Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.01.013
Subinuer Abudukelimu , Noel F.C.C. de Miranda , Lukas J.A.C. Hawinkels
Cancer-associated fibroblasts (CAFs) are an abundant component of the tumor microenvironment and have been shown to possess critical functions in tumor progression. Although their roles predominantly have been described as tumor-promoting, more recent findings have identified subsets of CAFs with tumor-restraining functions. Accumulating evidence underscores large heterogeneity in fibroblast subsets in which distinct subsets differentially impact the initiation, progression, and metastasis of colorectal cancer. In this review, we summarize and discuss the evolving role of CAFs in colorectal cancer, highlighting the ongoing controversies regarding their distinct origins and multifaceted functions. In addition, we explore how CAFs can confer resistance to current therapies and the challenges of developing effective CAF-directed therapies. Taken together, we believe that, in this rapidly evolving field, it is crucial first to understand CAF dynamics comprehensively, and to bridge existing knowledge gaps regarding CAF heterogeneity and plasticity before further exploring the clinical targeting of CAFs.
{"title":"Fibroblasts in Orchestrating Colorectal Tumorigenesis and Progression","authors":"Subinuer Abudukelimu , Noel F.C.C. de Miranda , Lukas J.A.C. Hawinkels","doi":"10.1016/j.jcmgh.2024.01.013","DOIUrl":"10.1016/j.jcmgh.2024.01.013","url":null,"abstract":"<div><p>Cancer-associated fibroblasts (CAFs) are an abundant component of the tumor microenvironment and have been shown to possess critical functions in tumor progression. Although their roles predominantly have been described as tumor-promoting, more recent findings have identified subsets of CAFs with tumor-restraining functions. Accumulating evidence underscores large heterogeneity in fibroblast subsets in which distinct subsets differentially impact the initiation, progression, and metastasis of colorectal cancer. In this review, we summarize and discuss the evolving role of CAFs in colorectal cancer, highlighting the ongoing controversies regarding their distinct origins and multifaceted functions. In addition, we explore how CAFs can confer resistance to current therapies and the challenges of developing effective CAF-directed therapies. Taken together, we believe that, in this rapidly evolving field, it is crucial first to understand CAF dynamics comprehensively, and to bridge existing knowledge gaps regarding CAF heterogeneity and plasticity before further exploring the clinical targeting of CAFs.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"17 5","pages":"Pages 821-826"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000134/pdfft?md5=c5b9bf3bb91618ff2771c0ab88d93c54&pid=1-s2.0-S2352345X24000134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139669121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2023.11.008
Stella G. Hoft, Richard J. DiPaolo
{"title":"BRD4 Empowers Macrophages to Fight Helicobacter pylori","authors":"Stella G. Hoft, Richard J. DiPaolo","doi":"10.1016/j.jcmgh.2023.11.008","DOIUrl":"10.1016/j.jcmgh.2023.11.008","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"17 2","pages":"Pages 313-314"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X23002035/pdfft?md5=e4c2ea915cc71ef21f21ade2312ea238&pid=1-s2.0-S2352345X23002035-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138453204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.101398
C. Chris Yun , Yiran Han , Beth McConnell
The intestinal epithelium undergoes continuous homeostatic renewal to conduct the digestion and absorption of nutrients. At the same time, the intestinal epithelial barrier separates the host from the intestinal lumen, preventing systemic infection from enteric pathogens. To maintain homeostasis and epithelial functionality, stem cells, which reside in the base of intestinal crypts, generate progenitor cells that ultimately differentiate to produce an array of secretory and absorptive cells. Intestinal regeneration is regulated by niche signaling pathways, specifically, Wnt, bone morphogenetic protein, Notch, and epidermal growth factor. In addition, growth factors and other peptides have emerged as potential modulators of intestinal repair and inflammation through their roles in cellular proliferation, differentiation, migration, and survival. Lysophosphatidic acid (LPA) is such a factor that modulates the proliferation, survival, and migration of epithelial cells while also regulating trafficking of immune cells, both of which are important for tissue homeostasis. Perturbation of LPA signaling, however, has been shown to promote cancer and inflammation. This review focuses on the recent advances in LPA-mediated signaling that contribute to physiological and pathophysiological regulation of the gastrointestinal system.
