首页 > 最新文献

Flow, Turbulence and Combustion最新文献

英文 中文
Study of the Large Local Specific Heat Capacity Impact on Turbulent Heat Transfer at Supercritical Pressure 超临界压力下大局部比热容对湍流传热影响的研究
IF 2.4 3区 工程技术 Q2 Physics and Astronomy Pub Date : 2024-02-15 DOI: 10.1007/s10494-024-00529-3
Teng Wan, Pinghui Zhao, Yuanjie Li, Changhong Peng

The specific heat capacity of supercritical fluids (SCFs) exhibits a sharp variation near the pseudo-critical temperature, resulting in the emergence of a localized region characterized by significantly large specific heat capacity within SCF flows. To comprehensively examine the influence of this prominent local specific heat capacity on turbulence and heat transfer in SCF flows, a series of direct numerical simulations are executed under supercritical pressure conditions, with an inlet bulk Reynolds number of ({Re}_{in}= 2700). Four cases sharing identical geometry yet differing in thermophysical properties are simulated and systematically compared after isolating the specific heat capacity from the other thermophysical factors. The findings reveal that the large local specific heat capacity results in heightened enthalpy fluctuations and fosters the enhancement of turbulent heat transfer. Furthermore, an observed quenching effect attributed to the substantial local specific heat capacity becomes evident within the near-wall region, stemming from fluctuations in thermal diffusivity. Notably, the decomposition of wall heat flux underscores the significant influence of the large local specific heat capacity on the primary turbulent heat flux governing SCF heat convection. The impact exhibits a nuanced complexity, simultaneously manifesting in a simultaneous increase in mean enthalpy gradient and reduction in turbulence.

超临界流体(SCF)的比热容在接近伪临界温度时会出现急剧变化,从而导致在 SCF 流体中出现一个局部区域,其特征是比热容明显增大。为了全面研究这种突出的局部比热容对 SCF 流体中湍流和传热的影响,我们在超临界压力条件下进行了一系列直接数值模拟,入口体积雷诺数为 ({Re}_{in}= 2700) 。模拟了四种几何形状相同但热物理特性不同的情况,并在将比热容与其他热物理因素隔离后进行了系统比较。研究结果表明,大的局部比热容会导致焓波动加剧,并促进湍流传热。此外,在近壁区域,由于热扩散率的波动,观测到的大量局部比热容导致的淬火效应变得非常明显。值得注意的是,壁面热通量的分解强调了巨大的局部比热容对支配 SCF 热对流的主要湍流热通量的重要影响。这种影响具有微妙的复杂性,同时表现为平均焓梯度的增加和湍流的减少。
{"title":"Study of the Large Local Specific Heat Capacity Impact on Turbulent Heat Transfer at Supercritical Pressure","authors":"Teng Wan, Pinghui Zhao, Yuanjie Li, Changhong Peng","doi":"10.1007/s10494-024-00529-3","DOIUrl":"https://doi.org/10.1007/s10494-024-00529-3","url":null,"abstract":"<p>The specific heat capacity of supercritical fluids (SCFs) exhibits a sharp variation near the pseudo-critical temperature, resulting in the emergence of a localized region characterized by significantly large specific heat capacity within SCF flows. To comprehensively examine the influence of this prominent local specific heat capacity on turbulence and heat transfer in SCF flows, a series of direct numerical simulations are executed under supercritical pressure conditions, with an inlet bulk Reynolds number of <span>({Re}_{in}= 2700)</span>. Four cases sharing identical geometry yet differing in thermophysical properties are simulated and systematically compared after isolating the specific heat capacity from the other thermophysical factors. The findings reveal that the large local specific heat capacity results in heightened enthalpy fluctuations and fosters the enhancement of turbulent heat transfer. Furthermore, an observed quenching effect attributed to the substantial local specific heat capacity becomes evident within the near-wall region, stemming from fluctuations in thermal diffusivity. Notably, the decomposition of wall heat flux underscores the significant influence of the large local specific heat capacity on the primary turbulent heat flux governing SCF heat convection. The impact exhibits a nuanced complexity, simultaneously manifesting in a simultaneous increase in mean enthalpy gradient and reduction in turbulence.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139773602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Measurements of Surface Spanwise Waves and Velocity in a Turbulent Boundary Layer 同时测量湍流边界层中的表面横波和速度
IF 2.4 3区 工程技术 Q2 Physics and Astronomy Pub Date : 2024-02-14 DOI: 10.1007/s10494-024-00531-9
Isabella Fumarola, Matthew Santer, Jonathan Morrison

