Pub Date : 2024-10-05DOI: 10.1016/j.gete.2024.100603
Amulya Ratna Roul , Vikram Vishal
Understanding the thermomechanical response of rock at high temperatures is crucial for various energy applications such as underground coal gasification and geothermal systems. The study investigated the effects of temperature, mineral composition, and grain size on crack initiation (CI) and crack damage (CD) thresholds in Jodhpur sandstones using uniaxial compressive strength with acoustic emission, Brazilian tensile strength, and thermogravimetric analysis subjected to elevated temperatures. The study revealed distinct patterns in crack initiation stress threshold ratios (CISTR) and crack damage stress threshold ratios (CDSTR) influenced by mineral composition and grain size under temperature treatments. Ferruginous quartz arenite exhibited an inverse relationship between quartz content and crack initiation/damage stress thresholds, while siliceous quartz arenite and subarkose showed a positive correlation. The established variation is attributed to the differing grain boundary strengths among the minerals. Comparative analysis of crack thresholds with the minerals, excluding quartz and feldspar, revealed complex relationships with clay and other minerals. Finer-grained sandstones showed direct proportionality in CI and CISTR with clay content, while coarser sandstones exhibited an inverse relationship. Additionally, the study highlighted differential trends in toughness parameters and CISTR, emphasizing the role of grain size and heat-treatment conditions in governing stress thresholds. Significant chemical changes, including quartz phase shifts and kaolinite/muscovite dehydroxylation, occurred in sandstones at 500–600°C. The presence of kaolinite/hematite in ferruginous quartz arenite caused the increased mass loss in pure O2 due to kaolinite breakdown, while siliceous quartz arenite exhibited a greater mass loss in standard conditions. The findings suggest that quartz content does not consistently enhance rock strength under heat treatment, particularly in the presence of significant clay minerals, leading to an inverse quartz-rock strength relationship in ferruginous quartz arenites. The study provides valuable insights into the thermomechanical behavior of sandstones, which is crucial for assessing rock stability and durability in energy applications.
{"title":"Thermomechanical response and crack evolution of sandstone at elevated temperatures","authors":"Amulya Ratna Roul , Vikram Vishal","doi":"10.1016/j.gete.2024.100603","DOIUrl":"10.1016/j.gete.2024.100603","url":null,"abstract":"<div><div>Understanding the thermomechanical response of rock at high temperatures is crucial for various energy applications such as underground coal gasification and geothermal systems. The study investigated the effects of temperature, mineral composition, and grain size on crack initiation (CI) and crack damage (CD) thresholds in Jodhpur sandstones using uniaxial compressive strength with acoustic emission, Brazilian tensile strength, and thermogravimetric analysis subjected to elevated temperatures. The study revealed distinct patterns in crack initiation stress threshold ratios (CISTR) and crack damage stress threshold ratios (CDSTR) influenced by mineral composition and grain size under temperature treatments. Ferruginous quartz arenite exhibited an inverse relationship between quartz content and crack initiation/damage stress thresholds, while siliceous quartz arenite and subarkose showed a positive correlation. The established variation is attributed to the differing grain boundary strengths among the minerals. Comparative analysis of crack thresholds with the minerals, excluding quartz and feldspar, revealed complex relationships with clay and other minerals. Finer-grained sandstones showed direct proportionality in CI and CISTR with clay content, while coarser sandstones exhibited an inverse relationship. Additionally, the study highlighted differential trends in toughness parameters and CISTR, emphasizing the role of grain size and heat-treatment conditions in governing stress thresholds. Significant chemical changes, including quartz phase shifts and kaolinite/muscovite dehydroxylation, occurred in sandstones at 500–600°C. The presence of kaolinite/hematite in ferruginous quartz arenite caused the increased mass loss in pure O<sub>2</sub> due to kaolinite breakdown, while siliceous quartz arenite exhibited a greater mass loss in standard conditions. The findings suggest that quartz content does not consistently enhance rock strength under heat treatment, particularly in the presence of significant clay minerals, leading to an inverse quartz-rock strength relationship in ferruginous quartz arenites. The study provides valuable insights into the thermomechanical behavior of sandstones, which is crucial for assessing rock stability and durability in energy applications.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100603"},"PeriodicalIF":3.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1016/j.gete.2024.100604
