Pub Date : 2024-09-01DOI: 10.1016/j.chemer.2024.126174
Riccardo Graziani , Duane C. Petts , Jean-Luc Pilote , Simon E. Jackson , Daniele Regis , Christopher J.M. Lawley , Matthew Polivchuk , Yannick Bussweiler , Martin Rittner
The crystal growth history of an Au-rich sedimentary pyrite nodule from the Timmins-Porcupine Au camp, Ontario, Canada, has been investigated using Electron Backscattered Diffraction and Laser Ablation Inductively Coupled Plasma Mass Spectrometry techniques to study the crystallographic processes controlling metal deportment in the pyrite structure. Results show four distinct growth stages characterized by different pyrite microstructures, crystal forms and trace element compositions. A direct link is observed between the growth of octahedral facets in pyrite and the development of primary (non-tectonic) subgrain boundaries. Furthermore, zones with a high abundance of subgrain boundaries have the highest Au, As, Ag and Cu (and other metals) contents – suggesting metal distribution is linked to the development of microstructures. Finer-grained aggregates are characterized by higher grain boundary density than in coarse areas, making higher trace element concentrations inversely proportional to grain size. Our results indicate that the high Au concentrations (~100 ppm) in pyrite represent a primary feature related to nodule growth, instead of secondary enrichment processes, and highlight the possibility that sediment-hosted pyrite nodules could represent a metal-rich geochemical reservoir for the formation of younger orogenic Au deposits.
{"title":"Microstructural control on the trace element distribution and Au concentration in pyrite nodules","authors":"Riccardo Graziani , Duane C. Petts , Jean-Luc Pilote , Simon E. Jackson , Daniele Regis , Christopher J.M. Lawley , Matthew Polivchuk , Yannick Bussweiler , Martin Rittner","doi":"10.1016/j.chemer.2024.126174","DOIUrl":"10.1016/j.chemer.2024.126174","url":null,"abstract":"<div><p>The crystal growth history of an Au-rich sedimentary pyrite nodule from the Timmins-Porcupine Au camp, Ontario, Canada, has been investigated using Electron Backscattered Diffraction and Laser Ablation Inductively Coupled Plasma Mass Spectrometry techniques to study the crystallographic processes controlling metal deportment in the pyrite structure. Results show four distinct growth stages characterized by different pyrite microstructures, crystal forms and trace element compositions. A direct link is observed between the growth of octahedral facets in pyrite and the development of primary (non-tectonic) subgrain boundaries. Furthermore, zones with a high abundance of subgrain boundaries have the highest Au, As, Ag and Cu (and other metals) contents – suggesting metal distribution is linked to the development of microstructures. Finer-grained aggregates are characterized by higher grain boundary density than in coarse areas, making higher trace element concentrations inversely proportional to grain size. Our results indicate that the high Au concentrations (~100 ppm) in pyrite represent a primary feature related to nodule growth, instead of secondary enrichment processes, and highlight the possibility that sediment-hosted pyrite nodules could represent a metal-rich geochemical reservoir for the formation of younger orogenic Au deposits.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126174"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009281924000990/pdfft?md5=660382ad12adb4b6441f7a0e40592512&pid=1-s2.0-S0009281924000990-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.chemer.2024.126164
The Poularies igneous complex is a Neoarchean (2728 Ma) intrusion composed of diorite, quartz diorite, hornblende tonalite, and biotite tonalite. It is was emplaced into the shallow crust of the Abitibi granite-greenstone belt during volcanic cycle 1 (2730–2725 Ma) and is contemporaneous with the eruption of mafic (Stoughton-Roquemaure Group) and silicic volcanic rocks (Hunter Mine Group). The petrogenetic relationship between the silicic rocks of the Poularies igneous complex is not constrained. In this study we test the petrological association between the different rock types of the Poularies complex using fractional crystallization modeling. Hydrous (H2O = 3 wt%) fractional crystallization modeling using a ‘primitive’ intermediate starting composition demonstrates that all rock types of the Poularies complex can be generated from a common parental magma in the upper crust (1 kbar) under mildly oxidizing conditions (ΔFMQ = 0). Moreover, it is demonstrated that the parental magma of the Poularies complex was likely derived by partial melting of mafic rocks from the Abitibi granite-greenstone belt. We conclude that the Poularies complex is representative of a magma chamber that generated the silicic lavas of the spatially associated Hunter Mine Group in a rifting or tensional plate stress environment. Our model may be applicable to other shallow syn-volcanic plutons of the Abitibi granite-greenstone belt.