{"title":"Lysophosphatidic Acid Signaling in the Gastrointestinal System","authors":"C. Chris Yun , Yiran Han , Beth McConnell","doi":"10.1016/j.jcmgh.2024.101398","DOIUrl":"10.1016/j.jcmgh.2024.101398","url":null,"abstract":"<div><div>The intestinal epithelium undergoes continuous homeostatic renewal to conduct the digestion and absorption of nutrients. At the same time, the intestinal epithelial barrier separates the host from the intestinal lumen, preventing systemic infection from enteric pathogens. To maintain homeostasis and epithelial functionality, stem cells, which reside in the base of intestinal crypts, generate progenitor cells that ultimately differentiate to produce an array of secretory and absorptive cells. Intestinal regeneration is regulated by niche signaling pathways, specifically, Wnt, bone morphogenetic protein, Notch, and epidermal growth factor. In addition, growth factors and other peptides have emerged as potential modulators of intestinal repair and inflammation through their roles in cellular proliferation, differentiation, migration, and survival. Lysophosphatidic acid (LPA) is such a factor that modulates the proliferation, survival, and migration of epithelial cells while also regulating trafficking of immune cells, both of which are important for tissue homeostasis. Perturbation of LPA signaling, however, has been shown to promote cancer and inflammation. This review focuses on the recent advances in LPA-mediated signaling that contribute to physiological and pathophysiological regulation of the gastrointestinal system.</div></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 6","pages":"Article 101398"},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.03.013
Peter Verstraelen , Samuel Van Remoortel , Nouchin De Loose , Rosanne Verboven , Gerardo Garcia-Diaz Barriga , Anne Christmann , Manuela Gries , Shingo Bessho , Jing Li , Carmen Guerra , Çagla Tükel , Sales Ibiza Martinez , Karl-Herbert Schäfer , Jean-Pierre Timmermans , Winnok H. De Vos
Background & Aims
Mounting evidence suggests the gastrointestinal microbiome is a determinant of peripheral immunity and central neurodegeneration, but the local disease mechanisms remain unknown. Given its potential relevance for early diagnosis and therapeutic intervention, we set out to map the pathogenic changes induced by bacterial amyloids in the gastrointestinal tract and its enteric nervous system.
Methods
To examine the early response, we challenged primary murine myenteric networks with curli, the prototypical bacterial amyloid, and performed shotgun RNA sequencing and multiplex enzyme-linked immunosorbent assay. Using enteric neurosphere-derived glial and neuronal cell cultures, as well as in vivo curli injections into the colon wall, we further scrutinized curli-induced pathogenic pathways.
Results
Curli induced a proinflammatory response, with strong up-regulation of Saa3 and the secretion of several cytokines. This proinflammatory state was induced primarily in enteric glia, was accompanied by increased levels of DNA damage and replication, and triggered the influx of immune cells in vivo. The addition of recombinant Serum Amyloid A3 (SAA3) was sufficient to recapitulate this specific proinflammatory phenotype while Saa3 knock-out attenuated curli-induced DNA damage and replication. Similar to curli, recombinant SAA3 caused a strong up-regulation of Saa3 transcripts, illustrating its self-amplifying potential . Since colonization of curli-producing Salmonella and dextran sulfate sodium–induced colitis triggered a significant increase in Saa3 transcripts as well, we assume SAA3plays a central role in enteric dysfunction. Inhibition of dual leucine zipper kinase, an upstream regulator of the c-Jun N-terminal kinase pathway responsible for SAA3 production, attenuated curli- and recombinant SAA3-induced Saa3 up-regulation, DNA damage, and replication in enteric glia.
Conclusions
Our results position SAA3 as an important mediator of gastrointestinal vulnerability to bacterial-derived amyloids and demonstrate the potential of dual leucine zipper kinase inhibition to dampen enteric pathology.