Among the different passive and active techniques for skin friction drag reduction for turbulent boundary layers, near wall forcing through moving walls is one of the most promising techniques at low Re(_tau). Fewer studies have looked at the mechanism at high Re(_tau), closer to flight conditions, largely because, in this regime, numerical simulations become harder and experiments more challenging. To that end, there is the need of a systematic study for different surface waves and flow conditions. This work introduces a new model using a kagome lattice and an experimental setup which combines simultaneous measurements of surface displacement and velocity in the boundary layer. Here the results from a shortened version of the model at Re(_tau approx) 1000 are presented to demonstrate the capability of the experimental setup which is developed in view of further investigation at higher Reynolds number.

在减少湍流边界层表皮摩擦阻力的各种被动和主动技术中,通过移动壁的近壁强迫是低Re()时最有前途的技术之一。很少有研究关注更接近飞行条件的高Re/(/tau/)时的机制,主要是因为在这种情况下,数值模拟变得更加困难,实验也更具挑战性。为此,需要对不同的表面波和流动条件进行系统研究。这项工作引入了一个使用可果美的晶格和实验装置的新模型,该模型结合了对边界层中表面位移和速度的同步测量。这里介绍了该模型在 Re(_tau approx) 1000 条件下的一个简化版本的结果,以展示实验装置的能力。
{"title":"Simultaneous Measurements of Surface Spanwise Waves and Velocity in a Turbulent Boundary Layer","authors":"Isabella Fumarola, Matthew Santer, Jonathan Morrison","doi":"10.1007/s10494-024-00531-9","DOIUrl":"https://doi.org/10.1007/s10494-024-00531-9","url":null,"abstract":"<p>Among the different passive and active techniques for skin friction drag reduction for turbulent boundary layers, near wall forcing through moving walls is one of the most promising techniques at low Re<span>(_tau)</span>. Fewer studies have looked at the mechanism at high Re<span>(_tau)</span>, closer to flight conditions, largely because, in this regime, numerical simulations become harder and experiments more challenging. To that end, there is the need of a systematic study for different surface waves and flow conditions. This work introduces a new model using a kagome lattice and an experimental setup which combines simultaneous measurements of surface displacement and velocity in the boundary layer. Here the results from a shortened version of the model at Re<span>(_tau approx)</span> 1000 are presented to demonstrate the capability of the experimental setup which is developed in view of further investigation at higher Reynolds number.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139770644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carrier-Phase DNS of Ignition and Combustion of Iron Particles in a Turbulent Mixing Layer 铁颗粒在湍流混合层中点火和燃烧的载流相 DNS
IF 2.4 3区 工程技术 Q2 Physics and Astronomy Pub Date : 2024-02-08 DOI: 10.1007/s10494-023-00526-y
Tien Duc Luu, Ali Shamooni, Andreas Kronenburg, Daniel Braig, Johannes Mich, Bich-Diep Nguyen, Arne Scholtissek, Christian Hasse, Gabriel Thäter, Maurizio Carbone, Bettina Frohnapfel, Oliver Thomas Stein

Three-dimensional carrier-phase direct numerical simulations (CP-DNS) of reacting iron particle dust clouds in a turbulent mixing layer are conducted. The simulation approach considers the Eulerian transport equations for the reacting gas phase and resolves all scales of turbulence, whereas the particle boundary layers are modelled employing the Lagrangian point-particle framework for the dispersed phase. The CP-DNS employs an existing sub-model for iron particle combustion that considers the oxidation of iron to FeO and that accounts for both diffusion- and kinetically-limited combustion. At first, the particle sub-model is validated against experimental results for single iron particle combustion considering various particle diameters and ambient oxygen concentrations. Subsequently, the CP-DNS approach is employed to predict iron particle cloud ignition and combustion in a turbulent mixing layer. The upper stream of the mixing layer is initialised with cold particles in air, while the lower stream consists of hot air flowing in the opposite direction. Simulation results show that turbulent mixing induces heating, ignition and combustion of the iron particles. Significant increases in gas temperature and oxygen consumption occur mainly in regions where clusters of iron particles are formed. Over the course of the oxidation, the particles are subjected to different rate-limiting processes. While initially particle oxidation is kinetically-limited it becomes diffusion-limited for higher particle temperatures and peak particle temperatures are observed near the fully-oxidised particle state. Comparing the present non-volatile iron dust flames to general trends in volatile-containing solid fuel flames, non-vanishing particles at late simulation times and a stronger limiting effect of the local oxygen concentration on particle conversion is found for the present iron dust flames in shear-driven turbulence.