Wei Yao , Xuan Li , Guilherme Corrêa Soares , Mikko Hokka
The high cost of drilling deep wells is the main barrier to the widespread exploitation of deep geothermal energy. Percussive drilling is one of the significant drilling technologies used in energy exploration projects. However, there is no good quantitative understanding of how much energy in percussive drilling is consumed in pulverization, heating, the kinetic energy of particles, acoustic emission, etc. In this study, energy efficiency is quantitatively investigated to understand the percussive drilling process better. The dynamic percussive drilling was evaluated using a modified split Hopkinson pressure bar (SHPB) system and non-contact measurements. The amount of energy dissipated in different processes and the overall energy efficiency was estimated for Kuru granite, Balmoral granite, and Kivijärvi gabbro. The energy spent on the kinetic energy Ek of fragments was evaluated using a high-speed camera, whereas the energy consumed on heat or the thermal energy Et was obtained by high-speed infrared imaging. The cracking energy Ec was measured by using the surface energy of rock and the total newly created surface areas. The results indicate that the fragment size distribution of these three rocks generally varies with the penetration speed, and the fragmentation level of these rocks increases with the penetration speed. The input energy and the energy consumption grow with the increase of the penetration speed. The proportions of Et, Ek, and Ec in the total energy consumption for these three rocks increase with the penetration speed. The energy efficiency obtained from the dynamic indentation experiments for the three rocks generally increases with the penetration speed and almost approaches a limit value when the penetration speed is high. A model is improved to describe the relationship between energy efficiency and penetration speed quantitatively. Therefore, the penetration process should be optimized to balance the high drilling efficiency and the low energy consumption.
钻探深井的高昂成本是广泛开发深层地热能源的主要障碍。冲击钻井是能源勘探项目中使用的重要钻井技术之一。然而,对于冲击钻在粉碎、加热、颗粒动能、声发射等方面消耗了多少能量,目前还没有很好的定量了解。本研究对能效进行了定量研究,以更好地了解冲击钻的钻进过程。使用改进的分体式霍普金森压力棒(SHPB)系统和非接触式测量方法对动态冲击钻进进行了评估。估算了库鲁花岗岩、巴尔莫勒尔花岗岩和基维耶尔维辉长岩在不同过程中耗散的能量以及总体能量效率。使用高速照相机评估了碎片动能 Ek 消耗的能量,而热量或热能 Et 消耗的能量则是通过高速红外成像获得的。裂解能 Ec 是通过岩石表面能和新产生的总表面积来测量的。结果表明,这三种岩石的碎裂尺寸分布一般随穿透速度而变化,岩石的碎裂程度随穿透速度而增加。输入能量和能量消耗随着穿透速度的增加而增加。在这三种岩石的总能耗中,Et、Ek 和 Ec 所占的比例随着穿透速度的增加而增加。这三种岩石的动态压入实验所获得的能量效率一般随穿透速度的增加而增加,当穿透速度较高时,能量效率几乎接近极限值。改进的模型可以定量描述能量效率与贯入速度之间的关系。因此,应优化贯入过程,以兼顾高钻进效率和低能耗。
{"title":"Quantification of energy consumed in simulated percussive drilling process using dynamic indentation experiment","authors":"Wei Yao , Xuan Li , Guilherme Corrêa Soares , Mikko Hokka","doi":"10.1016/j.gete.2024.100604","DOIUrl":"10.1016/j.gete.2024.100604","url":null,"abstract":"<div><div>The high cost of drilling deep wells is the main barrier to the widespread exploitation of deep geothermal energy. Percussive drilling is one of the significant drilling technologies used in energy exploration projects. However, there is no good quantitative understanding of how much energy in percussive drilling is consumed in pulverization, heating, the kinetic energy of particles, acoustic emission, etc. In this study, energy efficiency is quantitatively investigated to understand the percussive drilling process better. The dynamic percussive drilling was evaluated using a modified split Hopkinson pressure bar (SHPB) system and non-contact measurements. The amount of energy dissipated in different processes and the overall energy efficiency was estimated for Kuru granite, Balmoral granite, and Kivijärvi gabbro. The energy spent on the kinetic energy <em>E</em><sub><em>k</em></sub> of fragments was evaluated using a high-speed camera, whereas the energy consumed on heat or the thermal energy <em>E</em><sub><em>t</em></sub> was obtained by high-speed infrared imaging. The cracking energy <em>E</em><sub><em>c</em></sub> was measured by using the surface energy of rock and the total newly created surface areas. The results indicate that the fragment size distribution of these three rocks generally varies with the penetration speed, and the fragmentation level of these rocks increases with the penetration speed. The input energy and the energy consumption grow with the increase of the penetration speed. The proportions of <em>E</em><sub><em>t</em></sub>, <em>E</em><sub><em>k</em></sub>, and <em>E</em><sub><em>c</em></sub> in the total energy consumption for these three rocks increase with the penetration speed. The energy efficiency obtained from the dynamic indentation experiments for the three rocks generally increases with the penetration speed and almost approaches a limit value when the penetration speed is high. A model is improved to describe the relationship between energy efficiency and penetration speed quantitatively. Therefore, the penetration process should be optimized to balance the high drilling efficiency and the low energy consumption.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100604"},"PeriodicalIF":3.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.gete.2024.100601
