Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.04.009
Dechun Feng , Seonghwan Hwang , Adrien Guillot , Yang Wang , Yukun Guan , Cheng Chen , Luca Maccioni , Bin Gao
Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.
{"title":"Inflammation in Alcohol-Associated Hepatitis: Pathogenesis and Therapeutic Targets","authors":"Dechun Feng , Seonghwan Hwang , Adrien Guillot , Yang Wang , Yukun Guan , Cheng Chen , Luca Maccioni , Bin Gao","doi":"10.1016/j.jcmgh.2024.04.009","DOIUrl":"10.1016/j.jcmgh.2024.04.009","url":null,"abstract":"<div><p>Alcohol-associated hepatitis (AH) is an acute-on-chronic liver injury that occurs in patients with chronic alcohol-associated liver disease (ALD). Patients with severe AH have high short-term mortality and lack effective pharmacologic therapies. Inflammation is believed to be one of the key factors promoting AH progression and has been actively investigated as therapeutic targets over the last several decades, but no effective inflammatory targets have been identified so far. In this review, we discuss how inflammatory cells and the inflammatory mediators produced by these cells contribute to the development and progression of AH, with focus on neutrophils and macrophages. The crosstalk between inflammatory cells and liver nonparenchymal cells in the pathogenesis of AH is elaborated. We also deliberate the application of recent cutting-edge technologies in characterizing liver inflammation in AH. Finally, the potential therapeutic targets of inflammatory mediators for AH are briefly summarized.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 3","pages":"Article 101352"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24001061/pdfft?md5=ac58214335ea3ec42413d467c16df3bd&pid=1-s2.0-S2352345X24001061-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/S2352-345X(24)00128-0
{"title":"Introducing Article Numbering to Cellular and Molecular Gastroenterology and Hepatology","authors":"","doi":"10.1016/S2352-345X(24)00128-0","DOIUrl":"10.1016/S2352-345X(24)00128-0","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 2","pages":"Article 101373"},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24001280/pdfft?md5=73473c812c56b99a8ef4dbc7c0028904&pid=1-s2.0-S2352345X24001280-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.101380
Shehnaz Bano , Matthew A. Copeland , John W. Stoops , Anne Orr , Siddhi Jain , Shirish Paranjpe , Raja Gopal Reddy Mooli , Sadeesh K. Ramakrishnan , Joseph Locker , Wendy M. Mars , George K. Michalopoulos , Bharat Bhushan
Background & Aims
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disorder, with no approved treatment. Our previous work demonstrated the efficacy of a pan-ErbB inhibitor, Canertinib, in reducing steatosis and fibrosis in a murine fast-food diet (FFD) model of MASLD. The current study explores the effects of hepatocyte-specific ErbB1 (ie, epidermal growth factor receptor [EGFR]) deletion in the FFD model.
Methods
EGFRflox/flox mice, treated with AAV8-TBG-CRE to delete EGFR specifically in hepatocytes (EGFR-KO), were fed either a chow-diet or FFD for 2 or 5 months.
Results
Hepatocyte-specific EGFR deletion reduced serum triglyceride levels but did not prevent steatosis. Surprisingly, hepatic fibrosis was increased in EGFR-KO mice in the long-term study, which correlated with activation of transforming growth factor-β/fibrosis signaling pathways. Further, nuclear levels of some of the major MASLD regulating transcription factors (SREBP1, PPARγ, PPARα, and HNF4α) were altered in FFD-fed EGFR-KO mice. Transcriptomic analysis revealed significant alteration of lipid metabolism pathways in EGFR-KO mice with changes in several relevant genes, including downregulation of fatty-acid synthase and induction of lipolysis gene, Pnpla2, without impacting overall steatosis. Interestingly, EGFR downstream signaling mediators, including AKT, remain activated in EGFR-KO mice, which correlated with increased activity pattern of other receptor tyrosine kinases, including ErbB3/MET, in transcriptomic analysis. Lastly, Canertinib treatment in EGFR-KO mice, which inhibits all ErbB receptors, successfully reduced steatosis, suggesting the compensatory roles of other ErbB receptors in supporting MASLD without EGFR.
Conclusions
Hepatocyte-specific EGFR-KO did not impact steatosis, but enhanced fibrosis in the FFD model of MASLD. Gene networks associated with lipid metabolism were greatly altered in EGFR-KO, but phenotypic effects might be compensated by alternate signaling pathways.