对湍流混合层中发生反应的铁颗粒尘埃云进行了三维载流子相位直接数值模拟(CP-DNS)。模拟方法考虑了反应气相的欧拉传输方程,并解决了所有尺度的湍流问题,而粒子边界层则采用拉格朗日点粒子框架为分散相建模。CP-DNS 采用了现有的铁粒子燃烧子模型,该模型考虑了铁氧化成 FeO 的过程,并考虑了扩散和动力学限制燃烧。首先,根据不同颗粒直径和环境氧气浓度的单个铁颗粒燃烧实验结果,对颗粒子模型进行了验证。随后,采用 CP-DNS 方法预测铁粒子云在湍流混合层中的点燃和燃烧。混合层的上层气流初始化为空气中的冷颗粒,而下层气流由反向流动的热空气组成。模拟结果表明,湍流混合诱发了铁颗粒的加热、点燃和燃烧。气体温度和氧气消耗量的显著增加主要发生在铁颗粒形成团块的区域。在氧化过程中,颗粒经历了不同的限速过程。虽然最初的颗粒氧化受动力学限制,但当颗粒温度升高时就会受扩散限制,在颗粒完全氧化状态附近会出现颗粒温度峰值。将本研究中的非挥发性铁屑火焰与含挥发性固体燃料火焰的一般趋势进行比较,发现本研究中的铁屑火焰在剪切驱动湍流中,在模拟时间较晚时颗粒不会消失,并且局部氧气浓度对颗粒转化的限制作用更强。
{"title":"Carrier-Phase DNS of Ignition and Combustion of Iron Particles in a Turbulent Mixing Layer","authors":"Tien Duc Luu, Ali Shamooni, Andreas Kronenburg, Daniel Braig, Johannes Mich, Bich-Diep Nguyen, Arne Scholtissek, Christian Hasse, Gabriel Thäter, Maurizio Carbone, Bettina Frohnapfel, Oliver Thomas Stein","doi":"10.1007/s10494-023-00526-y","DOIUrl":"https://doi.org/10.1007/s10494-023-00526-y","url":null,"abstract":"<p>Three-dimensional carrier-phase direct numerical simulations (CP-DNS) of reacting iron particle dust clouds in a turbulent mixing layer are conducted. The simulation approach considers the Eulerian transport equations for the reacting gas phase and resolves all scales of turbulence, whereas the particle boundary layers are modelled employing the Lagrangian point-particle framework for the dispersed phase. The CP-DNS employs an existing sub-model for iron particle combustion that considers the oxidation of iron to FeO and that accounts for both diffusion- and kinetically-limited combustion. At first, the particle sub-model is validated against experimental results for single iron particle combustion considering various particle diameters and ambient oxygen concentrations. Subsequently, the CP-DNS approach is employed to predict iron particle cloud ignition and combustion in a turbulent mixing layer. The upper stream of the mixing layer is initialised with cold particles in air, while the lower stream consists of hot air flowing in the opposite direction. Simulation results show that turbulent mixing induces heating, ignition and combustion of the iron particles. Significant increases in gas temperature and oxygen consumption occur mainly in regions where clusters of iron particles are formed. Over the course of the oxidation, the particles are subjected to different rate-limiting processes. While initially particle oxidation is kinetically-limited it becomes diffusion-limited for higher particle temperatures and peak particle temperatures are observed near the fully-oxidised particle state. Comparing the present non-volatile iron dust flames to general trends in volatile-containing solid fuel flames, non-vanishing particles at late simulation times and a stronger limiting effect of the local oxygen concentration on particle conversion is found for the present iron dust flames in shear-driven turbulence.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139770565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Source Froude Number and Turbulent Fluctuations on the Development of Turbulent Fountains in Stratified Ambient 源弗劳德数和湍流波动对分层环境中湍流喷泉发展的影响
IF 2.4 3区 工程技术 Q2 Physics and Astronomy Pub Date : 2024-02-06 DOI: 10.1007/s10494-024-00528-4
Luis G. Sarasúa, Daniel Freire Caporale, Nicasio Barrere, Arturo C. Marti

