首页 > 最新文献

Cellular and Molecular Gastroenterology and Hepatology最新文献

英文 中文
Serum Amyloid A3 Fuels a Feed-Forward Inflammatory Response to the Bacterial Amyloid Curli in the Enteric Nervous System 血清淀粉样蛋白 A3 在肠道神经系统中助长了对细菌淀粉样蛋白卷曲的前馈炎症反应。
IF 7.2 1区 医学 Q1 Medicine Pub Date : 2024-01-01 DOI: 10.1016/j.jcmgh.2024.03.013
Peter Verstraelen , Samuel Van Remoortel , Nouchin De Loose , Rosanne Verboven , Gerardo Garcia-Diaz Barriga , Anne Christmann , Manuela Gries , Shingo Bessho , Jing Li , Carmen Guerra , Çagla Tükel , Sales Ibiza Martinez , Karl-Herbert Schäfer , Jean-Pierre Timmermans , Winnok H. De Vos

Background & Aims

Mounting evidence suggests the gastrointestinal microbiome is a determinant of peripheral immunity and central neurodegeneration, but the local disease mechanisms remain unknown. Given its potential relevance for early diagnosis and therapeutic intervention, we set out to map the pathogenic changes induced by bacterial amyloids in the gastrointestinal tract and its enteric nervous system.

Methods

To examine the early response, we challenged primary murine myenteric networks with curli, the prototypical bacterial amyloid, and performed shotgun RNA sequencing and multiplex enzyme-linked immunosorbent assay. Using enteric neurosphere-derived glial and neuronal cell cultures, as well as in vivo curli injections into the colon wall, we further scrutinized curli-induced pathogenic pathways.

Results

Curli induced a proinflammatory response, with strong up-regulation of Saa3 and the secretion of several cytokines. This proinflammatory state was induced primarily in enteric glia, was accompanied by increased levels of DNA damage and replication, and triggered the influx of immune cells in vivo. The addition of recombinant Serum Amyloid A3 (SAA3) was sufficient to recapitulate this specific proinflammatory phenotype while Saa3 knock-out attenuated curli-induced DNA damage and replication. Similar to curli, recombinant SAA3 caused a strong up-regulation of Saa3 transcripts, illustrating its self-amplifying potential . Since colonization of curli-producing Salmonella and dextran sulfate sodium–induced colitis triggered a significant increase in Saa3 transcripts as well, we assume SAA3plays a central role in enteric dysfunction. Inhibition of dual leucine zipper kinase, an upstream regulator of the c-Jun N-terminal kinase pathway responsible for SAA3 production, attenuated curli- and recombinant SAA3-induced Saa3 up-regulation, DNA damage, and replication in enteric glia.

Conclusions

Our results position SAA3 as an important mediator of gastrointestinal vulnerability to bacterial-derived amyloids and demonstrate the potential of dual leucine zipper kinase inhibition to dampen enteric pathology.