{"title":"Hepatocyte-specific Epidermal Growth Factor Receptor Deletion Promotes Fibrosis but has no Effect on Steatosis in Fast-food Diet Model of Metabolic Dysfunction-associated Steatotic Liver Disease","authors":"Shehnaz Bano , Matthew A. Copeland , John W. Stoops , Anne Orr , Siddhi Jain , Shirish Paranjpe , Raja Gopal Reddy Mooli , Sadeesh K. Ramakrishnan , Joseph Locker , Wendy M. Mars , George K. Michalopoulos , Bharat Bhushan","doi":"10.1016/j.jcmgh.2024.101380","DOIUrl":"10.1016/j.jcmgh.2024.101380","url":null,"abstract":"<div><h3>Background & Aims</h3><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disorder, with no approved treatment. Our previous work demonstrated the efficacy of a pan-ErbB inhibitor, Canertinib, in reducing steatosis and fibrosis in a murine fast-food diet (FFD) model of MASLD. The current study explores the effects of hepatocyte-specific ErbB1 (ie, epidermal growth factor receptor [EGFR]) deletion in the FFD model.</p></div><div><h3>Methods</h3><p>EGFR<sup>flox/flox</sup> mice, treated with AAV8-TBG-CRE to delete EGFR specifically in hepatocytes (EGFR-KO), were fed either a chow-diet or FFD for 2 or 5 months.</p></div><div><h3>Results</h3><p>Hepatocyte-specific EGFR deletion reduced serum triglyceride levels but did not prevent steatosis. Surprisingly, hepatic fibrosis was increased in EGFR-KO mice in the long-term study, which correlated with activation of transforming growth factor-β/fibrosis signaling pathways. Further, nuclear levels of some of the major MASLD regulating transcription factors (SREBP1, PPARγ, PPARα, and HNF4α) were altered in FFD-fed EGFR-KO mice. Transcriptomic analysis revealed significant alteration of lipid metabolism pathways in EGFR-KO mice with changes in several relevant genes, including downregulation of fatty-acid synthase and induction of lipolysis gene, <em>Pnpla2</em>, without impacting overall steatosis. Interestingly, EGFR downstream signaling mediators, including AKT, remain activated in EGFR-KO mice, which correlated with increased activity pattern of other receptor tyrosine kinases, including ErbB3/MET, in transcriptomic analysis. Lastly, Canertinib treatment in EGFR-KO mice, which inhibits all ErbB receptors, successfully reduced steatosis, suggesting the compensatory roles of other ErbB receptors in supporting MASLD without EGFR.</p></div><div><h3>Conclusions</h3><p>Hepatocyte-specific EGFR-KO did not impact steatosis, but enhanced fibrosis in the FFD model of MASLD. Gene networks associated with lipid metabolism were greatly altered in EGFR-KO, but phenotypic effects might be compensated by alternate signaling pathways.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 4","pages":"Article 101380"},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24001358/pdfft?md5=e6751e746ab547c91ca49e7232a91af4&pid=1-s2.0-S2352345X24001358-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/S2352-345X(24)00140-1
{"title":"Cover","authors":"","doi":"10.1016/S2352-345X(24)00140-1","DOIUrl":"10.1016/S2352-345X(24)00140-1","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 3","pages":"Article 101385"},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24001401/pdfft?md5=d160c5f1dc6e5bd0541edd6f016a7fd4&pid=1-s2.0-S2352345X24001401-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.101392
Koichi Sudo , Amber Delmas-Eliason , Shannon Soucy , Kaitlyn E. Barrack , Jiabao Liu , Akshaya Balasubramanian , Chengyi Jenny Shu , Michael J. James , Courtney L. Hegner , Henry D. Dionne , Alex Rodriguez-Palacios , Henry M. Krause , George A. O’Toole , Saul J. Karpen , Paul A. Dawson , Daniel Schultz , Mark S. Sundrud
Backgrounds & Aims
Bile acids (BAs) are core gastrointestinal metabolites with dual functions in lipid absorption and cell signaling. BAs circulate between the liver and distal small intestine (i.e., ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with host intestinal cells in vivo remain poorly understood. Because ileal absorption is rate-limiting in determining which BAs in the intestinal lumen gain access to host intestinal cells and receptors, and at what concentrations, we hypothesized that defining the rates and routes of ileal BA absorption in vivo would yield novel insights into the physiological forms and functions of mouse enterohepatic BA pools.