Turbulent fountains are widespread natural phenomena with numerous industrial applications. Extensive research has focused on the temporal evolution and maximum height of these fountains, as well as their dependence on Reynolds and Froude numbers. However, the lower boundary of the spreading flow attained by the mixture of the ejected fluid and the surrounding ambient fluid has received little attention. Here, we focus on the dependence of the lower boundary height on the characteristics of the fountain and demonstrate how to control it. Large Eddy simulations were carried out based on a Navier–Stokes solver which implements fully implicit 3D incompressible finite volume method with second-order accuracy in space and time using curvilinear coordinates, and validated with laboratory experiments. Our results present important implications for technological applications of turbulent fountains, particularly in protecting crops from frost. We discuss the potential of our results to improve the efficiency of such applications.

湍流喷泉是一种广泛存在的自然现象,在工业领域应用广泛。大量研究集中于这些喷泉的时间演变和最大高度,以及它们与雷诺数和弗劳德数的关系。然而,喷射流体与周围环境流体的混合物所形成的扩散流的下边界却很少受到关注。在此,我们将重点关注下边界高度与喷泉特性的关系,并演示如何对其进行控制。我们基于纳维-斯托克斯求解器进行了大涡流模拟,该求解器使用曲线坐标实现了空间和时间二阶精度的全隐式三维不可压缩有限体积法,并通过实验室实验进行了验证。我们的研究结果对湍流喷泉的技术应用具有重要意义,特别是在保护农作物免受霜冻方面。我们讨论了我们的结果在提高此类应用效率方面的潜力。
{"title":"The Influence of Source Froude Number and Turbulent Fluctuations on the Development of Turbulent Fountains in Stratified Ambient","authors":"Luis G. Sarasúa, Daniel Freire Caporale, Nicasio Barrere, Arturo C. Marti","doi":"10.1007/s10494-024-00528-4","DOIUrl":"https://doi.org/10.1007/s10494-024-00528-4","url":null,"abstract":"<p>Turbulent fountains are widespread natural phenomena with numerous industrial applications. Extensive research has focused on the temporal evolution and maximum height of these fountains, as well as their dependence on Reynolds and Froude numbers. However, the lower boundary of the spreading flow attained by the mixture of the ejected fluid and the surrounding ambient fluid has received little attention. Here, we focus on the dependence of the lower boundary height on the characteristics of the fountain and demonstrate how to control it. Large Eddy simulations were carried out based on a Navier–Stokes solver which implements fully implicit 3D incompressible finite volume method with second-order accuracy in space and time using curvilinear coordinates, and validated with laboratory experiments. Our results present important implications for technological applications of turbulent fountains, particularly in protecting crops from frost. We discuss the potential of our results to improve the efficiency of such applications.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139770646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Detailed Analysis of Mixture Stratification on Flame Displacement Speed for Syngas Combustion 混合气分层对合成气燃烧火焰位移速度的详细分析
IF 2.4 3区 工程技术 Q2 Physics and Astronomy Pub Date : 2024-02-03 DOI: 10.1007/s10494-024-00530-w
Rahul Patil, Sheshadri Sreedhara

Gasoline direct injection engines can provide higher thermal efficiency and lower emissions than that for engines using conventional combustion techniques. Compositional stratification inside the combustion chamber opens possibilities for ultra-lean and low-temperature combustion. To explore this further, 2D direct numerical simulation (DNS) has been performed to investigate the propagation of syngas flame in an equivalence ratio (ϕ) stratified medium. Several aspects of flame propagation, such as effect of integral scale of mixing (lϕ) on the non-monotonic behavior of flame propagation, contribution of each chemical reaction to heat release rate (HRR), and the effect of differential diffusion were analyzed using DNS-data. A spherically expanding flame has been initiated with a hotspot at the center of the square domain of size 2.4 × 2.4 cm2. The variations in the degree of stratification were simulated varying lϕ and fluctuations ϕ for initial mixture distribution. Further this DNS-data has been used to analyze effects of stratification on flame displacement speed (Sd) and its components, viz. reaction rate (Sr), normal diffusion (Sn), tangential (St), and inhomogeneity (Sz). The results reveal that stratification-induced variations in thermal diffusivity resulted in thermal runaways. These thermal runaways influence the extent of burning for simulated cases. The increase in degree of stratification resulted in flame preferably propagating towards leaner ϕ, causing reduction in components of Sd. The preferential propagation of flame also resulted in shifting of peak reaction rate for fuel species (c*) to a higher reaction progress variable (c). This shifting of c*, lead to a reduction in the HRR contribution of reactions that attain their peak near the production zone of H and OH species. For unity Le simulations, Sn was observed to be reduced drastically compared to cases with differential diffusion, resulting in an overall reduction in Sd.