Antonia Nousiou, Erich Pimentel, Georgios Anagnostou
The swelling of anhydritic claystones often leads to severe tunnel damage. Even though this phenomenon has gained significant scientific interest, particularly in the last decades, there are still open questions which introduce uncertainties in tunnel design. One question concerns the strains developing during the anhydrite to gypsum transformation (AGT). These depend, among other factors, on whether the gypsum crystals grow within the available pore space or whether they tend to push the particles apart, leading to an expansion of the matrix and, in turn, larger macroscopic strains. The experimental investigations of this paper aim to assess the influence of the initial porosity on the strains developing during AGT. Specimens consisting of highly compacted anhydrite and kaolin powders are created with varying initial porosities between 0.22 and 0.35. It is concluded that, ceteris paribus, the strains developing during AGT decreases with increasing initial porosity. The results also indicate that in the case of high initial porosity the gypsum crystals grow in the available pore space, thus decreasing the porosity, while in the case of low initial porosity, gypsum growth leads to an increase of the pore space. The results are applicable to porous media where crystallisation may occur within the pores.
{"title":"Experimental investigation into the effect of porosity on the strains developing during anhydrite to gypsum transformation","authors":"Antonia Nousiou, Erich Pimentel, Georgios Anagnostou","doi":"10.1016/j.gete.2024.100601","DOIUrl":"10.1016/j.gete.2024.100601","url":null,"abstract":"<div><div>The swelling of anhydritic claystones often leads to severe tunnel damage. Even though this phenomenon has gained significant scientific interest, particularly in the last decades, there are still open questions which introduce uncertainties in tunnel design. One question concerns the strains developing during the anhydrite to gypsum transformation (AGT). These depend, among other factors, on whether the gypsum crystals grow within the available pore space or whether they tend to push the particles apart, leading to an expansion of the matrix and, in turn, larger macroscopic strains. The experimental investigations of this paper aim to assess the influence of the initial porosity on the strains developing during AGT. Specimens consisting of highly compacted anhydrite and kaolin powders are created with varying initial porosities between 0.22 and 0.35. It is concluded that, <em>ceteris paribus</em>, the strains developing during AGT decreases with increasing initial porosity. The results also indicate that in the case of high initial porosity the gypsum crystals grow in the available pore space, thus decreasing the porosity, while in the case of low initial porosity, gypsum growth leads to an increase of the pore space. The results are applicable to porous media where crystallisation may occur within the pores.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100601"},"PeriodicalIF":3.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.gete.2024.100602
Omid Habibzadeh-Bigdarvish , Gang Lei , Hussein Hashemi Senejani , Alireza Fakhrabadi , Anand J. Puppala , Xinbao Yu
A geothermal-based external hydronic heating system (EHHS) has been developed as an effective solution to address the de-icing needs of in-service bridges with minimum negative impacts on the structure, traffic, and environment. This paper discusses the implementation and operational response of a new design of the EHHS in which rather than the whole bottom surface of the bridge deck, only the hydronic heating loops are covered with insulation material and provides the accessibility for visual inspection of the bridge deck. The first full-scale external hydronic heating system with an insulated loop (EHHS-IL) was installed on a mock-up bridge deck in north Texas and tested in a record snowstorm with a low ambient temperature of −19.5 ˚C. The system operated in three different stages, and the inlet fluid temperature was adjusted according to the weather forecast. Overall, during a 10-day operation, three ice and snow events and 209 hours of freezing ambient temperature were observed. The heating system was able to maintain the heated bridge deck surface temperature above freezing except for 1.3 hours when the −19.5 ˚C low ambient temperature coincided with snowfall. The average surface heat flux during the test varied from 34.8 – 84 W/m2, and the average heating efficiency was estimated at 17.7 %. The seasonal performance factor (SPF) of the system remains consistently greater than 1 during the heating period. Also, 422 kWh of electrical energy was consumed during 10 days of operation by the entire geothermal de-icing system. This new geothermal bridge deicing system offers a practical solution to icy bridges by retrofitting.