Methods
Using ex vivo mass spectrometry, we quantified 88 BA species and metabolites in the intestinal lumen and superior mesenteric vein of individual wild-type mice, and cage-mates lacking the ileal BA transporter, Asbt/Slc10a2.
Results
Using these data, we calculated that the pool of BAs circulating through ileal tissue (i.e., the ileal BA pool) in fasting C57BL/6J female mice is ∼0.3 μmol/g. Asbt-mediated transport accounted for ∼80% of this pool and amplified size. Passive permeability explained the remaining ∼20% and generated diversity. Compared with wild-type mice, the ileal BA pool in Asbt-deficient mice was ∼5-fold smaller, enriched in secondary BA species and metabolites normally found in the colon, and elicited unique transcriptional responses on addition to exvivo–cultured ileal explants.
Conclusions
This study defines quantitative traits of the mouse enterohepatic BA pool and reveals how aberrant BA metabolism can impinge directly on host intestinal physiology.
背景与目的:胆汁酸(BA)是胃肠道的核心代谢产物,具有脂质吸收和细胞信号传导的双重功能。胆汁酸在肝脏和远端小肠(即回肠)之间循环,但复杂的胆汁酸池在回肠被吸收并在体内与宿主肠道细胞相互作用的动态过程仍鲜为人知。由于回肠吸收是决定肠腔中哪些 BA 能进入宿主肠细胞和受体以及浓度的速率限制,我们假设确定体内回肠吸收 BA 的速率和途径将能对小鼠肠肝 BA 池的生理形式和功能产生新的认识:我们使用体外质谱法对野生型小鼠和缺乏回肠BA转运体Asbt/Slc10a2的笼养小鼠肠腔和肠系膜上静脉中的88种BA和代谢物进行了定量分析:利用这些数据,我们计算出空腹的 C57BL/6J 雌性小鼠通过回肠组织循环的 BAs 池(即 "回肠 BA 池")为 ∼0.3 μmoles/g。Asbt介导的转运占到该库的80%,并扩大了其规模。被动渗透解释了剩余的 20%,并产生了多样性。与野生型小鼠相比,Asbt缺陷小鼠的回肠BA池小5倍,富含二级BA物种和通常在结肠中发现的代谢产物,并且在加入体内外培养的回肠外植体后会引起独特的转录反应:这项研究确定了小鼠肠肝 BA 库的定量特征,揭示了 BA 代谢异常如何直接影响宿主肠道生理。
{"title":"Quantifying Forms and Functions of Enterohepatic Bile Acid Pools in Mice","authors":"Koichi Sudo , Amber Delmas-Eliason , Shannon Soucy , Kaitlyn E. Barrack , Jiabao Liu , Akshaya Balasubramanian , Chengyi Jenny Shu , Michael J. James , Courtney L. Hegner , Henry D. Dionne , Alex Rodriguez-Palacios , Henry M. Krause , George A. O’Toole , Saul J. Karpen , Paul A. Dawson , Daniel Schultz , Mark S. Sundrud","doi":"10.1016/j.jcmgh.2024.101392","DOIUrl":"10.1016/j.jcmgh.2024.101392","url":null,"abstract":"<div><h3>Backgrounds & Aims</h3><div>Bile acids (BAs) are core gastrointestinal metabolites with dual functions in lipid absorption and cell signaling. BAs circulate between the liver and distal small intestine (<em>i.e.</em>, ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with host intestinal cells <em>in vivo</em> remain poorly understood. Because ileal absorption is rate-limiting in determining which BAs in the intestinal lumen gain access to host intestinal cells and receptors, and at what concentrations, we hypothesized that defining the rates and routes of ileal BA absorption <em>in vivo</em> would yield novel insights into the physiological forms and functions of mouse enterohepatic BA pools.</div></div><div><h3>Methods</h3><div>Using <em>ex vivo</em> mass spectrometry, we quantified 88 BA species and metabolites in the intestinal lumen and superior mesenteric vein of individual wild-type mice, and cage-mates lacking the ileal BA transporter, Asbt/<em>Slc10a2</em>.</div></div><div><h3>Results</h3><div>Using these data, we calculated that the pool of BAs circulating through ileal tissue (<em>i.e.