{"title":"Petrogenesis of the Neoarchean (2.7 Ga) Poularies intrusion: Geochemical evolution of a shallow syn-volcanic granitoid complex from the Abitibi granite-greenstone belt, Québec","authors":"","doi":"10.1016/j.chemer.2024.126164","DOIUrl":"10.1016/j.chemer.2024.126164","url":null,"abstract":"<div><p><span><span><span>The Poularies igneous complex is a Neoarchean (2728 Ma) intrusion composed of diorite<span>, quartz diorite, hornblende tonalite, and </span></span>biotite tonalite. It is was emplaced into the shallow crust of the Abitibi granite-greenstone belt during volcanic cycle 1 (2730–2725 Ma) and is contemporaneous with the eruption of mafic (Stoughton-Roquemaure Group) and silicic volcanic rocks (Hunter Mine Group). The petrogenetic relationship between the silicic rocks of the Poularies igneous complex is not constrained. In this study we test the petrological association between the different rock types of the Poularies complex using </span>fractional crystallization modeling. Hydrous (H</span><sub>2</sub><span><span><span>O = 3 wt%) fractional crystallization modeling using a ‘primitive’ intermediate starting composition demonstrates that all rock types of the Poularies complex can be generated from a common parental magma in the </span>upper crust (1 kbar) under mildly oxidizing conditions (ΔFMQ = 0). Moreover, it is demonstrated that the parental magma of the Poularies complex was likely derived by partial melting of </span>mafic rocks<span> from the Abitibi granite-greenstone belt. We conclude that the Poularies complex is representative of a magma chamber that generated the silicic lavas of the spatially associated Hunter Mine Group in a rifting or tensional plate stress environment. Our model may be applicable to other shallow </span></span><em>syn</em>-volcanic plutons of the Abitibi granite-greenstone belt.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126164"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.chemer.2024.126173
Arnold Steven Motto Mbita , Marvine Nzepang Tankwa , Landry Soh Tamehe , Donald Hermann Fossi , Guy Bertin Takam Tchoupe , Sylvestre Ganno , Jean Paul Nzenti
The Ngaye inlier of the Adamawa Yadé Domain is located in the Central African Fold Belt, adjacent to the Nyong Complex at the northern margin of the Congo craton, in central Cameroon. This area consists of metamorphosed granite-greenstone associations comprising amphibole- and pyroxene-rich banded iron formations (BIFs), amphibolites, and migmatitic gneisses. This study reports detailed petrographic, whole-rock geochemical, and LA-ICP-MS U-Pb zircon data for the Ngaye BIFs and associated amphibolites to better constrain their source, tectonic setting, and age. Amphibole-rich BIFs exhibit high REE-Y content and uncommon LREE-enriched patterns. In contrast, pyroxene-rich BIFs display combined low REE-Y content, seawater-like patterns, and positive Eu anomalies, suggesting a mixture of seawater and hydrothermal fluids during their deposition. The geochemical data of associated amphibolites suggest a back-arc setting for the Ngaye metavolcanosedimentary sequence, similar to that of the Nyong Complex. LA-ICP-MS U-Pb zircon dating of amphibole-rich BIFs indicate a maximum depositional age of ca. 2186 Ma and subsequent metamorphism at ca. 2038 Ma, overlapping with that of metavolcanosedimentary sequences from the Nyong Complex. Neoproterozoic age of ca. 598 Ma obtained for these BIFs is interpreted as the Pan-African metamorphic/hydrothermal imprint. This finding suggests that the post-depositional fluid overprint was probably related to the regional Pan-African tectono-thermal event.
{"title":"Source and age of the Ngaye banded iron formations, Adamawa Yadé Domain, Central Cameroon: Constraints from whole-rock geochemistry and U-Pb zircon geochronology","authors":"Arnold Steven Motto Mbita , Marvine Nzepang Tankwa , Landry Soh Tamehe , Donald Hermann Fossi , Guy Bertin Takam Tchoupe , Sylvestre Ganno , Jean Paul Nzenti","doi":"10.1016/j.chemer.2024.126173","DOIUrl":"10.1016/j.chemer.2024.126173","url":null,"abstract":"<div><p>The Ngaye inlier of the Adamawa Yadé Domain is located in the Central African Fold Belt, adjacent to the Nyong Complex at the northern margin of the Congo craton, in central Cameroon. This area consists of metamorphosed granite-greenstone associations comprising amphibole- and pyroxene-rich banded iron formations (BIFs), amphibolites, and migmatitic gneisses. This study reports detailed petrographic, whole-rock geochemical, and LA-ICP-MS U-Pb zircon data for the Ngaye BIFs and associated amphibolites to better constrain their source, tectonic setting, and age. Amphibole-rich BIFs exhibit high REE-Y content and uncommon LREE-enriched patterns. In contrast, pyroxene-rich BIFs display combined low REE-Y content, seawater-like patterns, and positive Eu anomalies, suggesting a mixture of seawater and hydrothermal fluids during their deposition. The geochemical data of associated amphibolites suggest a back-arc setting for the Ngaye metavolcanosedimentary sequence, similar to that of the Nyong Complex. LA-ICP-MS U-Pb zircon dating of amphibole-rich BIFs indicate a maximum depositional age of ca. 2186 Ma and subsequent metamorphism at ca. 2038 Ma, overlapping with that of metavolcanosedimentary sequences from the Nyong Complex. Neoproterozoic age of ca. 598 Ma obtained for these BIFs is interpreted as the Pan-African metamorphic/hydrothermal imprint. This finding suggests that the post-depositional fluid overprint was probably related to the regional Pan-African tectono-thermal event.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126173"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.chemer.2024.126132
Leaching experiments were performed on zinnwaldite-rich greisen, pure zinnwaldite separated from the greisen, spodumene pegmatite, and pure lepidolite in dilute sulfuric, acetic, and oxalic acids (all 0.01 M) as well as deionized water to simulate common environmental conditions. The experiments were carried out at room temperature over a period of 267 days (9 months). Considerable amounts of Li, Al, and Fe (up to 0.76 mM, 6.60 mM, and 0.87 mM, respectively) were observed in the leachates as a result of Li-mica dissolution. The dissolution time-series trends of [SiO2], [Al] and [Li] for the whole-rock zinnwaldite-greisen and the pure zinnwaldite separate are nearly identical, suggesting preferential dissolution of zinnwaldite in the greisen host rock. Lepidolite released the highest amounts of SiO2 and Al into the solution, but it also has the smallest grain size and largest specific surface area of the studied samples. Lepidolite samples further show decreasing [Li] in the sulfuric and acetic acid leachates. Spodumene pegmatite released the smallest amounts of analytes in each experiment, except for Fe. Using SEM-EDX, backscattered electron images, and powder XRD, we observed and identified precipitates of secondary quartz resulting from Li-mica dissolution, as predicted by our geochemical modeling. Even though elpasolite was not observed using the SEM, the mineral was detected in some samples via XRD, suggesting that large amounts of F were present in these leachates. We conclude that enhanced weathering of Li-mica deposits due to their development and mining may lead to a considerable influx of Li, Al, and F into surface waters in adjacent areas.