背景:越来越多的证据表明,胃肠道微生物组是外周免疫和中枢神经变性的决定因素,但其局部疾病机制仍不清楚。鉴于其与早期诊断和治疗干预的潜在相关性,我们着手绘制细菌淀粉样蛋白在胃肠道及其肠道神经系统中诱导的致病变化图:为了研究早期反应,我们用原型细菌淀粉样蛋白 Curli 挑战了原代小鼠肠肌网络,并进行了枪式 RNA 测序和多重 ELISA 检测。利用肠神经球衍生的神经胶质细胞和神经元细胞培养物,以及在体内向结肠壁注射 curli,我们进一步研究了 curli 诱导的致病途径:结果:Curli 可诱导促炎反应,显著上调血清淀粉样蛋白 A3(Saa3)和分泌多种细胞因子。这种促炎状态主要在肠胶质细胞中诱导,伴随着 DNA 损伤和复制水平的升高,并引发体内免疫细胞的涌入。加入重组 SAA3 足以重现这种特殊的促炎表型,而敲除 Saa3 则可减轻 curli 诱导的 DNA 损伤和复制。与 curli 一样,重组 SAA3 也会引起 Saa3 转录物的强烈上调,这表明存在一个前馈循环。产curli沙门氏菌的定植和葡聚糖硫酸钠(DSS)诱导的结肠炎会导致Saa3转录本显著增加,这表明SAA3在肠道功能紊乱中起着核心作用。双亮氨酸拉链激酶(DLK)是负责产生SAA3的c-Jun N-末端激酶(JNK)通路的上游调节因子,抑制DLK可减轻肠胶质细胞中由curli和SAA3诱导的Saa3上调、DNA损伤和复制:我们的研究结果表明,SAA3 是胃肠道易受细菌源性淀粉样蛋白影响的重要介质,并证明了抑制 DLK 可减轻肠道病变的潜力。
{"title":"Serum Amyloid A3 Fuels a Feed-Forward Inflammatory Response to the Bacterial Amyloid Curli in the Enteric Nervous System","authors":"Peter Verstraelen ,&nbsp;Samuel Van Remoortel ,&nbsp;Nouchin De Loose ,&nbsp;Rosanne Verboven ,&nbsp;Gerardo Garcia-Diaz Barriga ,&nbsp;Anne Christmann ,&nbsp;Manuela Gries ,&nbsp;Shingo Bessho ,&nbsp;Jing Li ,&nbsp;Carmen Guerra ,&nbsp;Çagla Tükel ,&nbsp;Sales Ibiza Martinez ,&nbsp;Karl-Herbert Schäfer ,&nbsp;Jean-Pierre Timmermans ,&nbsp;Winnok H. De Vos","doi":"10.1016/j.jcmgh.2024.03.013","DOIUrl":"10.1016/j.jcmgh.2024.03.013","url":null,"abstract":"<div><h3>Background &amp; Aims</h3><p>Mounting evidence suggests the gastrointestinal microbiome is a determinant of peripheral immunity and central neurodegeneration, but the local disease mechanisms remain unknown. Given its potential relevance for early diagnosis and therapeutic intervention, we set out to map the pathogenic changes induced by bacterial amyloids in the gastrointestinal tract and its enteric nervous system.</p></div><div><h3>Methods</h3><p>To examine the early response, we challenged primary murine myenteric networks with curli, the prototypical bacterial amyloid, and performed shotgun RNA sequencing and multiplex enzyme-linked immunosorbent assay. Using enteric neurosphere-derived glial and neuronal cell cultures, as well as in vivo curli injections into the colon wall, we further scrutinized curli-induced pathogenic pathways.</p></div><div><h3>Results</h3><p>Curli induced a proinflammatory response, with strong up-regulation of <em>Saa3</em> and the secretion of several cytokines. This proinflammatory state was induced primarily in enteric glia, was accompanied by increased levels of DNA damage and replication, and triggered the influx of immune cells <em>in vivo</em>. The addition of recombinant Serum Amyloid A3 (SAA3) was sufficient to recapitulate this specific proinflammatory phenotype while <em>Saa3</em> knock-out attenuated curli-induced DNA damage and replication. Similar to curli, recombinant SAA3 caused a strong up-regulation of <em>Saa3</em> transcripts, illustrating its self-amplifying potential . Since colonization of curli-producing <em>Salmonella</em> and dextran sulfate sodium–induced colitis triggered a significant increase in <em>Saa3</em> transcripts as well, we assume SAA3plays a central role in enteric dysfunction. Inhibition of dual leucine zipper kinase, an upstream regulator of the c-Jun N-terminal kinase pathway responsible for SAA3 production, attenuated curli- and recombinant SAA3-induced <em>Saa3</em> up-regulation, DNA damage, and replication in enteric glia.</p></div><div><h3>Conclusions</h3><p>Our results position SAA3 as an important mediator of gastrointestinal vulnerability to bacterial-derived amyloids and demonstrate the potential of dual leucine zipper kinase inhibition to dampen enteric pathology.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000687/pdfft?md5=13e90bab07a334e99822608e520cee7f&pid=1-s2.0-S2352345X24000687-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets 酒精相关肝炎中的炎症:发病机制和治疗目标。
IF 7.2 1区 医学 Q1 Medicine Pub Date : 2024-01-01 DOI: 10.1016/j.jcmgh.2024.04.009
Dechun Feng , Seonghwan Hwang , Adrien Guillot , Yang Wang , Yukun Guan , Cheng Chen , Luca Maccioni , Bin Gao

Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.

酒精相关性肝炎(AH)是慢性酒精相关性肝病(ALD)患者的一种急性慢性肝损伤。严重酒精相关性肝炎患者的短期死亡率很高,而且缺乏有效的药物疗法。炎症被认为是促进酒精相关性肝损伤进展的关键因素之一,在过去的几十年中,人们一直在积极地将炎症作为治疗靶点进行研究,但迄今为止尚未发现有效的炎症靶点。在这篇综述中,我们将以中性粒细胞和巨噬细胞为重点,讨论炎症细胞及其产生的炎症介质如何导致 AH 的发生和发展。我们还阐述了炎症细胞和肝脏非实质性细胞在 AH 发病机制中的相互影响。我们还讨论了近期尖端技术在描述 AH 中肝脏炎症特征方面的应用。最后,我们简要总结了炎症介质对 AH 的潜在治疗靶点。
{"title":"Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets","authors":"Dechun Feng ,&nbsp;Seonghwan Hwang ,&nbsp;Adrien Guillot ,&nbsp;Yang Wang ,&nbsp;Yukun Guan ,&nbsp;Cheng Chen ,&nbsp;Luca Maccioni ,&nbsp;Bin Gao","doi":"10.1016/j.jcmgh.2024.04.009","DOIUrl":"10.1016/j.jcmgh.2024.04.009","url":null,"abstract":"<div><p>Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24001061/pdfft?md5=ac58214335ea3ec42413d467c16df3bd&pid=1-s2.0-S2352345X24001061-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protease-Induced Excitation of Dorsal Root Ganglion Neurons in Response to Acute Perturbation of the Gut Microbiota Is Associated With Visceral and Somatic Hypersensitivity 蛋白酶诱导的背根神经节神经元对肠道微生物群急性扰动的兴奋与内脏和躯体超敏反应有关。
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-01-01 DOI: 10.1016/j.jcmgh.2024.03.006

Background & Aims

Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons.