</em>, the ileal BA pool) in fasting C57BL/6J female mice is ∼0.3 μmol/g. Asbt-mediated transport accounted for ∼80% of this pool and amplified size. Passive permeability explained the remaining ∼20% and generated diversity. Compared with wild-type mice, the ileal BA pool in Asbt-deficient mice was ∼5-fold smaller, enriched in secondary BA species and metabolites normally found in the colon, and elicited unique transcriptional responses on addition to <em>ex</em> <em>vivo</em>–cultured ileal explants.</div></div><div><h3>Conclusions</h3><div>This study defines quantitative traits of the mouse enterohepatic BA pool and reveals how aberrant BA metabolism can impinge directly on host intestinal physiology.</div></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 6","pages":"Article 101392"},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/S2352-345X(24)00064-X
{"title":"TOC","authors":"","doi":"10.1016/S2352-345X(24)00064-X","DOIUrl":"https://doi.org/10.1016/S2352-345X(24)00064-X","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"17 5","pages":"Pages A2-A5"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X2400064X/pdfft?md5=e3158678ed27588eb60a4808f9e53833&pid=1-s2.0-S2352345X2400064X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.05.012
Saravanan Subramanian , Heng-Fu Bu , Pauline M. Chou , Xiao Wang , Hua Geng , Suhail Akhtar , Chao Du , Stephanie C. Tan , Justin Eze Ideozu , Aasrita Tulluri , Yuxiang Sun , Wen-Xing Ding , Isabelle G. De Plaen , Xiao-Di Tan
Background & Aims
Necrotizing enterocolitis (NEC) is a life-threatening disease affecting mostly the ileum of preemies. Intestinal epithelial cell (IEC) apoptosis contributes to NEC pathogenesis. However, how scattered crypt IEC apoptosis leads to NEC with excessive villus epithelial necrosis remains unclear.
Methods
A novel triple-transgenic mouse model, namely, 3xTg-iAPcIEC (inducible apoptosis phenotype in crypt-IEC), was developed to induce IEC-specific overexpression of Fasl transgene using doxycycline (Dox)-inducible tetO-rtTA system and villin-cre technology. The 3-days-old neonatal 3xTg-iAPcIEC mice and their littermate controls were subcutaneously (s.c.) challenged with a single dose of Dox. Intestinal tissues were processed at different time points to examine scattered crypt IEC apoptosis-mediated NEC development. Gene knockout technology, antibody-mediated cell depletion, and antibiotic-facilitated Gram-positive bacteria depletion were used to study mechanisms.
Results
Treatment of 3xTg-iAPcIEC mouse pups with Dox induces scattered crypt IEC apoptosis followed by crypt inflammation and excessive villous necrosis resembling NEC. This progression correlated with elevated Ifng, Rip3, CD8+ T cells, and Gram-positive bacteria in the ileum. Mechanistically, IFN-γ and RIP3-activated signals mediate the effect of scattered crypt IEC apoptosis on the induction of intestinal crypt inflammation and villous necrosis. Meanwhile, pathophysiological events of CD8+ T cell infiltration and dysbiosis with Gram-positive bacteria primarily contribute to excessive villous inflammation and necrosis. Notably, blocking any of these events protects against NEC development in 3xTg-iAPcIEC mouse pups, underlining their central roles in NEC pathogenesis.
Conclusions
Scattered crypt IEC apoptosis induces NEC in mouse pups via IFN-γ, RIP3, CD8+ T cells, and Gram-positive bacteria-mediated comprehensive pathophysiological events. Our findings may advance knowledge in the prevention and treatment of NEC.
