturity curve is still observed, older adults in Sweden today are considerably more protected compared to 15–20 years ago, indicating that safety practices employed during middle age continue into old age. Third, a trend is observed where individuals living in areas with more efficient professional rescue services tend to have lower levels of personal fire protection, suggesting a rational choice based on the perceived level of societal protection.</p>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1007/s10694-024-01607-8
Michael Beyer, Conrad Stacey, Günter Brenn
A novel mathematical model for the critical ventilation velocity to prevent smoke backlayering in tunnels is presented, addressing limitations of prior approaches. The basis of the model is a rigorous characterisation of the physical processes by the characteristic quantities. Empirical parameters within the new model are determined, to align with results from both full-size and small-scale tunnel experiments. Data from numerical simulations (CFD, Computational Fluid Dynamics), validated by known test data, are then used to estimate the effects of tunnel slope and other parameters on the critical velocity. The model is seen to approximate the critical velocity well, following all trends identified by test data and CFD parameter studies. The empirically calibrated equation permits prediction of the critical velocity beyond the narrow range of tunnel geometries where known results already give an answer. The resulting equation has practical application for tunnel design.
{"title":"A Mixed Convection Model for Estimating the Critical Velocity to Prevent Smoke Backlayering in Tunnels","authors":"Michael Beyer, Conrad Stacey, Günter Brenn","doi":"10.1007/s10694-024-01607-8","DOIUrl":"https://doi.org/10.1007/s10694-024-01607-8","url":null,"abstract":"<p>A novel mathematical model for the critical ventilation velocity to prevent smoke backlayering in tunnels is presented, addressing limitations of prior approaches. The basis of the model is a rigorous characterisation of the physical processes by the characteristic quantities. Empirical parameters within the new model are determined, to align with results from both full-size and small-scale tunnel experiments. Data from numerical simulations (CFD, Computational Fluid Dynamics), validated by known test data, are then used to estimate the effects of tunnel slope and other parameters on the critical velocity. The model is seen to approximate the critical velocity well, following all trends identified by test data and CFD parameter studies. The empirically calibrated equation permits prediction of the critical velocity beyond the narrow range of tunnel geometries where known results already give an answer. The resulting equation has practical application for tunnel design.</p>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"56 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Battery specific heat capacity is essential for calculation and simulation in battery thermal runaway and thermal management studies. Currently, there exist several non-destructive techniques for measuring the specific heat capacity of a battery. Approaches incorporate thermal modeling, specific heat capacity computation via an external heat source, and harnessing internal battery-generated heat. Accurately measuring the specific heat capacity of a battery by fast, intuitive, and general experimental methods has significant application value. This paper proposes a simple but precise method (the heating-waiting method) for measuring the specific heat capacity of the battery based on a constant temperature environment. A calibration scheme was designed to obtain the specific heat capacity calculation parameters. Specific experiments were designed to maximize the external heat received by the battery. Homogeneous temperature distribution within the battery facilitates the precise determination of the battery’s specific heat capacity. Results demonstrate that utilizing accelerating rate calorimeter (ARC) as a reliable heating source can greatly enhance the precision of the test (from 2.30% to 0.29%). Optimizing the experimental apparatus is advantageous in mitigating the confounding effects of extraneous variables on the experimental outcomes, thereby enhancing the reliability and operability. Hence, it is vital to devise a trial plan based on the battery’s attributes to guarantee the scheme’s universality and practicability.
{"title":"A New Method to Accurately Measure Lithium-Ion Battery Specific Heat Capacity with ARC Heating-Waiting Process","authors":"Anqi Teng, Yongqi Li, Yue Zhang, Youwei Wen, Laifeng Song, Qikai Lei, Zhixiang Cheng, Qiangling Duan, Qingsong Wang","doi":"10.1007/s10694-024-01649-y","DOIUrl":"https://doi.org/10.1007/s10694-024-01649-y","url":null,"abstract":"<p>Battery specific heat capacity is essential for calculation and simulation in battery thermal runaway and thermal management studies. Currently, there exist several non-destructive techniques for measuring the specific heat capacity of a battery. Approaches incorporate thermal modeling, specific heat capacity computation via an external heat source, and harnessing internal battery-generated heat. Accurately measuring the specific heat capacity of a battery by fast, intuitive, and general experimental methods has significant application value. This paper proposes a simple but precise method (the heating-waiting method) for measuring the specific heat capacity of the battery based on a constant temperature environment. A calibration scheme was designed to obtain the specific heat capacity calculation parameters. Specific experiments were designed to maximize the external heat received by the battery. Homogeneous temperature distribution within the battery facilitates the precise determination of the battery’s specific heat capacity. Results demonstrate that utilizing accelerating rate calorimeter (ARC) as a reliable heating source can greatly enhance the precision of the test (from 2.30% to 0.29%). Optimizing the experimental apparatus is advantageous in mitigating the confounding effects of extraneous variables on the experimental outcomes, thereby enhancing the reliability and operability. Hence, it is vital to devise a trial plan based on the battery’s attributes to guarantee the scheme’s universality and practicability.</p>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"20 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1007/s10694-024-01639-0
Dan Zhao, Kai Zhu, Zhirong Liang, Qiang Wang, Hongda Lin, Xuewei Qin, Haojia Jiang, Dong Ye, Ke Wu
Asphalt blended with flame retardant undergoes thermal aging during utilization, which significantly impacts its physical and chemical characteristics concurrently. This study focuses on analyzing the effectiveness of aluminum hydroxide/zinc borate (ATH/ZB) flame retardant on varying the combustion performance of asphalt, particularly after undergoing thermal aging (85 min and 270 min aging simulations were performed, corresponding to short-term and long-term thermal aging, respectively). The results showed that ATH/ZB flame-retardant can increase the softening point of asphalt before and after aging. ATH/ZB flame-retardant asphalt (FRA) after aging had fewer carbonyl and sulfoxide groups than base asphalt (BA), demonstrating the superior anti-oxidation capability of FRA. ATH/ZB delays the peak heat release rate (PHRR) commencement by over 200 s, decreases the PHRR intensity by more than 170 kW/m2, and decreases the asphalt’s combustion activation energy, which was owing to the fact that the sacrifice of the thermolabile flame retardant protects the asphalt from being aggressively combusted. Whereas, thermal aging enhances the PHRR intensity of FRA by 83 kW/m2, which is owing to the reduction of ATH/ZB content in FRA after aging. Aging deteriorates the flame retardant’s capability on anti-combustion.