Methods

In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 μg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition.

Results

Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro, compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 μmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2.

Conclusions

Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.

腹痛是与微生物菌群失调有关的疾病(包括肠易激综合征和炎症性肠病)的主要症状。与传统饲养的小鼠相比,无菌小鼠更容易腹痛,而在无菌小鼠体内重建微生物群可降低腹痛敏感性。然而,微生物调节疼痛的机制仍然难以捉摸。我们假设肠道微生物群的破坏会调节外周痛觉神经元的兴奋性。我们对使用非吸收性抗生素万古霉素(50 μg/mL 饮用水)治疗 7 天的小鼠和用水治疗的对照组小鼠进行了内脏感觉的体内和体外试验。通过对粪便微生物组成进行 16s rRNA 分析,验证了细菌菌群失调。与对照组相比,用万古霉素处理小鼠会导致体内和体外小鼠对结肠膨胀的敏感性增加,以及体外背根神经节(DRG)神经元的过度兴奋。有趣的是,DRG 神经元的过度兴奋并不局限于支配肠道的神经元,这表明肠道菌群失调对外周疼痛回路有广泛的影响。与此相一致的是,用万古霉素治疗的小鼠比对照组小鼠对施加在后爪上的热刺激更敏感。用万古霉素处理过的小鼠的血清培养来自幼稚小鼠的DRG神经元会增加DRG神经元的兴奋性,这表明微生物菌群失调会改变影响痛觉的循环介质。半胱氨酸蛋白酶抑制剂 E64(30 nM)和蛋白酶激活受体 2(PAR-2)拮抗剂 GB-83(10 μM)都能阻止 DRG 神经元对万古霉素处理过的小鼠血清兴奋性的增加,同样也能阻止 NaV1.8 表达神经元中 PAR-2 的敲除。万古霉素处理小鼠的粪便上清液(而非结肠上清液)通过半胱氨酸蛋白酶激活 PAR-2 增加了 DRG 神经元的兴奋性。这些数据共同表明,肠道微生物菌群失调会改变疼痛敏感性,并确定半胱氨酸蛋白酶是这种效应的潜在介质。
{"title":"Protease-Induced Excitation of Dorsal Root Ganglion Neurons in Response to Acute Perturbation of the Gut Microbiota Is Associated With Visceral and Somatic Hypersensitivity","authors":"","doi":"10.1016/j.jcmgh.2024.03.006","DOIUrl":"10.1016/j.jcmgh.2024.03.006","url":null,"abstract":"<div><h3>Background &amp; Aims</h3><p>Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons.</p></div><div><h3>Methods</h3><p>In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 μg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition.</p></div><div><h3>Results</h3><p>Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro<em>,</em> compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 μmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2.</p></div><div><h3>Conclusions</h3><p>Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000584/pdfft?md5=8c9b95d3dd80a13cc657418d06757cec&pid=1-s2.0-S2352345X24000584-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Kids on the Block: Immature Myeloid Cells in Intestinal Regeneration 新来的孩子肠道再生中的未成熟髓系细胞
IF 7.2 1区 医学 Q1 Medicine Pub Date : 2024-01-01 DOI: 10.1016/j.jcmgh.2023.11.011
Vik Meadows, Nan Gao
{"title":"New Kids on the Block: Immature Myeloid Cells in Intestinal Regeneration","authors":"Vik Meadows,&nbsp;Nan Gao","doi":"10.1016/j.jcmgh.2023.11.011","DOIUrl":"10.1016/j.jcmgh.2023.11.011","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X23002102/pdfft?md5=f7d26cf6ee70c0529d9c935b865c694e&pid=1-s2.0-S2352345X23002102-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TOC 技术选择委员会
IF 7.2 1区 医学 Q1 Medicine Pub Date : 2024-01-01 DOI: 10.1016/S2352-345X(23)00224-2
{"title":"TOC","authors":"","doi":"10.1016/S2352-345X(23)00224-2","DOIUrl":"https://doi.org/10.1016/S2352-345X(23)00224-2","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X23002242/pdfft?md5=6543da2703ddee09e39965a70aa26951&pid=1-s2.0-S2352345X23002242-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139479976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover 封面
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-01-01 DOI: 10.1016/S2352-345X(24)00140-1
{"title":"Cover","authors":"","doi":"10.1016/S2352-345X(24)00140-1","DOIUrl":"10.1016/S2352-345X(24)00140-1","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24001401/pdfft?md5=d160c5f1dc6e5bd0541edd6f016a7fd4&pid=1-s2.0-S2352345X24001401-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatocyte-specific Epidermal Growth Factor Receptor Deletion Promotes Fibrosis but has no Effect on Steatosis in Fast-food Diet Model of Metabolic Dysfunction-associated Steatotic Liver Disease 肝细胞特异性表皮生长因子受体缺失会促进肝纤维化,但对快餐饮食模式下的 MASLD 脂肪变性没有影响。
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-01-01 DOI: 10.1016/j.jcmgh.2024.101380