{"title":"Geothermal bridge deck de-icing using a novel external hydronic heating system with insulated pipe loops","authors":"Omid Habibzadeh-Bigdarvish , Gang Lei , Hussein Hashemi Senejani , Alireza Fakhrabadi , Anand J. Puppala , Xinbao Yu","doi":"10.1016/j.gete.2024.100602","DOIUrl":"10.1016/j.gete.2024.100602","url":null,"abstract":"<div><div>A geothermal-based external hydronic heating system (EHHS) has been developed as an effective solution to address the de-icing needs of in-service bridges with minimum negative impacts on the structure, traffic, and environment. This paper discusses the implementation and operational response of a new design of the EHHS in which rather than the whole bottom surface of the bridge deck, only the hydronic heating loops are covered with insulation material and provides the accessibility for visual inspection of the bridge deck. The first full-scale external hydronic heating system with an insulated loop (EHHS-IL) was installed on a mock-up bridge deck in north Texas and tested in a record snowstorm with a low ambient temperature of −19.5 ˚C. The system operated in three different stages, and the inlet fluid temperature was adjusted according to the weather forecast. Overall, during a 10-day operation, three ice and snow events and 209 hours of freezing ambient temperature were observed. The heating system was able to maintain the heated bridge deck surface temperature above freezing except for 1.3 hours when the −19.5 ˚C low ambient temperature coincided with snowfall. The average surface heat flux during the test varied from 34.8 – 84 W/m<sup>2,</sup> and the average heating efficiency was estimated at 17.7 %. The seasonal performance factor (SPF) of the system remains consistently greater than 1 during the heating period. Also, 422 kWh of electrical energy was consumed during 10 days of operation by the entire geothermal de-icing system. This new geothermal bridge deicing system offers a practical solution to icy bridges by retrofitting.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100602"},"PeriodicalIF":3.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1016/j.gete.2024.100598
Lingfei Su , Chenglong Wang , Abdelmalek Bouazza , Gangqiang Kong , Xuanming Ding
This paper explores the dynamic responses of model energy piles embedded in sand subjected to the combined effects of temperature change and cyclic mechanical loading. The same type of cyclic loading was applied separately on three single energy piles with temperature differences (ΔT) of −20 ℃, +20 ℃ and 0 ℃, respectively. The results show that after 2000 cycles of mechanical loading, the cumulative displacement of the energy pile increased under cooling conditions and decreased under heating conditions. The tip resistance of a single energy pile increased under both conditions, especially during cooling.
{"title":"Vertical dynamic responses of model energy piles","authors":"Lingfei Su , Chenglong Wang , Abdelmalek Bouazza , Gangqiang Kong , Xuanming Ding","doi":"10.1016/j.gete.2024.100598","DOIUrl":"10.1016/j.gete.2024.100598","url":null,"abstract":"<div><div>This paper explores the dynamic responses of model energy piles embedded in sand subjected to the combined effects of temperature change and cyclic mechanical loading. The same type of cyclic loading was applied separately on three single energy piles with temperature differences (ΔT) of −20 ℃, +20 ℃ and 0 ℃, respectively. The results show that after 2000 cycles of mechanical loading, the cumulative displacement of the energy pile increased under cooling conditions and decreased under heating conditions. The tip resistance of a single energy pile increased under both conditions, especially during cooling.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100598"},"PeriodicalIF":3.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.gete.2024.100600
Yifeng Wang , Hua Shao , Kristopher L. Kuhlman , Carlos F. Jove-Colon , Olaf Kolditz
Understanding fluid distribution and migration in deformable low-permeability rock salt is critical for geologic disposal of nuclear waste. Field observations indicate that fluids in a salt formation are likely compartmentalized into relatively isolated patches and fluid release from such a formation is generally episodic. The underlying mechanism for these phenomena remains poorly understood. In this paper, a hydrological-mechanical model is formulated for fluid percolation in a rock salt formation under a deviatoric stress. Using a linear stability analysis, we show that a porosity wave (a train of alternating high and low porosity pockets) can emerge from positive feedbacks among intergranular wetting, grain boundary weakening and shear-induced material dilatancy. Fluid localization or episodic release can be viewed as a stationary or propagating porosity wave respectively. Fluid pockets transported via a porosity wave remain relatively isolated with minimal mixing between neighboring pockets. We further show that the velocity of fluid flow can be significantly enhanced by the emergence of a porosity wave. The concept and the related model presented in this paper provide a unified consistent explanation for the key features observed in fluid flow in rock salt. The similar process is expected to occur in other deformable low-permeability media such as shale and partially molten rocks under a deviatoric stress. Thus, the result presented here has an important implication to hydrocarbon expulsion from shale source rocks, radioactive waste isolation in a tight rock repository, and caprock integrity of a subsurface gas (CO2, H2 or CH4) storage system. It may also help develop a new engineering approach to fluid injection into or extraction from unconventional reservoirs.