背景与目的:坏死性小肠结肠炎(NEC)是一种危及生命的疾病,主要影响早产儿的回肠。肠上皮细胞(IEC)凋亡是 NEC 的发病机制之一。然而,分散的隐窝 IEC 细胞凋亡如何导致 NEC 以及绒毛上皮过度坏死仍不清楚:方法:利用多西环素(Dox)诱导的 tetO-rtTA 系统和绒毛-cre 技术,诱导 IEC 特异性过表达 Fasl 转基因,建立了一种新型三转基因小鼠模型,即 3xTg-iAPcIEC(隐窝 IEC 诱导性凋亡表型)。对出生三天的新生 3xTg-iAPcIEC 小鼠及其同窝对照小鼠皮下注射单剂量 Dox。在不同的时间点处理肠组织,以检测散在隐窝 IEC 凋亡介导的 NEC 发生。基因敲除技术、抗体介导的细胞耗竭和抗生素促进的革兰氏阳性菌耗竭被用于研究机制:结果:用 Dox 处理 3xTg-iAPcIEC 小鼠幼崽会诱发零星的隐窝 IEC 凋亡,随后出现隐窝炎症和类似 NEC 的绒毛过度坏死。这种进展与回肠中 Ifng、Rip3、CD8+ T 细胞和革兰氏阳性细菌的升高有关。从机制上讲,IFN-γ 和 RIP3 激活的信号介导了分散的隐窝 IEC 凋亡对肠隐窝炎症和绒毛坏死的诱导作用。同时,CD8+ T 细胞浸润和革兰氏阳性菌菌群失调等病理生理事件也是导致绒毛过度炎症和坏死的主要原因。值得注意的是,阻断这些事件中的任何一个都能防止 3xTg-iAPcIEC 小鼠幼崽发生 NEC,从而强调了它们在 NEC 发病机制中的核心作用:散发性隐窝 IEC 细胞凋亡通过 IFN-γ、RIP3、CD8+ T 细胞和革兰氏阳性细菌介导的综合病理生理事件诱导小鼠幼崽发生 NEC。我们的发现可能会促进对 NEC 的预防和治疗。
{"title":"Scattered Crypt Intestinal Epithelial Cell Apoptosis Induces Necrotizing Enterocolitis Via Intricate Mechanisms","authors":"Saravanan Subramanian , Heng-Fu Bu , Pauline M. Chou , Xiao Wang , Hua Geng , Suhail Akhtar , Chao Du , Stephanie C. Tan , Justin Eze Ideozu , Aasrita Tulluri , Yuxiang Sun , Wen-Xing Ding , Isabelle G. De Plaen , Xiao-Di Tan","doi":"10.1016/j.jcmgh.2024.05.012","DOIUrl":"10.1016/j.jcmgh.2024.05.012","url":null,"abstract":"<div><h3>Background & Aims</h3><p>Necrotizing enterocolitis (NEC) is a life-threatening disease affecting mostly the ileum of preemies. Intestinal epithelial cell (IEC) apoptosis contributes to NEC pathogenesis. However, how scattered crypt IEC apoptosis leads to NEC with excessive villus epithelial necrosis remains unclear.</p></div><div><h3>Methods</h3><p>A novel triple-transgenic mouse model, namely, 3xTg-iAP<sup>cIEC</sup> (inducible apoptosis phenotype in crypt-IEC), was developed to induce IEC-specific overexpression of <em>Fasl</em> transgene using doxycycline (Dox)-inducible tetO-rtTA system and villin-cre technology. The 3-days-old neonatal 3xTg-iAP<sup>cIEC</sup> mice and their littermate controls were subcutaneously (s.c.) challenged with a single dose of Dox. Intestinal tissues were processed at different time points to examine scattered crypt IEC apoptosis-mediated NEC development. Gene knockout technology, antibody-mediated cell depletion, and antibiotic-facilitated Gram-positive bacteria depletion were used to study mechanisms.</p></div><div><h3>Results</h3><p>Treatment of 3xTg-iAP<sup>cIEC</sup> mouse pups with Dox induces scattered crypt IEC apoptosis followed by crypt inflammation and excessive villous necrosis resembling NEC. This progression correlated with elevated <em>Ifng</em>, <em>Rip3</em>, CD8<sup>+</sup> T cells, and Gram-positive bacteria in the ileum. Mechanistically, IFN-γ and RIP3-activated signals mediate the effect of scattered crypt IEC apoptosis on the induction of intestinal crypt inflammation and villous necrosis. Meanwhile, pathophysiological events of CD8<sup>+</sup> T cell infiltration and dysbiosis with Gram-positive bacteria primarily contribute to excessive villous inflammation and necrosis. Notably, blocking any of these events protects against NEC development in 3xTg-iAP<sup>cIEC</sup> mouse pups, underlining their central roles in NEC pathogenesis.</p></div><div><h3>Conclusions</h3><p>Scattered crypt IEC apoptosis induces NEC in mouse pups via IFN-γ, RIP3, CD8<sup>+</sup> T cells, and Gram-positive bacteria-mediated comprehensive pathophysiological events. Our findings may advance knowledge in the prevention and treatment of NEC.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 3","pages":"Article 101364"},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24001188/pdfft?md5=314170d104b613a125b2a2202708d984&pid=1-s2.0-S2352345X24001188-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.05.007