Background & Aims

Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disorder, with no approved treatment. Our previous work demonstrated the efficacy of a pan-ErbB inhibitor, Canertinib, in reducing steatosis and fibrosis in a murine fast-food diet (FFD) model of MASLD. The current study explores the effects of hepatocyte-specific ErbB1 (ie, epidermal growth factor receptor [EGFR]) deletion in the FFD model.

Methods

EGFRflox/flox mice, treated with AAV8-TBG-CRE to delete EGFR specifically in hepatocytes (EGFR-KO), were fed either a chow-diet or FFD for 2 or 5 months.

Results

Hepatocyte-specific EGFR deletion reduced serum triglyceride levels but did not prevent steatosis. Surprisingly, hepatic fibrosis was increased in EGFR-KO mice in the long-term study, which correlated with activation of transforming growth factor-β/fibrosis signaling pathways. Further, nuclear levels of some of the major MASLD regulating transcription factors (SREBP1, PPARγ, PPARα, and HNF4α) were altered in FFD-fed EGFR-KO mice. Transcriptomic analysis revealed significant alteration of lipid metabolism pathways in EGFR-KO mice with changes in several relevant genes, including downregulation of fatty-acid synthase and induction of lipolysis gene, Pnpla2, without impacting overall steatosis. Interestingly, EGFR downstream signaling mediators, including AKT, remain activated in EGFR-KO mice, which correlated with increased activity pattern of other receptor tyrosine kinases, including ErbB3/MET, in transcriptomic analysis. Lastly, Canertinib treatment in EGFR-KO mice, which inhibits all ErbB receptors, successfully reduced steatosis, suggesting the compensatory roles of other ErbB receptors in supporting MASLD without EGFR.

Conclusions

Hepatocyte-specific EGFR-KO did not impact steatosis, but enhanced fibrosis in the FFD model of MASLD. Gene networks associated with lipid metabolism were greatly altered in EGFR-KO, but phenotypic effects might be compensated by alternate signaling pathways.