{"title":"Experimental leaching of lithium ores in simulated environmental conditions","authors":"","doi":"10.1016/j.chemer.2024.126132","DOIUrl":"10.1016/j.chemer.2024.126132","url":null,"abstract":"<div><p><span><span>Leaching experiments were performed on zinnwaldite-rich greisen<span>, pure zinnwaldite separated from the greisen, spodumene<span> pegmatite, and pure lepidolite in dilute sulfuric, acetic, and </span></span></span>oxalic acids (all 0.01 M) as well as deionized water to simulate common environmental conditions. The experiments were carried out at room temperature over a period of 267 days (9 months). Considerable amounts of Li, Al, and Fe (up to 0.76 mM, 6.60 mM, and 0.87 mM, respectively) were observed in the leachates as a result of Li-mica dissolution. The dissolution time-series trends of [SiO</span><sub>2</sub>], [Al] and [Li] for the whole-rock zinnwaldite-greisen and the pure zinnwaldite separate are nearly identical, suggesting preferential dissolution of zinnwaldite in the greisen host rock. Lepidolite released the highest amounts of SiO<sub>2</sub><span> and Al into the solution, but it also has the smallest grain size and largest specific surface area of the studied samples. Lepidolite samples further show decreasing [Li] in the sulfuric and acetic acid leachates. Spodumene pegmatite released the smallest amounts of analytes in each experiment, except for Fe. Using SEM-EDX, backscattered electron images, and powder XRD, we observed and identified precipitates of secondary quartz resulting from Li-mica dissolution, as predicted by our geochemical modeling. Even though elpasolite was not observed using the SEM, the mineral was detected in some samples via XRD, suggesting that large amounts of F were present in these leachates. We conclude that enhanced weathering of Li-mica deposits due to their development and mining may lead to a considerable influx of Li, Al, and F into surface waters in adjacent areas.</span></p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126132"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141132810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.chemer.2024.126162
Larbi Rddad , Mohammed Cherai , Benjamin F. Walter , Fouad Talbi , Dennis Kraemer , Kjell Billström
The highly fractured Jurassic carbonates at Jbel Tirremi in northeastern Morocco host fluorite-baryte deposit. The mineralization occurs both as stratabound in marl-limestone contact and as fault-hosted veins (N-S- and NNW-SSE). The mineral paragenesis consists of two fluorite and baryte generations and calcite with subordinate amounts of quartz, dolomite, traces of sulfides (chalcopyrite, pyrite, galena), and oxidized minerals. Fluid inclusion data reveal that hot moderately saline fluids derived from the Paleozoic basement mixed with Triassic brines and cooler, meteoric waters. The REY inventory, C-O-S-Pb-Sr-Nd isotope, and crush-leach data point to the Paleozoic basement as the primary source of metals with a contribution from the Triassic red beds. The refined ore genetic model developed in this study from our new geological and geochemical data includes the downward movement of Triassic-Jurassic evaporated seawaters along normal faults, followed by the leaching of metals from Paleozoic and Triassic rocks, and the subsequent upward flow of these metalliferous fluids. During the Late Cretaceous-Paleocene basin inversion, the deep-seated ore-forming fluids migrated upward, which eventually mixed with Triassic brines and cooler meteoric waters. This fluid mixing caused the precipitation of multiple generations of fluorite and baryte.