与使用传统燃烧技术的发动机相比,汽油直喷发动机可以提供更高的热效率和更低的排放。燃烧室内的成分分层为超低温燃烧提供了可能。为了进一步探讨这一问题,我们进行了二维直接数值模拟(DNS),以研究合成气火焰在当量比(j)分层介质中的传播。利用 DNS 数据分析了火焰传播的几个方面,如混合积分尺度(lϕ)对火焰传播非单调行为的影响、各化学反应对热释放率(HRR)的贡献以及微分扩散的影响。在尺寸为 2.4 × 2.4 cm2 的正方形域中心,以一个热点为起点,开始了球形膨胀火焰。通过改变初始混合物分布的 lϕ 和波动 ϕ,模拟了分层程度的变化。此外,还利用 DNS 数据分析了分层对火焰位移速度(Sd)及其组成部分(即反应速率(Sr)、正向扩散(Sn)、切向扩散(St)和不均匀性(Sz))的影响。结果显示,分层引起的热扩散率变化导致了热失控。这些热失控会影响模拟情况下的燃烧程度。分层程度的增加导致火焰更倾向于向更贫的ϕ方向传播,从而导致 Sd 分量的减少。火焰的优先传播还导致燃料种类的峰值反应速率(c*)向更高的反应进程变量(c)移动。c* 的移动导致在 H 和 OH 物种生成区附近达到峰值的反应对 HRR 的贡献减少。在 Unity Le 模拟中,与差分扩散情况相比,Sn 被观察到急剧下降,导致 Sd 整体下降。
{"title":"A Detailed Analysis of Mixture Stratification on Flame Displacement Speed for Syngas Combustion","authors":"Rahul Patil, Sheshadri Sreedhara","doi":"10.1007/s10494-024-00530-w","DOIUrl":"https://doi.org/10.1007/s10494-024-00530-w","url":null,"abstract":"<p>Gasoline direct injection engines can provide higher thermal efficiency and lower emissions than that for engines using conventional combustion techniques. Compositional stratification inside the combustion chamber opens possibilities for ultra-lean and low-temperature combustion. To explore this further, 2D direct numerical simulation (DNS) has been performed to investigate the propagation of syngas flame in an equivalence ratio (<i>ϕ</i>) stratified medium. Several aspects of flame propagation, such as effect of integral scale of mixing (<i>l</i><sub><i>ϕ</i></sub>) on the non-monotonic behavior of flame propagation, contribution of each chemical reaction to heat release rate (HRR), and the effect of differential diffusion were analyzed using DNS-data. A spherically expanding flame has been initiated with a hotspot at the center of the square domain of size 2.4 × 2.4 cm<sup>2</sup>. The variations in the degree of stratification were simulated varying <i>l</i><sub><i>ϕ</i></sub> and fluctuations <i>ϕ</i> for initial mixture distribution. Further this DNS-data has been used to analyze effects of stratification on flame displacement speed (<i>S</i><sub><i>d</i></sub>) and its components, viz. reaction rate (<i>S</i><sub><i>r</i></sub>), normal diffusion (<i>S</i><sub><i>n</i></sub>), tangential (<i>S</i><sub><i>t</i></sub>), and inhomogeneity (<i>S</i><sub><i>z</i></sub>). The results reveal that stratification-induced variations in thermal diffusivity resulted in thermal runaways. These thermal runaways influence the extent of burning for simulated cases. The increase in degree of stratification resulted in flame preferably propagating towards leaner <i>ϕ</i>, causing reduction in components of <i>S</i><sub><i>d</i></sub>. The preferential propagation of flame also resulted in shifting of peak reaction rate for fuel species (<i>c</i><sup><i>*</i></sup>) to a higher reaction progress variable (<i>c</i>). This shifting of <i>c</i><sup><i>*</i></sup>, lead to a reduction in the HRR contribution of reactions that attain their peak near the production zone of H and OH species. For unity <i>Le</i> simulations, <i>S</i><sub><i>n</i></sub> was observed to be reduced drastically compared to cases with differential diffusion, resulting in an overall reduction in <i>S</i><sub><i>d</i></sub>.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139679186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modal Analysis and Flow Control on a Reduced Scale SUV 小型 SUV 的模态分析和流量控制
IF 2.4 3区 工程技术 Q2 Physics and Astronomy Pub Date : 2024-01-29 DOI: 10.1007/s10494-023-00525-z