{"title":"Enteric Glial Cells at the Crossroads Between Intestinal Inflammation and Amyloids Diseases","authors":"","doi":"10.1016/j.jcmgh.2024.05.007","DOIUrl":"10.1016/j.jcmgh.2024.05.007","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 2","pages":"Article 101359"},"PeriodicalIF":7.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24001139/pdfft?md5=0824419f0a830e9b5ccc5e54b3618e14&pid=1-s2.0-S2352345X24001139-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.01.016
Yiming Zhang , Jiameng Sun , Henry D. Wasserman , Joshua A. Adams , Cassandra B. Higgins , Shannon C. Kelly , Louise Lantier , Brian J. DeBosch
Background & Aims
Restoring hepatic and peripheral insulin sensitivity is critical to prevent or reverse metabolic syndrome and type 2 diabetes. Glucose homeostasis comprises in part the complex regulation of hepatic glucose production and insulin-mediated glucose uptake and oxidation in peripheral tissues. We previously identified hepatocyte arginase 2 (Arg2) as an inducible ureahydrolase that improves glucose homeostasis and enhances glucose oxidation in multiple obese, insulin-resistant models. We therefore examined structure-function determinants through which hepatocyte Arg2 governs systemic insulin action and glucose oxidation.
Methods
To do this, we generated mice expressing wild-type murine Arg2, enzymatically inactive Arg2 (Arg2H160F) and Arg2 lacking its putative mitochondrial targeting sequence (Arg2Δ1-22). We expressed these hepatocyte-specific constructs in obese, diabetic (db/db) mice and performed genetic complementation analyses in hepatocyte-specific Arg2-deficent (Arg2LKO) mice.
Results
We show that Arg2 attenuates hepatic steatosis, independent of mitochondrial localization or ureahydrolase activity, and that enzymatic arginase activity is dispensable for Arg2 to augment total body energy expenditure. In contrast, mitochondrial localization and ureahydrolase activity were required for Arg2-mediated reductions in fasting glucose and insulin resistance indices. Mechanistically, Arg2Δ1-22 and Arg2H160F failed to suppress glucose appearance during hyperinsulinemic-euglycemic clamping. Quantification of heavy-isotope-labeled glucose oxidation further revealed that mistargeting or ablating Arg2 enzymatic function abrogates Arg2-induced peripheral glucose oxidation.
Conclusion
We conclude that the metabolic effects of Arg2 extend beyond its enzymatic activity, yet hepatocyte mitochondrial ureahydrolysis drives hepatic and peripheral oxidative metabolism. The data define a structure-based mechanism mediating hepatocyte Arg2 function and nominate hepatocyte mitochondrial ureahydrolysis as a key determinant of glucose oxidative capacity in mammals.