{"title":"Geochemistry and fluid inclusion study of the Jbel Tirremi fluorite-baryte deposit, Morocco: New insights into the genetic model in relation to Mesozoic tectonics","authors":"Larbi Rddad , Mohammed Cherai , Benjamin F. Walter , Fouad Talbi , Dennis Kraemer , Kjell Billström","doi":"10.1016/j.chemer.2024.126162","DOIUrl":"10.1016/j.chemer.2024.126162","url":null,"abstract":"<div><p>The highly fractured Jurassic carbonates at Jbel Tirremi in northeastern Morocco host fluorite-baryte deposit. The mineralization occurs both as stratabound in marl-limestone contact and as fault-hosted veins (N-S- and NNW-SSE). The mineral paragenesis consists of two fluorite and baryte generations and calcite with subordinate amounts of quartz, dolomite, traces of sulfides (chalcopyrite, pyrite, galena), and oxidized minerals. Fluid inclusion data reveal that hot moderately saline fluids derived from the Paleozoic basement mixed with Triassic brines and cooler, meteoric waters. The REY inventory, C-O-S-Pb-Sr-Nd isotope, and crush-leach data point to the Paleozoic basement as the primary source of metals with a contribution from the Triassic red beds. The refined ore genetic model developed in this study from our new geological and geochemical data includes the downward movement of Triassic-Jurassic evaporated seawaters along normal faults, followed by the leaching of metals from Paleozoic and Triassic rocks, and the subsequent upward flow of these metalliferous fluids. During the Late Cretaceous-Paleocene basin inversion, the deep-seated ore-forming fluids migrated upward, which eventually mixed with Triassic brines and cooler meteoric waters. This fluid mixing caused the precipitation of multiple generations of fluorite and baryte.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126162"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141711885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.chemer.2024.126161
Granites are widespread in many Precambrian orogenic belts worldwide; therefore, they can provide insights into orogenic processes and associated magmatism. Zircon UPb age, monazite Th-U-total Pb age and whole-rock geochemical data for a granite pluton from the Gari-Gombo area in the Adamawa-Yade domain of the Central African Fold Belt (CAFB) in East Cameroon are presented. The granite is composed dominantly of perthitic K-feldspars, quartz, plagioclase and minor biotite with accessory monazite, apatite and zircon. LA-ICP-MS zircon UPb dating yielded an age at ca 631–620 Ma, which is interpreted as age of emplacement that coincides with the onset of D2 Pan-African deformation. Monazite grains in Gari-Gombo granite follow strictly the huttonite substitution trend in Th + U vs Si coordinates. Monazites give consistent Neoproterozoic ages of 630 ± 4 Ma and 602 ± 4 Ma, indicating that growth history and crystallization age of monazites also correlate well with the Pan-African plutonism and granulite facies metamorphism (ca 614–600 Ma) in the Gari-Gombo area. The Gari-Gombo pluton samples show high-K calc-alkaline magnesian, slightly peraluminous signature, high SiO2 (70.16–78.80 wt%), K2O (4.39–5.38 wt%), and Rb (165–248 ppm), and low P2O5 ≤ 0.01 wt% and Sr (146–222 ppm) contents. They have highly-fractionated REE pattern ((La/Yb)N = 6.17–148.18), moderately Eu negative anomalies (Eu/Eu* = 0.53–0.93) and the obviously Nb and Ti negative anomalies. These geochemical features suggest that the Gari-Gombo pluton is a highly fractionated I-type granite generated by partial melting of older meta-igneous materials at middle to lower crustal levels. The 2.9 and 0.95 Ga inherited zircon grains identified within the studied granites further confirm the existence of ancient crust in this region.
花岗岩广泛分布于世界各地的许多前寒武纪造山带,因此,花岗岩可以帮助人们深入了解造山过程和相关岩浆活动。本文介绍了喀麦隆东部中非褶皱带阿达马瓦-亚德域加里-贡博地区一块花岗岩柱岩的锆石UPb年龄、独居石Th-U-总Pb年龄和全岩地球化学数据。该花岗岩主要由透辉石K长石、石英、斜长石和少量生物橄榄石组成,并伴有独居石、磷灰石和锆石。LA-ICP-MS锆石UPb测定法得出的年代约为631-620Ma,这被解释为与D2泛非变形开始时间相吻合的成岩年代。加里-贡博花岗岩中的独居石晶粒严格遵循 Th + U 与 Si 坐标中的赫氏石替代趋势。独居石给出了一致的新元古代年龄(630 ± 4 Ma 和 602 ± 4 Ma),表明独居石的生长历史和结晶年龄也与加里-贡博地区的泛非构造和花岗岩变质作用(约 614-600 Ma)密切相关。加里-贡博深成岩样品显示出高K钙碱性镁质、轻微过铝特征,高SiO(70.16-78.80 wt%)、KO(4.39-5.38 wt%)和Rb(165-248 ppm),低PO≤0.01 wt%和Sr(146-222 ppm)含量。它们具有高度分馏的 REE 模式((La/Yb) = 6.17-148.18)、中度的 Eu 负异常(Eu/Eu* = 0.53-0.93)以及明显的 Nb 和 Ti 负异常。这些地球化学特征表明,Gari-Gombo 长岩是由地壳中下部较古老的元火成岩物质部分熔融而成的高分馏 I 型花岗岩。在所研究的花岗岩中发现的 2.9 Ga 和 0.95 Ga 继承锆石颗粒进一步证实了该地区古地壳的存在。
{"title":"Geochronology and geochemistry of a Neoproterozoic syn-tectonic granitic pluton in the Gari-Gombo area, East Cameroun: Implications for petrogenesis and tectonic evolution","authors":"","doi":"10.1016/j.chemer.2024.126161","DOIUrl":"10.1016/j.chemer.2024.126161","url":null,"abstract":"<div><p><span>Granites are widespread in many Precambrian<span><span> orogenic belts worldwide; therefore, they can provide insights into orogenic processes and associated </span>magmatism<span>. Zircon U</span></span></span><img><span><span><span>Pb age, monazite Th-U-total Pb age and whole-rock geochemical data for a granite pluton from the Gari-Gombo area in the Adamawa-Yade domain of the Central African Fold Belt (CAFB) in East Cameroon are presented. The granite is composed dominantly of perthitic K-feldspars, quartz, plagioclase and minor </span>biotite with accessory monazite, </span>apatite and zircon. LA-ICP-MS zircon