Abstract

In this work, the aerodynamic performances of a reduced scale vehicle characterized by a fully detached flow on the rear end and measured in a wind tunnel, are investigated in order to check the efficiency of active flow control using pulsed jets, implemented on the rear bumper. Here, the pressure increase on the tailgate by the optimum blowing conditions is confirmed with drag forces reduction, measured using a force balance. This flow control result is obtained using a genetic algorithm technique with a reactive loop. Integral scales of the pressure spectra and characteristics of the vortex structures enable then to propose a flow control model applied to set the amplitude and the frequency of the pulsed jets. The understanding of the pressure increase on the tailgate involves cross correlations with velocity fields on specific cut planes in the wake. Amplitudes of dynamic modes linked to the instantaneous pressure and velocity fields enable to check the most efficient blowing frequencies related to the jet location. The Dynamic Modal Decomposition (DMD) technique is used to get these modes and could be introduced in the optimisation loop in order to improve the energy efficiency of this active flow control system.

摘要 在这项工作中,研究了一种缩小比例的车辆的空气动力性能,其特点是尾部的气流完全分离,并在风洞中进行了测量,以检查在后保险杠上使用脉冲喷射器进行主动气流控制的效率。在此,通过使用力平衡测量,证实了在最佳喷气条件下尾部压力的增加和阻力的减少。这一流量控制结果是利用带有反应回路的遗传算法技术获得的。压力频谱和涡流结构特征的综合尺度使我们能够提出一个流动控制模型,用于设置脉冲喷流的振幅和频率。对尾流压力增加的理解涉及与尾流特定切面上的速度场的交叉相关性。与瞬时压力场和速度场相关的动态模态振幅可以检查与喷流位置相关的最有效喷流频率。动态模态分解(DMD)技术可用于获得这些模态,并可引入优化环路,以提高主动流控制系统的能效。
{"title":"Modal Analysis and Flow Control on a Reduced Scale SUV","authors":"","doi":"10.1007/s10494-023-00525-z","DOIUrl":"https://doi.org/10.1007/s10494-023-00525-z","url":null,"abstract":"<h3>Abstract</h3> <p>In this work, the aerodynamic performances of a reduced scale vehicle characterized by a fully detached flow on the rear end and measured in a wind tunnel, are investigated in order to check the efficiency of active flow control using pulsed jets, implemented on the rear bumper. Here, the pressure increase on the tailgate by the optimum blowing conditions is confirmed with drag forces reduction, measured using a force balance. This flow control result is obtained using a genetic algorithm technique with a reactive loop. Integral scales of the pressure spectra and characteristics of the vortex structures enable then to propose a flow control model applied to set the amplitude and the frequency of the pulsed jets. The understanding of the pressure increase on the tailgate involves cross correlations with velocity fields on specific cut planes in the wake. Amplitudes of dynamic modes linked to the instantaneous pressure and velocity fields enable to check the most efficient blowing frequencies related to the jet location. The Dynamic Modal Decomposition (DMD) technique is used to get these modes and could be introduced in the optimisation loop in order to improve the energy efficiency of this active flow control system.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139588381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed Averaging Procedures 混合平均程序
IF 2.4 3区 工程技术 Q2 Physics and Astronomy Pub Date : 2024-01-29 DOI: 10.1007/s10494-023-00527-x
Michele Errante, Markus Klein, Andrea Ferrero, Francesco Larocca, Guglielmo Scovazzi, Massimo Germano