{"title":"Shear-induced fluid localization, episodic fluid release and porosity wave in deformable low-permeability rock salt","authors":"Yifeng Wang , Hua Shao , Kristopher L. Kuhlman , Carlos F. Jove-Colon , Olaf Kolditz","doi":"10.1016/j.gete.2024.100600","DOIUrl":"10.1016/j.gete.2024.100600","url":null,"abstract":"<div><div>Understanding fluid distribution and migration in deformable low-permeability rock salt is critical for geologic disposal of nuclear waste. Field observations indicate that fluids in a salt formation are likely compartmentalized into relatively isolated patches and fluid release from such a formation is generally episodic. The underlying mechanism for these phenomena remains poorly understood. In this paper, a hydrological-mechanical model is formulated for fluid percolation in a rock salt formation under a deviatoric stress. Using a linear stability analysis, we show that a porosity wave (a train of alternating high and low porosity pockets) can emerge from positive feedbacks among intergranular wetting, grain boundary weakening and shear-induced material dilatancy. Fluid localization or episodic release can be viewed as a stationary or propagating porosity wave respectively. Fluid pockets transported via a porosity wave remain relatively isolated with minimal mixing between neighboring pockets. We further show that the velocity of fluid flow can be significantly enhanced by the emergence of a porosity wave. The concept and the related model presented in this paper provide a unified consistent explanation for the key features observed in fluid flow in rock salt. The similar process is expected to occur in other deformable low-permeability media such as shale and partially molten rocks under a deviatoric stress. Thus, the result presented here has an important implication to hydrocarbon expulsion from shale source rocks, radioactive waste isolation in a tight rock repository, and caprock integrity of a subsurface gas (CO<sub>2</sub>, H<sub>2</sub> or CH<sub>4</sub>) storage system. It may also help develop a new engineering approach to fluid injection into or extraction from unconventional reservoirs.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100600"},"PeriodicalIF":3.3,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1016/j.gete.2024.100599
E. Crisci , R. Ewy , A. Ferrari , S.B. Giger
In shale testing, understanding the impact of effective stress and saturation conditions is crucial for accurate material behaviour assessment and parameter determination. In some cases, saturation in triaxial testing starts at low effective stress before ramping up for shearing. However, when in contact with water (or saline water), shales are prone to swelling, particularly at low effective stress levels, which can induce fissures and alter material properties. This study investigates the influence of fluid saturation strategies and stress/pressure variations on the mechanical behaviour of shales, particularly under low effective confinement. Building upon the comprehensive testing campaign (>140 tests) in Crisci et al. (2024), additional tests were conducted on Opalinus Clay shale, focusing on sample saturation methods and loading histories before shearing. The conditions under which tested specimens experience damage were detected through diagnostic indicators such as differences in stress path and lower strength and stiffness compared to intact specimens with identical basic properties. Micro CT scanning confirms that damage is related to the development of fissures. The volumetric changes in specimens were quantified throughout the testing phases and thresholds for tolerable strains and effective stresses, specific to this material, were established. Comparative analysis with Opalinus Clay from shallower depths and other shales globally revealed consistent findings. Notably, it is shown that, for all shale types analyzed, a linear failure envelope emerges in the low to intermediate effective stress regime when filtering out "damaged" specimens. This suggests that non-linear failure envelopes observed in some cases may stem from exposing specimens to low effective stress before shearing.