U</span><img><span>Pb dating yielded an age at ca 631–620 Ma, which is interpreted as age of emplacement that coincides with the onset of D2 Pan-African deformation. Monazite grains in Gari-Gombo granite follow strictly the huttonite substitution trend in Th + U vs Si coordinates. Monazites give consistent Neoproterozoic ages of 630 ± 4 Ma and 602 ± 4 Ma, indicating that growth history and crystallization age of monazites also correlate well with the Pan-African plutonism<span> and granulite facies metamorphism (ca 614–600 Ma) in the Gari-Gombo area. The Gari-Gombo pluton samples show high-K calc-alkaline magnesian, slightly peraluminous signature, high SiO</span></span><sub>2</sub> (70.16–78.80 wt%), K<sub>2</sub>O (4.39–5.38 wt%), and Rb (165–248 ppm), and low P<sub>2</sub>O<sub>5</sub><span> ≤ 0.01 wt% and Sr (146–222 ppm) contents. They have highly-fractionated REE pattern ((La/Yb)</span><sub><em>N</em></sub> = 6.17–148.18), moderately Eu negative anomalies (Eu/Eu* = 0.53–0.93) and the obviously Nb and Ti negative anomalies. These geochemical features suggest that the Gari-Gombo pluton is a highly fractionated I-type granite generated by partial melting of older meta-igneous materials at middle to lower crustal levels. The 2.9 and 0.95 Ga inherited zircon grains identified within the studied granites further confirm the existence of ancient crust in this region.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126161"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.chemer.2024.126175
Sam Uthup , Toshiaki Tsunogae , Kazuki Takahashi , V.J. Rajesh , J. Gregory Shellnutt
We report new petrology, mineral chemistry, P–T conditions, and fluid inclusion data on mafic granulites from the Mettupalayam region along the Bhavani Suture Zone, Southern Granulite Terrane, India. Phase equilibria modelling of mafic granulites yielded peak P–T conditions of 780–860 °C and 7.6–10.1 kbar followed by a near isothermal decompression along a clockwise P–T path. The trapped fluid inclusions in the peak metamorphic minerals display a melting temperature range from −57.4 °C to −56.6 °C, close to the triple-point temperature of pure CO2. The primary inclusions homogenized at −18.9 °C to +0.2 °C, corresponding to density values of 0.93–1.03 g/cm3. Homogenization of the secondary inclusions occurred within the range from −6.3 to +18.1 °C, corresponding to low CO2 densities of 0.79–0.96 g/cm3. From the textural characteristics of the high-density primary carbonic fluid inclusions, we interpret these inclusions as the CO2-rich syn-metamorphic fluid present during the high-grade metamorphism. The secondary fluids characterised by lower densities have undergone re-equilibration during the exhumation stage (decompression) from the peak granulite-facies metamorphism along a clockwise P–T trajectory. This interpretation is consistent with the occurrence of hornblende + plagioclase symplectite around the porphyroblastic garnet, suggesting decompression. We infer that the high-density CO2 was the dominant syn-metamorphic fluid components present during the granulite-facies metamorphism in the Mettupalayam region. Such carbonic fluids, possibly derived by degassing from carbonates or mantle sources, probably played a significant role in stabilizing high-grade mineral assemblages along this collisional suture zone.
我们报告了印度南部花岗岩地层巴瓦尼断裂带梅图帕拉亚姆地区黑云母花岗岩的新岩石学、矿物化学、-条件和流体包裹体数据。黑云母花岗岩的相平衡模型显示,峰值条件为 780-860 °C,7.6-10.1 千巴,随后沿顺时针方向进行近等温减压。峰值变质矿物中的受困流体包裹体显示的熔融温度范围为-57.4 ℃至-56.6 ℃,接近纯 CO 的三重点温度。原生包裹体的均质温度为-18.9 ℃至+0.2 ℃,对应的密度值为 0.93-1.03 g/cm。次生包裹体的均质化发生在 -6.3 至 +18.1 °C的范围内,对应于 0.79-0.96 g/cm 的低 CO 密度。根据高密度原生碳酸流体包裹体的纹理特征,我们将这些包裹体解释为高品位变质过程中出现的富含 CO 的变质流体。密度较低的次生流体在从花岗岩-派生变质峰值开始的掘出阶段(减压)沿顺时针方向进行了再平衡。这一解释与斑状石榴石周围出现的角闪石+斜长石共闪石相一致,表明存在减压现象。我们推断,在梅图帕拉亚姆地区的花岗岩成因变质过程中,高密度二氧化碳是主要的变质流体成分。这种碳酸流体可能来自碳酸盐岩或地幔源的脱气作用,很可能在稳定这一碰撞缝合带的高品位矿物组合方面发挥了重要作用。
{"title":"Petrology, phase equilibria modelling, and fluid inclusion study of mafic granulites from Bhavani Suture Zone, Southern India","authors":"Sam Uthup , Toshiaki Tsunogae , Kazuki Takahashi , V.J. Rajesh , J. Gregory Shellnutt","doi":"10.1016/j.chemer.2024.126175","DOIUrl":"10.1016/j.chemer.2024.126175","url":null,"abstract":"<div><p>We report new petrology, mineral chemistry, <em>P</em>–<em>T</em> conditions, and fluid inclusion data on mafic granulites from the Mettupalayam region along the Bhavani Suture Zone, Southern Granulite Terrane, India. Phase equilibria modelling of mafic granulites yielded peak <em>P</em>–<em>T</em> conditions of 780–860 °C and 7.6–10.1 kbar followed by a near isothermal decompression along a clockwise <em>P</em>–<em>T</em> path. The trapped fluid inclusions in the peak metamorphic minerals display a melting temperature range from −57.4 °C to −56.6 °C, close to the triple-point temperature of pure CO<sub>2</sub>. The primary inclusions homogenized at −18.9 °C to +0.2 °C, corresponding to density values of 0.93–1.03 g/cm<sup>3</sup>. Homogenization of the secondary inclusions occurred within the range from −6.3 to +18.1 °C, corresponding to low CO<sub>2</sub> densities of 0.79–0.96 g/cm<sup>3</sup>. From the textural characteristics of the high-density primary carbonic fluid inclusions, we interpret these inclusions as the CO<sub>2</sub>-rich <em>syn</em>-metamorphic fluid present during the high-grade metamorphism. The secondary fluids characterised by lower densities have undergone re-equilibration during the exhumation stage (decompression) from the peak granulite-facies metamorphism along a clockwise <em>P</em>–<em>T</em> trajectory. This interpretation is consistent with the occurrence of hornblende + plagioclase symplectite around the porphyroblastic garnet, suggesting decompression. We infer that the high-density CO<sub>2</sub> was the dominant <em>syn</em>-metamorphic fluid components present during the granulite-facies metamorphism in the Mettupalayam region. Such carbonic fluids, possibly derived by degassing from carbonates or mantle sources, probably played a significant role in stabilizing high-grade mineral assemblages along this collisional suture zone.