背景与目的:MASLD已成为发病率最高的慢性肝病,目前尚无获批的治疗方法。我们之前的研究表明,泛ErbB抑制剂Canertinib在小鼠快餐饮食(FFD)MASLD模型中具有减轻脂肪变性和纤维化的疗效。本研究探讨了肝细胞特异性ErbB1(即表皮生长因子受体)缺失对FFD模型的影响:EGFRflox/flox小鼠经AAV8-TBG-CRE处理后特异性地在肝细胞中删除EGFR(EGFR-KO),喂食饲料或FFD 2个月或5个月:结果:肝细胞特异性表皮生长因子受体缺失可降低血清甘油三酯水平,但不能防止脂肪变性。令人惊讶的是,在长期研究中,EGFR-KO小鼠的肝纤维化程度增加,这与TGFβ1/纤维化信号通路的激活有关。此外,一些主要的MASLD调节转录因子(SREBP1、PPARγ、PPARα和HNF4α)的核水平在FFD喂养的EGFR-KO小鼠中发生了改变。转录组分析表明,EGFR-KO 小鼠的脂质代谢通路发生了重大改变,多个相关基因发生了变化,包括脂肪酸合成酶下调和脂肪分解基因 Pnpla2 的诱导,但并未影响总体脂肪变性。有趣的是,表皮生长因子受体下游信号介质(包括 AKT)在表皮生长因子受体-KO 小鼠中仍处于激活状态,这与转录组分析中其他受体酪氨酸激酶(包括 ErbB3/MET)活性模式的增加有关。最后,Canertinib可抑制所有ErbB受体,成功减轻了EGFR-KO小鼠的脂肪变性,这表明其他ErbB受体在支持无EGFR的MASLD中发挥了补偿作用:结论:肝细胞特异性表皮生长因子受体KO不会影响脂肪变性,但会促进FFD MASLD模型中的纤维化。与脂质代谢相关的基因网络在EGFR-KO中发生了很大变化,但表型效应可能会通过其他信号通路得到补偿。
{"title":"Hepatocyte-specific Epidermal Growth Factor Receptor Deletion Promotes Fibrosis but has no Effect on Steatosis in Fast-food Diet Model of Metabolic Dysfunction-associated Steatotic Liver Disease","authors":"","doi":"10.1016/j.jcmgh.2024.101380","DOIUrl":"10.1016/j.jcmgh.2024.101380","url":null,"abstract":"<div><h3>Background &amp; Aims</h3><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disorder, with no approved treatment. Our previous work demonstrated the efficacy of a pan-ErbB inhibitor, Canertinib, in reducing steatosis and fibrosis in a murine fast-food diet (FFD) model of MASLD. The current study explores the effects of hepatocyte-specific ErbB1 (ie, epidermal growth factor receptor [EGFR]) deletion in the FFD model.</p></div><div><h3>Methods</h3><p>EGFR<sup>flox/flox</sup> mice, treated with AAV8-TBG-CRE to delete EGFR specifically in hepatocytes (EGFR-KO), were fed either a chow-diet or FFD for 2 or 5 months.</p></div><div><h3>Results</h3><p>Hepatocyte-specific EGFR deletion reduced serum triglyceride levels but did not prevent steatosis. Surprisingly, hepatic fibrosis was increased in EGFR-KO mice in the long-term study, which correlated with activation of transforming growth factor-β/fibrosis signaling pathways. Further, nuclear levels of some of the major MASLD regulating transcription factors (SREBP1, PPARγ, PPARα, and HNF4α) were altered in FFD-fed EGFR-KO mice. Transcriptomic analysis revealed significant alteration of lipid metabolism pathways in EGFR-KO mice with changes in several relevant genes, including downregulation of fatty-acid synthase and induction of lipolysis gene, <em>Pnpla2</em>, without impacting overall steatosis. Interestingly, EGFR downstream signaling mediators, including AKT, remain activated in EGFR-KO mice, which correlated with increased activity pattern of other receptor tyrosine kinases, including ErbB3/MET, in transcriptomic analysis. Lastly, Canertinib treatment in EGFR-KO mice, which inhibits all ErbB receptors, successfully reduced steatosis, suggesting the compensatory roles of other ErbB receptors in supporting MASLD without EGFR.</p></div><div><h3>Conclusions</h3><p>Hepatocyte-specific EGFR-KO did not impact steatosis, but enhanced fibrosis in the FFD model of MASLD. Gene networks associated with lipid metabolism were greatly altered in EGFR-KO, but phenotypic effects might be compensated by alternate signaling pathways.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24001358/pdfft?md5=e6751e746ab547c91ca49e7232a91af4&pid=1-s2.0-S2352345X24001358-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying Forms and Functions of Enterohepatic Bile Acid Pools in Mice 量化小鼠肠肝胆汁酸池的形式和功能。
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-01-01 DOI: 10.1016/j.jcmgh.2024.101392

Backgrounds & Aims

Bile acids (BAs) are core gastrointestinal metabolites with dual functions in lipid absorption and cell signaling. BAs circulate between the liver and distal small intestine (i.e., ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with host intestinal cells in vivo remain poorly understood. Because ileal absorption is rate-limiting in determining which BAs in the intestinal lumen gain access to host intestinal cells and receptors, and at what concentrations, we hypothesized that defining the rates and routes of ileal BA absorption in vivo would yield novel insights into the physiological forms and functions of mouse enterohepatic BA pools.

Methods

Using ex vivo mass spectrometry, we quantified 88 BA species and metabolites in the intestinal lumen and superior mesenteric vein of individual wild-type mice, and cage-mates lacking the ileal BA transporter, Asbt/Slc10a2.

Results

Using these data, we calculated that the pool of BAs circulating through ileal tissue (i.e., the ileal BA pool) in fasting C57BL/6J female mice is ∼0.3 μmol/g. Asbt-mediated transport accounted for ∼80% of this pool and amplified size. Passive permeability explained the remaining ∼20% and generated diversity. Compared with wild-type mice, the ileal BA pool in Asbt-deficient mice was ∼5-fold smaller, enriched in secondary BA species and metabolites normally found in the colon, and elicited unique transcriptional responses on addition to ex vivo–cultured ileal explants.