{"title":"A Structure-function Analysis of Hepatocyte Arginase 2 Reveals Mitochondrial Ureahydrolysis as a Determinant of Glucose Oxidation","authors":"Yiming Zhang , Jiameng Sun , Henry D. Wasserman , Joshua A. Adams , Cassandra B. Higgins , Shannon C. Kelly , Louise Lantier , Brian J. DeBosch","doi":"10.1016/j.jcmgh.2024.01.016","DOIUrl":"10.1016/j.jcmgh.2024.01.016","url":null,"abstract":"<div><h3>Background & Aims</h3><p>Restoring hepatic and peripheral insulin sensitivity is critical to prevent or reverse metabolic syndrome and type 2 diabetes. Glucose homeostasis comprises in part the complex regulation of hepatic glucose production and insulin-mediated glucose uptake and oxidation in peripheral tissues. We previously identified hepatocyte arginase 2 (Arg2) as an inducible ureahydrolase that improves glucose homeostasis and enhances glucose oxidation in multiple obese, insulin-resistant models. We therefore examined structure-function determinants through which hepatocyte Arg2 governs systemic insulin action and glucose oxidation.</p></div><div><h3>Methods</h3><p>To do this, we generated mice expressing wild-type murine Arg2, enzymatically inactive Arg2 (Arg2<sup>H160F</sup>) and Arg2 lacking its putative mitochondrial targeting sequence (Arg2<sup>Δ1-22</sup>). We expressed these hepatocyte-specific constructs in obese, diabetic (<em>db/db</em>) mice and performed genetic complementation analyses in hepatocyte-specific Arg2-deficent (Arg2<sup>LKO</sup>) mice.</p></div><div><h3>Results</h3><p>We show that Arg2 attenuates hepatic steatosis, independent of mitochondrial localization or ureahydrolase activity, and that enzymatic arginase activity is dispensable for Arg2 to augment total body energy expenditure. In contrast, mitochondrial localization and ureahydrolase activity were required for Arg2-mediated reductions in fasting glucose and insulin resistance indices. Mechanistically, Arg2<sup>Δ1-22</sup> and Arg2<sup>H160F</sup> failed to suppress glucose appearance during hyperinsulinemic-euglycemic clamping. Quantification of heavy-isotope-labeled glucose oxidation further revealed that mistargeting or ablating Arg2 enzymatic function abrogates Arg2-induced peripheral glucose oxidation.</p></div><div><h3>Conclusion</h3><p>We conclude that the metabolic effects of Arg2 extend beyond its enzymatic activity, yet hepatocyte mitochondrial ureahydrolysis drives hepatic and peripheral oxidative metabolism. The data define a structure-based mechanism mediating hepatocyte Arg2 function and nominate hepatocyte mitochondrial ureahydrolysis as a key determinant of glucose oxidative capacity in mammals.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"17 5","pages":"Pages 801-820"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000158/pdfft?md5=0fd591e61735c79bae9adb664cc7aec3&pid=1-s2.0-S2352345X24000158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.jcmgh.2024.01.024
Tien S. Dong , Emeran Mayer
The complex, bidirectional interactions between the brain, the gut, and the gut microbes are best referred to as the brain gut microbiome system. Animal and clinical studies have identified specific signaling mechanisms within this system, with gut microbes communicating to the brain through neuronal, endocrine, and immune pathways. The brain, in turn, modulates the composition and function of the gut microbiota through the autonomic nervous system, regulating gut motility, secretion, permeability, and the release of hormones impacting microbial gene expression. Perturbations at any level of these interactions can disrupt the intricate balance, potentially contributing to the pathogenesis of intestinal, metabolic, neurologic, and psychiatric disorders. Understanding these interactions and their underlying mechanisms holds promise for identifying biomarkers, as well as novel therapeutic targets, and for developing more effective treatment strategies for these complex disorders. Continued research will advance our knowledge of this system, with the potential for improved understanding and management of a wide range of disorders. This review provides an update on the current state of knowledge regarding this system, with a focus on recent advancements and emerging research areas.
{"title":"Advances in Brain–Gut–Microbiome Interactions: A Comprehensive Update on Signaling Mechanisms, Disorders, and Therapeutic Implications","authors":"Tien S. Dong , Emeran Mayer","doi":"10.1016/j.jcmgh.2024.01.024","DOIUrl":"10.1016/j.jcmgh.2024.01.024","url":null,"abstract":"<div><p>The complex, bidirectional interactions between the brain, the gut, and the gut microbes are best referred to as the <em>brain gut microbiome system</em>. Animal and clinical studies have identified specific signaling mechanisms within this system, with gut microbes communicating to the brain through neuronal, endocrine, and immune pathways. The brain, in turn, modulates the composition and function of the gut microbiota through the autonomic nervous system, regulating gut motility, secretion, permeability, and the release of hormones impacting microbial gene expression. Perturbations at any level of these interactions can disrupt the intricate balance, potentially contributing to the pathogenesis of intestinal, metabolic, neurologic, and psychiatric disorders. Understanding these interactions and their underlying mechanisms holds promise for identifying biomarkers, as well as novel therapeutic targets, and for developing more effective treatment strategies for these complex disorders. Continued research will advance our knowledge of this system, with the potential for improved understanding and management of a wide range of disorders. This review provides an update on the current state of knowledge regarding this system, with a focus on recent advancements and emerging research areas.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"18 1","pages":"Pages 1-13"},"PeriodicalIF":7.2,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000274/pdfft?md5=d4669a02dd3b453d86ad04ae4f48c667&pid=1-s2.0-S2352345X24000274-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139713419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}