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126175"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.chemer.2024.126179
Artem S. Borisov , Oleg I. Siidra , Natalia S. Vlasenko , Natalia V. Platonova , Thies Schuldt , Mason Neuman , Harald Strauss , Astrid Holzheid
Active volcanic fumaroles are one of the most spectacular natural objects in terms of mineral diversity. The Great Tolbachik Fissure Eruption (GTFE) (Kamchatka) fumaroles are renowned for its exceptional number of mineral species. The total number of minerals that have been reliably identified from this particular locality exceeds 400, which is approximately 6.5 % of all known minerals to date. In this study, we employ a comprehensive approach (bulk chemistry, microprobe analysis, powder X-ray diffraction, HR X-ray computed tomography, and 34S, 18O, and 65Cu isotope measurements) to study the distribution of primary exhalation and secondary mineral assemblages and to reveal the driving factors responsible for the unique mineral diversity in the Yadovitaya fumarole. High oxygen fugacity, the interaction of minerals with atmospheric oxygen and water from seasonal precipitation (leading to abundant hydrated mineral associations), temperature conditions controlling the spatial distribution of mineral-forming components, gas-rock interactions, and basaltic scoria morphology perfect for the crystallization of various minerals are some of the factors revealed. The combination of these factors caused a stepwise mineralization resulting in 12 zones of the Yadovitaya fumarole with characteristic mineral assemblages. The described mineralogy of the Yadovitaya fumarole demonstrates a consistent spatial evolution of fumarolic mineral assemblages that vary in complexity, chemistry, and interaction patterns with the surrounding environment. The examination of mineralogical and geochemical data yields novel insights into the active volcanic systems that are associated with the formation of distinct oxidation-type fumaroles.
就矿物质的多样性而言,活火山热液是最壮观的自然景观之一。大托尔巴奇克裂隙喷发(GTFE)(堪察加半岛)火流星以其矿物种类之多而闻名于世。从这一特殊地点可靠鉴定出的矿物总数超过 400 种,约占迄今已知矿物总数的 6.5%。在这项研究中,我们采用了一种综合方法(块状化学、微探针分析、粉末 X 射线衍射、HR X 射线计算机断层扫描以及 34S、18O 和 65Cu 同位素测量)来研究原生呼出物和次生矿物组合的分布,并揭示造成亚多维塔亚(Yadovitaya)热液孔独特矿物多样性的驱动因素。所揭示的因素包括:高富氧性、矿物与大气中的氧气和季节性降水产生的水的相互作用(导致丰富的水合矿物组合)、控制矿物形成成分空间分布的温度条件、气体-岩石相互作用以及适合各种矿物结晶的玄武岩焦岩形态。这些因素的综合作用导致了亚多维塔亚火山口的逐步矿化,形成了具有特色矿物组合的 12 个区域。所描述的亚多维塔亚富矿孔矿物学表明,在复杂性、化学性以及与周围环境的相互作用模式方面各不相同的富矿矿物组合在空间上发生了一致的演变。对矿物学和地球化学数据的研究使人们对与独特氧化型富马孔的形成有关的活火山系统有了新的认识。
{"title":"The Yadovitaya fumarole, Tolbachik volcano: A comprehensive mineralogical and geochemical study and driving factors for mineral diversity","authors":"Artem S. Borisov , Oleg I. Siidra , Natalia S. Vlasenko , Natalia V. Platonova , Thies Schuldt , Mason Neuman , Harald Strauss , Astrid Holzheid","doi":"10.1016/j.chemer.2024.126179","DOIUrl":"10.1016/j.chemer.2024.126179","url":null,"abstract":"<div><p>Active volcanic fumaroles are one of the most spectacular natural objects in terms of mineral diversity. The Great Tolbachik Fissure Eruption (GTFE) (Kamchatka) fumaroles are renowned for its exceptional number of mineral species. The total number of minerals that have been reliably identified from this particular locality exceeds 400, which is approximately 6.5 % of all known minerals to date. In this study, we employ a comprehensive approach (bulk chemistry, microprobe analysis, powder X-ray diffraction, HR X-ray computed tomography, and <sup>34</sup>S, <sup>18</sup>O, and <sup>65</sup>Cu isotope measurements) to study the distribution of primary exhalation and secondary mineral assemblages and to reveal the driving factors responsible for the unique mineral diversity in the Yadovitaya fumarole. High oxygen fugacity, the interaction of minerals with atmospheric oxygen and water from seasonal precipitation (leading to abundant hydrated mineral associations), temperature conditions controlling the spatial distribution of mineral-forming components, gas-rock interactions, and basaltic scoria morphology perfect for the crystallization of various minerals are some of the factors revealed. The combination of these factors caused a stepwise mineralization resulting in 12 zones of the Yadovitaya fumarole with characteristic mineral assemblages. The described mineralogy of the Yadovitaya fumarole demonstrates a consistent spatial evolution of fumarolic mineral assemblages that vary in complexity, chemistry, and interaction patterns with the surrounding environment. The examination of mineralogical and geochemical data yields novel insights into the active volcanic systems that are associated with the formation of distinct oxidation-type fumaroles.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126179"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009281924001041/pdfft?md5=5338f11cba91d750e8b12780372e6e1f&pid=1-s2.0-S0009281924001041-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.chemer.2024.126166