{"title":"Serum Amyloid A3 Fuels a Feed-Forward Inflammatory Response to the Bacterial Amyloid Curli in the Enteric Nervous System","authors":"Peter Verstraelen , Samuel Van Remoortel , Nouchin De Loose , Rosanne Verboven , Gerardo Garcia-Diaz Barriga , Anne Christmann , Manuela Gries , Shingo Bessho , Jing Li , Carmen Guerra , Çagla Tükel , Sales Ibiza Martinez , Karl-Herbert Schäfer , Jean-Pierre Timmermans , Winnok H. De Vos","doi":"10.1016/j.jcmgh.2024.03.013","DOIUrl":"10.1016/j.jcmgh.2024.03.013","url":null,"abstract":"<div><h3>Background & Aims</h3><p>Mounting evidence suggests the gastrointestinal microbiome is a determinant of peripheral immunity and central neurodegeneration, but the local disease mechanisms remain unknown. Given its potential relevance for early diagnosis and therapeutic intervention, we set out to map the pathogenic changes induced by bacterial amyloids in the gastrointestinal tract and its enteric nervous system.</p></div><div><h3>Methods</h3><p>To examine the early response, we challenged primary murine myenteric networks with curli, the prototypical bacterial amyloid, and performed shotgun RNA sequencing and multiplex enzyme-linked immunosorbent assay. Using enteric neurosphere-derived glial and neuronal cell cultures, as well as in vivo curli injections into the colon wall, we further scrutinized curli-induced pathogenic pathways.</p></div><div><h3>Results</h3><p>Curli induced a proinflammatory response, with strong up-regulation of <em>Saa3</em> and the secretion of several cytokines. This proinflammatory state was induced primarily in enteric glia, was accompanied by increased levels of DNA damage and replication, and triggered the influx of immune cells <em>in vivo</em>. The addition of recombinant Serum Amyloid A3 (SAA3) was sufficient to recapitulate this specific proinflammatory phenotype while <em>Saa3</em> knock-out attenuated curli-induced DNA damage and replication. Similar to curli, recombinant SAA3 caused a strong up-regulation of <em>Saa3</em> transcripts, illustrating its self-amplifying potential . Since colonization of curli-producing <em>Salmonella</em> and dextran sulfate sodium–induced colitis triggered a significant increase in <em>Saa3</em> transcripts as well, we assume SAA3plays a central role in enteric dysfunction. Inhibition of dual leucine zipper kinase, an upstream regulator of the c-Jun N-terminal kinase pathway responsible for SAA3 production, attenuated curli- and recombinant SAA3-induced <em>Saa3</em> up-regulation, DNA damage, and replication in enteric glia.</p></div><div><h3>Conclusions</h3><p>Our results position SAA3 as an important mediator of gastrointestinal vulnerability to bacterial-derived amyloids and demonstrate the potential of dual leucine zipper kinase inhibition to dampen enteric pathology.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 1","pages":"Pages 89-104"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000687/pdfft?md5=13e90bab07a334e99822608e520cee7f&pid=1-s2.0-S2352345X24000687-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140332314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.03.006
Background & Aims
Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons.
Methods
In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 μg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition.
Results
Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro, compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 μmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2.
Conclusions
Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.
{"title":"Protease-Induced Excitation of Dorsal Root Ganglion Neurons in Response to Acute Perturbation of the Gut Microbiota Is Associated With Visceral and Somatic Hypersensitivity","authors":"","doi":"10.1016/j.jcmgh.2024.03.006","DOIUrl":"10.1016/j.jcmgh.2024.03.006","url":null,"abstract":"<div><h3>Background & Aims</h3><p>Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons.</p></div><div><h3>Methods</h3><p>In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 μg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition.</p></div><div><h3>Results</h3><p>Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro<em>,</em> compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 μmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2.</p></div><div><h3>Conclusions</h3><p>Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 4","pages":"Article 101334"},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000584/pdfft?md5=8c9b95d3dd80a13cc657418d06757cec&pid=1-s2.0-S2352345X24000584-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2023.11.011
Vik Meadows, Nan Gao
{"title":"New Kids on the Block: Immature Myeloid Cells in Intestinal Regeneration","authors":"Vik Meadows, Nan Gao","doi":"10.1016/j.jcmgh.2023.11.011","DOIUrl":"10.1016/j.jcmgh.2023.11.011","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"17 3","pages":"Pages 499-500"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X23002102/pdfft?md5=f7d26cf6ee70c0529d9c935b865c694e&pid=1-s2.0-S2352345X23002102-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2023.12.004
Zi Yi Wang , Rui Xiang Chen , Ji Fei Wang, Shuo Chen Liu, Xiao Xu, Tao Zhou, Yan An Lan Chen, Yao Dong Zhang, Xiang Cheng Li, Chang Xian Li
Background & Aims
Apolipoprotein A-1 (ApoA-1), the main apolipoprotein of high-density lipoprotein, has been well studied in the area of lipid metabolism and cardiovascular diseases. In this project, we clarify the function and mechanism of ApoA-1 in liver regeneration.