{"title":"Assessing swelling-induced damage in shale samples during triaxial testing","authors":"E. Crisci , R. Ewy , A. Ferrari , S.B. Giger","doi":"10.1016/j.gete.2024.100599","DOIUrl":"10.1016/j.gete.2024.100599","url":null,"abstract":"<div><div>In shale testing, understanding the impact of effective stress and saturation conditions is crucial for accurate material behaviour assessment and parameter determination. In some cases, saturation in triaxial testing starts at low effective stress before ramping up for shearing. However, when in contact with water (or saline water), shales are prone to swelling, particularly at low effective stress levels, which can induce fissures and alter material properties. This study investigates the influence of fluid saturation strategies and stress/pressure variations on the mechanical behaviour of shales, particularly under low effective confinement. Building upon the comprehensive testing campaign (>140 tests) in Crisci et al. (2024), additional tests were conducted on Opalinus Clay shale, focusing on sample saturation methods and loading histories before shearing. The conditions under which tested specimens experience damage were detected through diagnostic indicators such as differences in stress path and lower strength and stiffness compared to intact specimens with identical basic properties. Micro CT scanning confirms that damage is related to the development of fissures. The volumetric changes in specimens were quantified throughout the testing phases and thresholds for tolerable strains and effective stresses, specific to this material, were established. Comparative analysis with Opalinus Clay from shallower depths and other shales globally revealed consistent findings. Notably, it is shown that, for all shale types analyzed, a linear failure envelope emerges in the low to intermediate effective stress regime when filtering out \"damaged\" specimens. This suggests that non-linear failure envelopes observed in some cases may stem from exposing specimens to low effective stress before shearing.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100599"},"PeriodicalIF":3.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.gete.2024.100597
Taehyun Kim , Chan-Hee Park , Changsoo Lee , Jin-Seop Kim , Eui-Seob Park , Bastian Graupner
We investigated thermo–hydro–mechanical (T-H–M) coupled behavior observed during the full-scale heater emplacement experiment at the Mont-Terri underground research laboratory conducted in the Opalinus clay as part of the DECOVALEX-2023 Task C project. Utilizing the OGS-FLAC simulator, we created a three-dimensional model to simulate multiphase flow in the experiment, applying extended Philip and de Vries’ model and incorporating the anisotropic T–H–M properties of the Opalinus clay. The simulation, which included a ventilation process, spanned five years of heating experiments and successfully replicated the measured temperature, pore pressure, displacement, and relative humidity results in bentonite and host rock during the experiment. The analysis revealed that capillary pressure significantly influenced the pore pressure change in the host rock near the tunnel, while thermal pressurization became dominant with increasing distance. Consequently, we conducted a sensitivity analysis on a simplified model to evaluate the effect of capillary pressure on the disposal system. Capillarity is a dominant factor for the multiphase flow depending on the distance from the heat. Variations in capillary pressure were observed depending on the gas entry pressure and water retention model, indicating that the capillarity of unsaturated bentonite could inherently affect the T–H–M results within the disposal system.