Wenbo Sun , Huan Li , Mohamed Faisal , Scott A. Whattam , Jianqi Zhou , Xiaojun Hu , Nuerkanati Madayipu , Zhaoyang Luo
The Nanling metallogenic belt (South China) is one of the largest W-Sn polymetallic provinces in the world. The ore bodies are mainly hosted in Triassic-Jurassic granitoids which formed during a complex history of magmatic evolution. Among them, the Laiziling pluton, which forms the northern part of the Xianghualing district, is an example of Sn-polymetallic deposits that underwent multiple Mesozoic episodes. In this study, the first in-situ U-Pb age dating of zircon and cassiterite minerals, trace element, and Lu-Hf isotopic data are reported for Laiziling NYF-type pegmatites. Four types of pegmatites are identified: stock-like pegmatite, vein-type pegmatite, peripheral vein-type pegmatite, and cap/sill-like pegmatite. Zircon LA-ICP-MS U-Pb geochronology of pegmatites yields an age of ~150 Ma, which is consistent with the age of the associated mineralized granitic pluton. Results of cassiterite age dating indicate that the W-Sn mineralization took place at ca. 150 Ma coeval with pegmatite emplacement. Combined with structure and trace element composition, two young ages (i.e., ~130 and 90 Ma) can be identified from pegmatite veins, suggesting that the studied zircon crystals experienced two distinct periods of magmatic-hydrothermal evolution during the Cretaceous (related to Late Yanshanian magmatism). In addition, some zircon grains are obviously enriched in LREE, which is associated with hydrothermal metasomatism. Compared to the narrow range of magmatic zircons, a wide range of inherited zircons (Proterozoic to Paleozoic) are observed in the studied Late Jurassic pegmatite (Pg1 and Pg2b), suggesting that they were incorporated from pre-existing basement rocks during magma ascent and/or emplacement. Furthermore, U-Pb data for 14 disseminated cassiterite grains yield a 206Pb/238U age of 221.5 ± 4.2 Ma, documenting evidence of cassiterite inheritance during melt ascension from country rocks or representing the initial stage of Sn enrichment. The εHf values of magmatic zircons show negative εHf values from −4.4 to −16.6 and their crustal model ages (TDM2) vary between 1328 Ma to 2200 Ma, suggesting the parent magma of the Laiziling pegmatites were derived from partial melting of older crustal components (Proterozoic basement in the Cathaysian Block of South China) and the mixing of mantle materials. This study proposes that multi-stage magmatic-hydrothermal events may have occurred not only in the Xianghualing area but also in the whole Nanling Range, and provides fresh insights into the formation processes of rare metal-bearing pegmatites in South China.
{"title":"Zircon and cassiterite geochronology of Sn-polymetallic pegmatite from the Xianghualing ore field, South China: Implications for multi-stage magmatic-hydrothermal events","authors":"Wenbo Sun , Huan Li , Mohamed Faisal , Scott A. Whattam , Jianqi Zhou , Xiaojun Hu , Nuerkanati Madayipu , Zhaoyang Luo","doi":"10.1016/j.chemer.2024.126166","DOIUrl":"10.1016/j.chemer.2024.126166","url":null,"abstract":"<div><p><span>The Nanling metallogenic belt (South China) is one of the largest W-Sn polymetallic provinces in the world. The ore bodies<span><span> are mainly hosted in Triassic-Jurassic granitoids<span><span><span> which formed during a complex history of magmatic evolution. Among them, the Laiziling pluton, which forms the northern part of the Xianghualing district, is an example of Sn-polymetallic deposits that underwent multiple Mesozoic episodes. In this study, the first in-situ U-Pb age dating of zircon and </span>cassiterite minerals, trace element, and Lu-Hf isotopic data are reported for Laiziling NYF-type pegmatites. Four types of pegmatites are identified: stock-like pegmatite, vein-type pegmatite, peripheral vein-type pegmatite, and cap/sill-like pegmatite. Zircon LA-ICP-MS U-Pb </span>geochronology of pegmatites yields an age of ~150 Ma, which is consistent with the age of the associated mineralized granitic pluton. Results of cassiterite age dating indicate that the W-Sn mineralization took place at ca. 150 Ma coeval with pegmatite emplacement. Combined with structure and trace element composition, two young ages (i.e., ~130 and 90 Ma) can be identified from pegmatite veins, suggesting that the studied zircon crystals experienced two distinct periods of magmatic-hydrothermal evolution during the Cretaceous (related to Late Yanshanian magmatism). In addition, some zircon grains are obviously enriched in LREE, which is associated with hydrothermal </span></span>metasomatism<span>. Compared to the narrow range of magmatic zircons, a wide range of inherited zircons (Proterozoic to Paleozoic) are observed in the studied Late Jurassic<span> pegmatite (Pg1 and Pg2b), suggesting that they were incorporated from pre-existing basement rocks during magma ascent and/or emplacement. Furthermore, U-Pb data for 14 disseminated cassiterite grains