Methods
Seventy percent of partial hepatectomy was applied in male ApoA-1 knockout mice and wild-type mice to investigate the effects of ApoA-1 on liver regeneration. D-4F (ApoA-1 mimetic peptide), autophagy activator, and AMPK activator were used to explore the mechanism of ApoA-1 on liver regeneration.
Results
We demonstrated that ApoA-1 levels were highly expressed during the early stage of liver regeneration. ApoA-1 deficiency greatly impaired liver regeneration after hepatectomy. Meanwhile, we found that ApoA-1 deficiency inhibited autophagy during liver regeneration. The activation of autophagy protected against ApoA-1 deficiency in inhibiting liver regeneration. Furthermore, ApoA-1 deficiency impaired autophagy through AMPK-ULK1 pathway, and AMPK activation significantly improved liver regeneration. The administration of D-4F could accelerated liver regeneration after hepatectomy.
Conclusions
These findings suggested that ApoA-1 played an essential role in liver regeneration through promoting autophagy in hepatocytes via AMPK-ULK1 pathway. Our findings enrich the understanding of the underlying mechanism of liver regeneration and provide a potential therapeutic strategy for liver injury.
{"title":"Apolipoprotein A-1 Accelerated Liver Regeneration Through Regulating Autophagy Via AMPK-ULK1 Pathway","authors":"Zi Yi Wang , Rui Xiang Chen , Ji Fei Wang, Shuo Chen Liu, Xiao Xu, Tao Zhou, Yan An Lan Chen, Yao Dong Zhang, Xiang Cheng Li, Chang Xian Li","doi":"10.1016/j.jcmgh.2023.12.004","DOIUrl":"10.1016/j.jcmgh.2023.12.004","url":null,"abstract":"<div><h3>Background & Aims</h3><p>Apolipoprotein A-1 (ApoA-1), the main apolipoprotein of high-density lipoprotein, has been well studied in the area of lipid metabolism and cardiovascular diseases. In this project, we clarify the function and mechanism of ApoA-1 in liver regeneration.</p></div><div><h3>Methods</h3><p>Seventy percent of partial hepatectomy was applied in male ApoA-1 knockout mice and wild-type mice to investigate the effects of ApoA-1 on liver regeneration. D-4F (ApoA-1 mimetic peptide), autophagy activator, and AMPK activator were used to explore the mechanism of ApoA-1 on liver regeneration.</p></div><div><h3>Results</h3><p>We demonstrated that ApoA-1 levels were highly expressed during the early stage of liver regeneration. ApoA-1 deficiency greatly impaired liver regeneration after hepatectomy. Meanwhile, we found that ApoA-1 deficiency inhibited autophagy during liver regeneration. The activation of autophagy protected against ApoA-1 deficiency in inhibiting liver regeneration. Furthermore, ApoA-1 deficiency impaired autophagy through AMPK-ULK1 pathway, and AMPK activation significantly improved liver regeneration. The administration of D-4F could accelerated liver regeneration after hepatectomy.</p></div><div><h3>Conclusions</h3><p>These findings suggested that ApoA-1 played an essential role in liver regeneration through promoting autophagy in hepatocytes via AMPK-ULK1 pathway. Our findings enrich the understanding of the underlying mechanism of liver regeneration and provide a potential therapeutic strategy for liver injury.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"17 4","pages":"Pages 539-551"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X23002175/pdfft?md5=093ec20b1fc8839a746c04f68c8d4394&pid=1-s2.0-S2352345X23002175-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.01.001
Mirco Glitscher, Inga Mareike Spannaus, Fabiane Behr, Robin Oliver Murra, Kathrin Woytinek, Daniela Bender, Eberhard Hildt
Background
A peculiar feature of the hepatitis E virus (HEV) is its reliance on the exosomal route for viral release. Genomic replication is mediated via the viral polyprotein pORF1, yet little is known about its subcellular localization.