The statistical operators typically applied in postprocessing numerical databases for statistically steady turbulence are a mixture of physical averages in homogeneous spatial directions and in time. Alternative averaging operators may involve phase or ensemble averages over different simulations of the same flow. In this paper, we propose straightforward metrics to assess the relative importance of these averages, employing a mixed averaging analysis of the variance. We apply our novel indicators to two statistically steady turbulent flows that are homogeneous in the spanwise direction. In addition, this study highlights the local effectiveness of the averaging operator, which can vary significantly depending on the mean flow velocity and turbulent length scales. The work can be utilized to identify the most effective averaging procedure in flow configurations featuring at least two homogeneous directions. Thus, this will contribute to achieving better statistics for turbulent flow predictions or reducing computing time.

在对统计稳定湍流数值数据 库进行后处理时,通常采用的统计运算符是同质空间方向和时间上的物理平均混合运算符。另一种平均算子可能是对同一流体的不同模拟进行相位或集合平均。在本文中,我们采用方差混合平均分析法,提出了评估这些平均值相对重要性的直接指标。我们将新指标应用于两个在跨度方向上均匀的统计稳定湍流。此外,这项研究还强调了平均算子的局部有效性,平均算子的有效性会因平均流速和湍流长度尺度的不同而发生显著变化。这项工作可用于确定在至少有两个均质方向的流动配置中最有效的平均程序。因此,这将有助于实现更好的湍流预测统计或减少计算时间。
{"title":"Mixed Averaging Procedures","authors":"Michele Errante, Markus Klein, Andrea Ferrero, Francesco Larocca, Guglielmo Scovazzi, Massimo Germano","doi":"10.1007/s10494-023-00527-x","DOIUrl":"https://doi.org/10.1007/s10494-023-00527-x","url":null,"abstract":"<p>The <i>statistical</i> operators typically applied in postprocessing numerical databases for statistically steady turbulence are a mixture of physical averages in homogeneous spatial directions and in time. Alternative averaging operators may involve phase or ensemble averages over different simulations of the same flow. In this paper, we propose straightforward metrics to assess the relative importance of these averages, employing a mixed averaging analysis of the variance. We apply our novel indicators to two statistically steady turbulent flows that are homogeneous in the spanwise direction. In addition, this study highlights the local effectiveness of the averaging operator, which can vary significantly depending on the mean flow velocity and turbulent length scales. The work can be utilized to identify the most effective averaging procedure in flow configurations featuring at least two homogeneous directions. Thus, this will contribute to achieving better statistics for turbulent flow predictions or reducing computing time.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139588487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavepacket Modelling of Jet-Flap Interaction Noise: from Laboratory to Full-Scale Aircraft 喷气襟翼相互作用噪声的波包建模:从实验室到全尺寸飞机
IF 2.4 3区 工程技术 Q2 Physics and Astronomy Pub Date : 2024-01-11 DOI: 10.1007/s10494-023-00519-x
Jérôme Huber, Grégoire Pont, Peter Jordan, Michel Roger
{"title":"Wavepacket Modelling of Jet-Flap Interaction Noise: from Laboratory to Full-Scale Aircraft","authors":"Jérôme Huber, Grégoire Pont, Peter Jordan, Michel Roger","doi":"10.1007/s10494-023-00519-x","DOIUrl":"https://doi.org/10.1007/s10494-023-00519-x","url":null,"abstract":"","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139438166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Forebody Topology on Aerodynamics and Aeroacoustics Characteristics of Squareback Vehicles using Computational Aeroacoustics (CAA) 利用计算空气声学 (CAA) 研究前车身拓扑结构对方形后背车辆空气动力学和空气声学特性的影响
IF 2.4 3区 工程技术 Q2 Physics and Astronomy Pub Date : 2024-01-10 DOI: 10.1007/s10494-023-00523-1
Harish Viswanathan, Kushal Kumar Chode