Conclusions

This study defines quantitative traits of the mouse enterohepatic BA pool and reveals how aberrant BA metabolism can impinge directly on host intestinal physiology.
背景与目的:胆汁酸(BA)是胃肠道的核心代谢产物,具有脂质吸收和细胞信号传导的双重功能。胆汁酸在肝脏和远端小肠(即回肠)之间循环,但复杂的胆汁酸池在回肠被吸收并在体内与宿主肠道细胞相互作用的动态过程仍鲜为人知。由于回肠吸收是决定肠腔中哪些 BA 能进入宿主肠细胞和受体以及浓度的速率限制,我们假设确定体内回肠吸收 BA 的速率和途径将能对小鼠肠肝 BA 池的生理形式和功能产生新的认识:我们使用体外质谱法对野生型小鼠和缺乏回肠BA转运体Asbt/Slc10a2的笼养小鼠肠腔和肠系膜上静脉中的88种BA和代谢物进行了定量分析:利用这些数据,我们计算出空腹的 C57BL/6J 雌性小鼠通过回肠组织循环的 BAs 池(即 "回肠 BA 池")为 ∼0.3 μmoles/g。Asbt介导的转运占到该库的80%,并扩大了其规模。被动渗透解释了剩余的 20%,并产生了多样性。与野生型小鼠相比,Asbt缺陷小鼠的回肠BA池小5倍,富含二级BA物种和通常在结肠中发现的代谢产物,并且在加入体内外培养的回肠外植体后会引起独特的转录反应:这项研究确定了小鼠肠肝 BA 库的定量特征,揭示了 BA 代谢异常如何直接影响宿主肠道生理。
{"title":"Quantifying Forms and Functions of Enterohepatic Bile Acid Pools in Mice","authors":"","doi":"10.1016/j.jcmgh.2024.101392","DOIUrl":"10.1016/j.jcmgh.2024.101392","url":null,"abstract":"<div><h3>Backgrounds &amp; Aims</h3><div>Bile acids (BAs) are core gastrointestinal metabolites with dual functions in lipid absorption and cell signaling. BAs circulate between the liver and distal small intestine (<em>i.e.</em>, ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with host intestinal cells <em>in vivo</em> remain poorly understood. Because ileal absorption is rate-limiting in determining which BAs in the intestinal lumen gain access to host intestinal cells and receptors, and at what concentrations, we hypothesized that defining the rates and routes of ileal BA absorption <em>in vivo</em> would yield novel insights into the physiological forms and functions of mouse enterohepatic BA pools.</div></div><div><h3>Methods</h3><div>Using <em>ex vivo</em> mass spectrometry, we quantified 88 BA species and metabolites in the intestinal lumen and superior mesenteric vein of individual wild-type mice, and cage-mates lacking the ileal BA transporter, Asbt/<em>Slc10a2</em>.</div></div><div><h3>Results</h3><div>Using these data, we calculated that the pool of BAs circulating through ileal tissue (<em>i.e.</em>, the ileal BA pool) in fasting C57BL/6J female mice is ∼0.3 μmol/g. Asbt-mediated transport accounted for ∼80% of this pool and amplified size. Passive permeability explained the remaining ∼20% and generated diversity. Compared with wild-type mice, the ileal BA pool in Asbt-deficient mice was ∼5-fold smaller, enriched in secondary BA species and metabolites normally found in the colon, and elicited unique transcriptional responses on addition to <em>ex</em> <em>vivo</em>–cultured ileal explants.</div></div><div><h3>Conclusions</h3><div>This study defines quantitative traits of the mouse enterohepatic BA pool and reveals how aberrant BA metabolism can impinge directly on host intestinal physiology.</div></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysophosphatidic Acid Signaling in the Gastrointestinal System 消化系统中的溶血磷脂酸信号传导。
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-01-01 DOI: 10.1016/j.jcmgh.2024.101398
The intestinal epithelium undergoes continuous homeostatic renewal to conduct the digestion and absorption of nutrients. At the same time, the intestinal epithelial barrier separates the host from the intestinal lumen, preventing systemic infection from enteric pathogens. To maintain homeostasis and epithelial functionality, stem cells, which reside in the base of intestinal crypts, generate progenitor cells that ultimately differentiate to produce an array of secretory and absorptive cells. Intestinal regeneration is regulated by niche signaling pathways, specifically, Wnt, bone morphogenetic protein, Notch, and epidermal growth factor. In addition, growth factors and other peptides have emerged as potential modulators of intestinal repair and inflammation through their roles in cellular proliferation, differentiation, migration, and survival. Lysophosphatidic acid (LPA) is such a factor that modulates the proliferation, survival, and migration of epithelial cells while also regulating trafficking of immune cells, both of which are important for tissue homeostasis. Perturbation of LPA signaling, however, has been shown to promote cancer and inflammation. This review focuses on the recent advances in LPA-mediated signaling that contribute to physiological and pathophysiological regulation of the gastrointestinal system.
肠道上皮不断进行平衡更新,以进行营养物质的消化和吸收。同时,肠上皮屏障将宿主与肠腔隔开,防止肠道病原体的全身感染。为了维持体内平衡和上皮功能,存在于肠隐窝底部的干细胞产生祖细胞,最终分化产生一系列分泌和吸收细胞。肠道再生受生态位信号通路调控,特别是 Wnt、骨形态发生蛋白、Notch 和表皮生长因子(EGF)。此外,生长因子和其他肽通过在细胞增殖、分化、迁移和存活中发挥作用,已成为肠道修复和炎症的潜在调节剂。溶血磷脂酸(LPA)就是这样一种因子,它能调节上皮细胞的增殖、存活和迁移,同时还能调节免疫细胞的迁移,这两者对组织的稳态都很重要。然而,LPA 信号的干扰已被证明会促进癌症和炎症。本综述将重点介绍 LPA 介导的信号传导的最新进展,这些信号传导有助于消化系统的生理和病理生理调节。
{"title":"Lysophosphatidic Acid Signaling in the Gastrointestinal System","authors":"","doi":"10.1016/j.jcmgh.2024.101398","DOIUrl":"10.1016/j.jcmgh.2024.101398","url":null,"abstract":"<div><div>The intestinal epithelium undergoes continuous homeostatic renewal to conduct the digestion and absorption of nutrients. At the same time, the intestinal epithelial barrier separates the host from the intestinal lumen, preventing systemic infection from enteric pathogens. To maintain homeostasis and epithelial functionality, stem cells, which reside in the base of intestinal crypts, generate progenitor cells that ultimately differentiate to produce an array of secretory and absorptive cells. Intestinal regeneration is regulated by niche signaling pathways, specifically, Wnt, bone morphogenetic protein, Notch, and epidermal growth factor. In addition, growth factors and other peptides have emerged as potential modulators of intestinal repair and inflammation through their roles in cellular proliferation, differentiation, migration, and survival. Lysophosphatidic acid (LPA) is such a factor that modulates the proliferation, survival, and migration of epithelial cells while also regulating trafficking of immune cells, both of which are important for tissue homeostasis. Perturbation of LPA signaling, however, has been shown to promote cancer and inflammation. This review focuses on the recent advances in LPA-mediated signaling that contribute to physiological and pathophysiological regulation of the gastrointestinal system.</div></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Structure-function Analysis of Hepatocyte Arginase 2 Reveals Mitochondrial Ureahydrolysis as a Determinant of Glucose Oxidation 肝细胞精氨酸酶 2 的结构功能分析揭示线粒体尿水解是葡萄糖氧化的决定因素
IF 7.2 1区 医学 Q1 Medicine Pub Date : 2024-01-01 DOI: 10.1016/j.jcmgh.2024.01.016
Yiming Zhang , Jiameng Sun , Henry D. Wasserman , Joshua A. Adams , Cassandra B. Higgins , Shannon C. Kelly , Louise Lantier , Brian J. DeBosch