作为 DECOVALEX-2023 任务 C 项目的一部分,我们研究了在 Mont-Terri 地下研究实验室的 Opalinus 粘土中进行的全面加热器置入实验中观察到的热-水-机械(T-H-M)耦合行为。利用 OGS-FLAC 模拟器,我们创建了一个三维模型来模拟实验中的多相流,应用了 Philip 和 de Vries 的扩展模型,并结合了 Opalinus 粘土的各向异性 T-H-M 特性。该模拟包括一个通风过程,跨越了五年的加热实验,成功地复制了实验期间在膨润土和主岩中测量到的温度、孔隙压力、位移和相对湿度结果。分析表明,毛细管压力对隧道附近主岩的孔隙压力变化有显著影响,而随着距离的增加,热加压成为主要影响因素。因此,我们对简化模型进行了敏感性分析,以评估毛细管压力对弃置系统的影响。毛细管是多相流的主导因素,取决于与热量的距离。毛细管压力的变化取决于气体进入压力和保水性模型,这表明非饱和膨润土的毛细管性可能会在本质上影响处理系统内的 T-H-M 结果。
{"title":"A numerical analysis of Thermo–Hydro–Mechanical behavior in the FE experiment at Mont Terri URL: Investigating capillary effects in bentonite on the disposal system","authors":"Taehyun Kim , Chan-Hee Park , Changsoo Lee , Jin-Seop Kim , Eui-Seob Park , Bastian Graupner","doi":"10.1016/j.gete.2024.100597","DOIUrl":"10.1016/j.gete.2024.100597","url":null,"abstract":"<div><div>We investigated thermo–hydro–mechanical (T-H–M) coupled behavior observed during the full-scale heater emplacement experiment at the Mont-Terri underground research laboratory conducted in the Opalinus clay as part of the DECOVALEX-2023 Task C project. Utilizing the OGS-FLAC simulator, we created a three-dimensional model to simulate multiphase flow in the experiment, applying extended Philip and de Vries’ model and incorporating the anisotropic T–H–M properties of the Opalinus clay. The simulation, which included a ventilation process, spanned five years of heating experiments and successfully replicated the measured temperature, pore pressure, displacement, and relative humidity results in bentonite and host rock during the experiment. The analysis revealed that capillary pressure significantly influenced the pore pressure change in the host rock near the tunnel, while thermal pressurization became dominant with increasing distance. Consequently, we conducted a sensitivity analysis on a simplified model to evaluate the effect of capillary pressure on the disposal system. Capillarity is a dominant factor for the multiphase flow depending on the distance from the heat. Variations in capillary pressure were observed depending on the gas entry pressure and water retention model, indicating that the capillarity of unsaturated bentonite could inherently affect the T–H–M results within the disposal system.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100597"},"PeriodicalIF":3.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-15DOI: 10.1016/j.gete.2024.100596
Carlos Plúa , Minh-Ngoc Vu , Gilles Armand , Zady Ouraga , Zhan Yu , Jian-Fu Shao , Qianyun Wang , Hua Shao , Tsubasa Sasaki , Sangcheol Yoon , Jonny Rutqvist , Fei Song , Stefano Collico , Antonio Gens , Louise Bruffell , Kate Thatcher , Alexander E. Bond
This study addresses the thermal hydrofracturing behavior in claystone within the context of the high-level and intermediate-level long-lived radioactive waste disposal. The heat generated by the waste packages will lead to a temperature increment within the host formation, inducing a pore pressure build-up essentially due to the difference between the thermal expansion coefficient of the pore water and that of the solid skeleton. If the induced pore pressure build-up is too high, the host formation will experience tensile stresses, potentially exceeding its tensile strength and resulting in fracturing. Understanding of these processes and improving numerical models to reproduce them will help the design, optimization, and safety of the repository. Additionally, it will contribute to demonstrating robustness by showing that such processes are not expected to occur at the repository scale.
This study was conducted as part of the DECOVALEX-2023 project and synthesizes the efforts of six research teams modelling laboratory thermal extension tests conducted on Callovo-Oxfordian claystone (COx) samples, as well as an in-situ thermal hydrofracturing experiment conducted at the Meuse/Haute-Marne Underground Research Laboratory in France. The teams used different numerical codes with different approaches, including continuum and discrete approaches, to model these two tests. The laboratory tests were used to calibrate the teams’ models, such as the fracturing criterion. The teams considered a thermo-hydromechanical formulation under saturated conditions. One of the key features of their models was the incorporation of changes in the hydraulic properties of the COx through hydromechanical coupling.
The approaches developed by the teams demonstrated their capability to analyze and reproduce fracture initiation in the COx in terms of time of occurrence and location based on their respective stress analyses. However, attempts to reproduce fracture aperture or fracture propagation were less accurate and remain areas for future research, which were beyond the scope of this study.