This study investigates the influence of forebody configuration on aerodynamic noise generation and radiation in standard squareback vehicles, employing a hybrid computational aeroacoustics approach. Initially, a widely used standard squareback body is employed to establish grid-independent solutions and validate the applied methodology against previously published experimental data. Six distinct configurations are examined, consisting of three bodies with A-pillars and three without A-pillars. Throughout these configurations, the reference area, length, and height remain consistent, while systematic alterations to the forebody are implemented. The findings reveal that changes in the forebody design exert a substantial influence on both the overall aerodynamics and aeroacoustics performance of the vehicle. Notably, bodies without A-pillars exhibit a significant reduction in downforce compared to their A-pillar counterparts. For all configurations, the flow characteristics around the side-view mirror and the side window exhibit an asymmetrical horseshoe vortex with high-intensity pressure fluctuations, primarily within the confines of this vortex and the mirror wake. Side windows on bodies with A-pillars experience more pronounced pressure fluctuations, rendering these configurations distinctly impactful in terms of radiated noise. However, despite forebody-induced variations in pressure fluctuations impacting the side window and side-view mirror, the fundamental structure of the radiated noise remains relatively consistent. The noise pattern transitions from a cardioid-like shape to a monopole-like pattern as the probing distance from the vehicle increases.

本研究采用混合计算气动声学方法,研究了前车身结构对标准方背式车辆气动噪声产生和辐射的影响。首先,采用了广泛使用的标准方背式车身,以建立与网格无关的解决方案,并根据之前公布的实验数据验证所应用的方法。研究了六种不同的配置,包括三种带 A 柱的车身和三种不带 A 柱的车身。在这些配置中,参考区域、长度和高度保持一致,同时对前车身进行了系统性的改变。研究结果表明,前车身设计的变化对车辆的整体空气动力学和空气声学性能都有很大影响。值得注意的是,与没有 A 柱的车身相比,没有 A 柱的车身下压力明显降低。在所有配置中,侧视镜和侧窗周围的流动特性都表现出不对称的马蹄形漩涡和高强度的压力波动,主要是在该漩涡和后视镜尾流的范围内。带有 A 柱的车身侧窗承受的压力波动更为明显,因此这些配置对辐射噪声的影响非常明显。不过,尽管影响侧窗和侧视镜的压力波动由前体引起的变化,辐射噪声的基本结构仍然相对一致。随着探测距离的增加,噪声模式会从心形过渡到单极模式。
{"title":"The Role of Forebody Topology on Aerodynamics and Aeroacoustics Characteristics of Squareback Vehicles using Computational Aeroacoustics (CAA)","authors":"Harish Viswanathan, Kushal Kumar Chode","doi":"10.1007/s10494-023-00523-1","DOIUrl":"https://doi.org/10.1007/s10494-023-00523-1","url":null,"abstract":"<p>This study investigates the influence of forebody configuration on aerodynamic noise generation and radiation in standard squareback vehicles, employing a hybrid computational aeroacoustics approach. Initially, a widely used standard squareback body is employed to establish grid-independent solutions and validate the applied methodology against previously published experimental data. Six distinct configurations are examined, consisting of three bodies with A-pillars and three without A-pillars. Throughout these configurations, the reference area, length, and height remain consistent, while systematic alterations to the forebody are implemented. The findings reveal that changes in the forebody design exert a substantial influence on both the overall aerodynamics and aeroacoustics performance of the vehicle. Notably, bodies without A-pillars exhibit a significant reduction in downforce compared to their A-pillar counterparts. For all configurations, the flow characteristics around the side-view mirror and the side window exhibit an asymmetrical horseshoe vortex with high-intensity pressure fluctuations, primarily within the confines of this vortex and the mirror wake. Side windows on bodies with A-pillars experience more pronounced pressure fluctuations, rendering these configurations distinctly impactful in terms of radiated noise. However, despite forebody-induced variations in pressure fluctuations impacting the side window and side-view mirror, the fundamental structure of the radiated noise remains relatively consistent. The noise pattern transitions from a cardioid-like shape to a monopole-like pattern as the probing distance from the vehicle increases.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139422938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Direct and Large-Eddy Simulations 直接模拟和大型埃迪模拟的进展
IF 2.4 3区 工程技术 Q2 Physics and Astronomy Pub Date : 2024-01-10 DOI: 10.1007/s10494-023-00524-0
Cristian Marchioli, Manuel García-Villalba, M. Salvetti, Philipp Schlatter
{"title":"Advances in Direct and Large-Eddy Simulations","authors":"Cristian Marchioli, Manuel García-Villalba, M. Salvetti, Philipp Schlatter","doi":"10.1007/s10494-023-00524-0","DOIUrl":"https://doi.org/10.1007/s10494-023-00524-0","url":null,"abstract":"","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139439370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Flow, Turbulence and Combustion
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1