Background & Aims

Restoring hepatic and peripheral insulin sensitivity is critical to prevent or reverse metabolic syndrome and type 2 diabetes. Glucose homeostasis comprises in part the complex regulation of hepatic glucose production and insulin-mediated glucose uptake and oxidation in peripheral tissues. We previously identified hepatocyte arginase 2 (Arg2) as an inducible ureahydrolase that improves glucose homeostasis and enhances glucose oxidation in multiple obese, insulin-resistant models. We therefore examined structure-function determinants through which hepatocyte Arg2 governs systemic insulin action and glucose oxidation.

Methods

To do this, we generated mice expressing wild-type murine Arg2, enzymatically inactive Arg2 (Arg2H160F) and Arg2 lacking its putative mitochondrial targeting sequence (Arg2Δ1-22). We expressed these hepatocyte-specific constructs in obese, diabetic (db/db) mice and performed genetic complementation analyses in hepatocyte-specific Arg2-deficent (Arg2LKO) mice.

Results

We show that Arg2 attenuates hepatic steatosis, independent of mitochondrial localization or ureahydrolase activity, and that enzymatic arginase activity is dispensable for Arg2 to augment total body energy expenditure. In contrast, mitochondrial localization and ureahydrolase activity were required for Arg2-mediated reductions in fasting glucose and insulin resistance indices. Mechanistically, Arg2Δ1-22 and Arg2H160F failed to suppress glucose appearance during hyperinsulinemic-euglycemic clamping. Quantification of heavy-isotope-labeled glucose oxidation further revealed that mistargeting or ablating Arg2 enzymatic function abrogates Arg2-induced peripheral glucose oxidation.

Conclusion

We conclude that the metabolic effects of Arg2 extend beyond its enzymatic activity, yet hepatocyte mitochondrial ureahydrolysis drives hepatic and peripheral oxidative metabolism. The data define a structure-based mechanism mediating hepatocyte Arg2 function and nominate hepatocyte mitochondrial ureahydrolysis as a key determinant of glucose oxidative capacity in mammals.