Methods
Subcellular localization of pORF1 and its subdomains, generated and cloned based on a structural prediciton of the viral replicase, was analyzed via confocal laser scanning microscopy. Exosomes released from cells were isolated via ultracentrifugation and analyzed by isopycnic density gradient centrifugation. This was followed by fluorimetry or Western blot analyses or reverse transcriptase–polymerase chain reaction to analyze separated particles in more detail.
Results
We found pORF1 to be accumulating within the endosomal system, most dominantly to multivesicular bodies (MVBs). Expression of the polyprotein’s 7 subdomains revealed that the papain-like cysteine-protease (PCP) is the only domain localizing like the full-length protein. A PCP-deficient pORF1 mutant lost its association to MVBs. Strikingly, both pORF1 and PCP can be released via exosomes. Similarly, genomic RNA still is released via exosomes in the absence of pORF2/3.
Conclusions
Taken together, we found that pORF1 localizes to MVBs in a PCP-dependent manner, which is followed by exosomal release. This reveals new aspects of HEV life cycle, because replication and release could be coupled at the endosomal interface. In addition, this may mediate capsid-independent spread or may facilitate the spread of viral infection, because genomes entering the cell during de novo infection readily encounter exosomally transferred pORF1.
{"title":"The Protease Domain in HEV pORF1 Mediates the Replicase’s Localization to Multivesicular Bodies and Its Exosomal Release","authors":"Mirco Glitscher, Inga Mareike Spannaus, Fabiane Behr, Robin Oliver Murra, Kathrin Woytinek, Daniela Bender, Eberhard Hildt","doi":"10.1016/j.jcmgh.2024.01.001","DOIUrl":"10.1016/j.jcmgh.2024.01.001","url":null,"abstract":"<div><h3>Background</h3><p>A peculiar feature of the hepatitis E virus (HEV) is its reliance on the exosomal route for viral release. Genomic replication is mediated via the viral polyprotein pORF1, yet little is known about its subcellular localization.</p></div><div><h3>Methods</h3><p>Subcellular localization of pORF1 and its subdomains, generated and cloned based on a structural prediciton of the viral replicase, was analyzed via confocal laser scanning microscopy. Exosomes released from cells were isolated via ultracentrifugation and analyzed by isopycnic density gradient centrifugation. This was followed by fluorimetry or Western blot analyses or reverse transcriptase–polymerase chain reaction to analyze separated particles in more detail.</p></div><div><h3>Results</h3><p>We found pORF1 to be accumulating within the endosomal system, most dominantly to multivesicular bodies (MVBs). Expression of the polyprotein’s 7 subdomains revealed that the papain-like cysteine-protease (PCP) is the only domain localizing like the full-length protein. A PCP-deficient pORF1 mutant lost its association to MVBs. Strikingly, both pORF1 and PCP can be released via exosomes. Similarly, genomic RNA still is released via exosomes in the absence of pORF2/3.</p></div><div><h3>Conclusions</h3><p>Taken together, we found that pORF1 localizes to MVBs in a PCP-dependent manner, which is followed by exosomal release. This reveals new aspects of HEV life cycle, because replication and release could be coupled at the endosomal interface. In addition, this may mediate capsid-independent spread or may facilitate the spread of viral infection, because genomes entering the cell during de novo infection readily encounter exosomally transferred pORF1.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"17 4","pages":"Pages 589-605"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000018/pdfft?md5=7472c1e2654f8f451df01ffc51d5e0ee&pid=1-s2.0-S2352345X24000018-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.03.014
Lindsey Kennedy
{"title":"Fibroblast Growth Factor 19 in Alcohol-Associated Liver Disease: Bile Acids and Dysbiosis and Inflammation, Oh My!","authors":"Lindsey Kennedy","doi":"10.1016/j.jcmgh.2024.03.014","DOIUrl":"10.1016/j.jcmgh.2024.03.014","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 1","pages":"Pages 159-160"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000699/pdfft?md5=edd68269c1caa81d05bfc67d73175250&pid=1-s2.0-S2352345X24000699-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140797544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}