yield a </span></span></span></span><sup>206</sup>Pb/<sup>238</sup>U age of 221.5 ± 4.2 Ma, documenting evidence of cassiterite inheritance during melt ascension from country rocks or representing the initial stage of Sn enrichment. The εHf values of magmatic zircons show negative εHf values from −4.4 to −16.6 and their crustal model ages (T<sub>DM2</sub>) vary between 1328 Ma to 2200 Ma, suggesting the parent magma of the Laiziling pegmatites were derived from partial melting of older crustal components (Proterozoic basement in the Cathaysian Block of South China) and the mixing of mantle materials. This study proposes that multi-stage magmatic-hydrothermal events may have occurred not only in the Xianghualing area but also in the whole Nanling Range, and provides fresh insights into the formation processes of rare metal-bearing pegmatites in South China.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126166"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141701541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.chemer.2024.126149
Situated in northeastern Hunan Province, the vein-type Pb-Zn orebodies at Taolin are mainly hosted in NE-/NEE-trending faults between Dayunshan-Mufushan pluton and Neoproterozoic metasedimentary rocks of the Lengjiaxi Group. Hydrothermal mineralization can be divided into five stages: (1) coarse-grained quartz stage, (2) quartz-fluorite-base metal stage, (3) quartz-barite-fluorite-base metal stage, (4) pale pink and colorless quartz stage, and (5) fine-grained quartz stage. In this research, fluid inclusions as well as stable (H-O) and noble gas (He-Ar) isotope compositions were performed to uncover the nature, origin, and evolution of the ore-forming fluids, ore precipitation mechanisms, and mineralization process of the Taolin deposit. Four types of fluid inclusions, i.e., liquid-rich two-phase inclusions (LV-type), pure liquid phase inclusions (PL-type), vapor-rich two-phase inclusions (VL-type), and pure vapor phase inclusions (PV-type), were distinguished in sphalerite, quartz, and fluorite. Microthermometric analysis of fluid inclusion assemblages in sphalerite, quartz, and fluorite from different stages indicates that from the Stage 1 to Stage 5, the homogenization temperatures vary between 168 and 211 °C, between 151 and 198 °C, between 131 and 180 °C, between 132 and 164 °C, and between 118 and 138 °C, respectively, whereas the fluid salinities vary from 12.4 to 16.9 wt% NaCl equivalent, from 9.7 to 14.6 wt% NaCl equivalent, from 5.6 to 10.3 wt% NaCl equivalent, from 3.6 to 9.7 wt% NaCl equivalent, and from 0.9 to 3.8 wt% NaCl equivalent, respectively. The H-O isotope data of quartz and the He-Ar isotopic compositions of sulfide crystals suggest that the ore-forming fluids were a mixture of crust-derived magmatic hydrothermal fluid and meteoric water. Fluid mixing and cooling were likely the crucial mechanisms for ore precipitation.
{"title":"Fluid origin and evolution of the Taolin Pb-Zn deposit in northeastern Hunan Province, South China: Insights from fluid inclusions and H-O-He-Ar isotopes","authors":"","doi":"10.1016/j.chemer.2024.126149","DOIUrl":"10.1016/j.chemer.2024.126149","url":null,"abstract":"<div><p><span><span>Situated in northeastern Hunan Province, the vein-type Pb-Zn orebodies at Taolin are mainly hosted in NE-/NEE-trending faults between Dayunshan-Mufushan pluton and Neoproterozoic metasedimentary rocks<span> of the Lengjiaxi Group. Hydrothermal mineralization<span><span> can be divided into five stages: (1) coarse-grained quartz stage, (2) quartz-fluorite-base metal stage, (3) quartz-barite-fluorite-base metal stage, (4) pale pink and colorless quartz stage, and (5) fine-grained quartz stage. In this research, fluid inclusions<span> as well as stable (H-O) and noble gas (He-Ar) isotope compositions were performed to uncover the nature, origin, and evolution of the ore-forming fluids, ore precipitation mechanisms, and mineralization process of the Taolin deposit. Four types of fluid inclusions, i.e., liquid-rich two-phase inclusions (LV-type), pure liquid phase inclusions (PL-type), vapor-rich two-phase inclusions (VL-type), and pure vapor phase inclusions (PV-type), were distinguished in sphalerite, quartz, and fluorite. Microthermometric analysis of fluid inclusion assemblages in sphalerite, quartz, and fluorite from different stages indicates that from the Stage 1 to Stage 5, the homogenization temperatures vary between 168 and 211 °C, between 151 and 198 °C, between 131 and 180 °C, between 132 and 164 °C, and between 118 and 138 °C, respectively, whereas the fluid </span></span>salinities vary from 12.4 to 16.9 wt% NaCl equivalent, from 9.7 to 14.6 wt% NaCl equivalent, from 5.6 to 10.3 wt% NaCl equivalent, from 3.6 to 9.7 wt% NaCl equivalent, and from 0.9 to 3.8 wt% NaCl equivalent, respectively. The H-O isotope data of quartz and the He-Ar </span></span></span>isotopic compositions<span> of sulfide crystals suggest that the ore-forming fluids were a mixture of crust-derived magmatic hydrothermal fluid and </span></span>meteoric water. Fluid mixing and cooling were likely the crucial mechanisms for ore precipitation.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126149"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141415521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}