恢复肝脏和外周胰岛素敏感性对于预防或逆转代谢综合征和 2 型糖尿病至关重要。葡萄糖稳态部分是由肝脏葡萄糖生成和外周组织中胰岛素介导的葡萄糖摄取和氧化的复杂调节组成的。我们之前发现肝细胞精氨酸酶 2(Arg2)是一种诱导性尿水解酶,它能改善多种肥胖、胰岛素抵抗模型的葡萄糖稳态并增强葡萄糖氧化。因此,我们研究了肝细胞 Arg2 影响全身胰岛素作用和葡萄糖氧化的结构-功能决定因素。为此,我们培育了表达野生型小鼠 Arg2、无酶活性 Arg2(Arg2H160F)和缺乏线粒体靶向序列(Arg2Δ1-22)的 Arg2 小鼠。我们在肥胖、糖尿病(db/db)小鼠体内表达了这些肝细胞特异性构建体,并在肝细胞特异性 Arg2 缺失(Arg2LKO)小鼠体内进行了基因互补分析。我们的研究表明,Arg2 可减轻肝脏脂肪变性,与线粒体定位或尿水解酶活性无关。相反,线粒体定位和尿水解酶活性是 Arg2 介导降低空腹血糖和胰岛素抵抗指数的必要条件。从机理上讲,Arg2Δ1-22 和 Arg2H160F 无法抑制高胰岛素血糖箝位时的葡萄糖显现。重同位素标记的葡萄糖氧化定量进一步显示,错误靶向或消减 Arg2 酶的功能会减弱 Arg2 诱导的外周葡萄糖氧化。我们的结论是,Arg2 的代谢作用超出了其酶活性,但肝细胞线粒体尿水解驱动肝脏和外周氧化代谢。这些数据确定了一种基于结构的肝细胞 Arg2 功能介导机制,并指出肝细胞线粒体尿水解是哺乳动物葡萄糖氧化能力的关键决定因素。
{"title":"A Structure-function Analysis of Hepatocyte Arginase 2 Reveals Mitochondrial Ureahydrolysis as a Determinant of Glucose Oxidation","authors":"Yiming Zhang ,&nbsp;Jiameng Sun ,&nbsp;Henry D. Wasserman ,&nbsp;Joshua A. Adams ,&nbsp;Cassandra B. Higgins ,&nbsp;Shannon C. Kelly ,&nbsp;Louise Lantier ,&nbsp;Brian J. DeBosch","doi":"10.1016/j.jcmgh.2024.01.016","DOIUrl":"10.1016/j.jcmgh.2024.01.016","url":null,"abstract":"<div><h3>Background &amp; Aims</h3><p>Restoring hepatic and peripheral insulin sensitivity is critical to prevent or reverse metabolic syndrome and type 2 diabetes. Glucose homeostasis comprises in part the complex regulation of hepatic glucose production and insulin-mediated glucose uptake and oxidation in peripheral tissues. We previously identified hepatocyte arginase 2 (Arg2) as an inducible ureahydrolase that improves glucose homeostasis and enhances glucose oxidation in multiple obese, insulin-resistant models. We therefore examined structure-function determinants through which hepatocyte Arg2 governs systemic insulin action and glucose oxidation.</p></div><div><h3>Methods</h3><p>To do this, we generated mice expressing wild-type murine Arg2, enzymatically inactive Arg2 (Arg2<sup>H160F</sup>) and Arg2 lacking its putative mitochondrial targeting sequence (Arg2<sup>Δ1-22</sup>). We expressed these hepatocyte-specific constructs in obese, diabetic (<em>db/db</em>) mice and performed genetic complementation analyses in hepatocyte-specific Arg2-deficent (Arg2<sup>LKO</sup>) mice.</p></div><div><h3>Results</h3><p>We show that Arg2 attenuates hepatic steatosis, independent of mitochondrial localization or ureahydrolase activity, and that enzymatic arginase activity is dispensable for Arg2 to augment total body energy expenditure. In contrast, mitochondrial localization and ureahydrolase activity were required for Arg2-mediated reductions in fasting glucose and insulin resistance indices. Mechanistically, Arg2<sup>Δ1-22</sup> and Arg2<sup>H160F</sup> failed to suppress glucose appearance during hyperinsulinemic-euglycemic clamping. Quantification of heavy-isotope-labeled glucose oxidation further revealed that mistargeting or ablating Arg2 enzymatic function abrogates Arg2-induced peripheral glucose oxidation.</p></div><div><h3>Conclusion</h3><p>We conclude that the metabolic effects of Arg2 extend beyond its enzymatic activity, yet hepatocyte mitochondrial ureahydrolysis drives hepatic and peripheral oxidative metabolism. The data define a structure-based mechanism mediating hepatocyte Arg2 function and nominate hepatocyte mitochondrial ureahydrolysis as a key determinant of glucose oxidative capacity in mammals.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000158/pdfft?md5=0fd591e61735c79bae9adb664cc7aec3&pid=1-s2.0-S2352345X24000158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular and Molecular Gastroenterology and Hepatology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1