{"title":"Numerical investigation of the thermal hydrofracturing behavior of the Callovo-Oxfordian claystone","authors":"Carlos Plúa , Minh-Ngoc Vu , Gilles Armand , Zady Ouraga , Zhan Yu , Jian-Fu Shao , Qianyun Wang , Hua Shao , Tsubasa Sasaki , Sangcheol Yoon , Jonny Rutqvist , Fei Song , Stefano Collico , Antonio Gens , Louise Bruffell , Kate Thatcher , Alexander E. Bond","doi":"10.1016/j.gete.2024.100596","DOIUrl":"10.1016/j.gete.2024.100596","url":null,"abstract":"<div><div>This study addresses the thermal hydrofracturing behavior in claystone within the context of the high-level and intermediate-level long-lived radioactive waste disposal. The heat generated by the waste packages will lead to a temperature increment within the host formation, inducing a pore pressure build-up essentially due to the difference between the thermal expansion coefficient of the pore water and that of the solid skeleton. If the induced pore pressure build-up is too high, the host formation will experience tensile stresses, potentially exceeding its tensile strength and resulting in fracturing. Understanding of these processes and improving numerical models to reproduce them will help the design, optimization, and safety of the repository. Additionally, it will contribute to demonstrating robustness by showing that such processes are not expected to occur at the repository scale.</div><div>This study was conducted as part of the DECOVALEX-2023 project and synthesizes the efforts of six research teams modelling laboratory thermal extension tests conducted on Callovo-Oxfordian claystone (COx) samples, as well as an in-situ thermal hydrofracturing experiment conducted at the Meuse/Haute-Marne Underground Research Laboratory in France. The teams used different numerical codes with different approaches, including continuum and discrete approaches, to model these two tests. The laboratory tests were used to calibrate the teams’ models, such as the fracturing criterion. The teams considered a thermo-hydromechanical formulation under saturated conditions. One of the key features of their models was the incorporation of changes in the hydraulic properties of the COx through hydromechanical coupling.</div><div>The approaches developed by the teams demonstrated their capability to analyze and reproduce fracture initiation in the COx in terms of time of occurrence and location based on their respective stress analyses. However, attempts to reproduce fracture aperture or fracture propagation were less accurate and remain areas for future research, which were beyond the scope of this study.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100596"},"PeriodicalIF":3.3,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.gete.2024.100592
Stéphane Dumoulin , Isabelle Thenevin , Alexandre Kane , Ahmed Rouabhi , John-Paul Latham , Emad Jahangir , Hedi Sellami
This study, performed during the ORCHYD European project, devoted to drilling deep geothermal boreholes, has many potential applications to mechanical studies. It gathers geological descriptions of three outcropping granites from Scandinavia (Kuru Grey and Red Bohus) and from the South of France (Sidobre). Microstructural investigations include optical microscopy and X-ray tomography. The three granites chosen contain grain sizes that cover all the common ranges for granites: fine, medium and coarse. As the mineral phase volume fractions are similar in each, the grain defects and grain boundaries are carefully studied in an attempt to understand the physical and mechanical properties of the three granite rock samples measured at laboratory specimen scale. The rocks are tested for UCS, BTS and triaxial compressive strength with confining pressures up to 225 MPa or/and high strain-rates up to 103/s. The micro-structural parameters influencing the mechanical behaviour are highlighted. Test results show that the effect of confining pressure and strain-rate on compressive strength are uncoupled. These effects are then estimated independently, and a fracture criterion in compression accounting for both variables is proposed for the family of very hard granites. This criterion takes as a single reference strength measure for each rock the deviatoric stress at failure under 20 MPa confining stress in the quasi-static regime. It is then compared with existing datasets for which both quasi-static and dynamic regime data are available. This complete data set on these three very hard granites (UCS ∼ 200 MPa), together with a synthesis for failure prediction, has the potential to inform numerous rock engineering projects and be of value to the scientific community.
这项研究是在致力于钻探深层地热钻孔的欧洲 ORCHYD 项目期间进行的,在力学研究方面有许多潜在应用。它收集了斯堪的纳维亚(Kuru Grey 和 Red Bohus)和法国南部(Sidobre)三块露头花岗岩的地质描述。微观结构研究包括光学显微镜和 X 射线断层扫描。所选的三种花岗岩的晶粒大小涵盖了花岗岩的所有常见范围:细粒、中粒和粗粒。由于每种花岗岩的矿物相体积分数相似,因此对晶粒缺陷和晶粒边界进行了仔细研究,试图了解在实验室试样尺度下测量的三种花岗岩岩石样本的物理和机械性能。对岩石进行了 UCS、BTS 和三轴抗压强度测试,约束压力高达 225 兆帕或/和高应变速率高达 103/秒。重点介绍了影响力学行为的微观结构参数。试验结果表明,约束压力和应变速率对抗压强度的影响是不耦合的。然后,对这些影响进行了独立估算,并为超硬花岗岩系列提出了一个考虑到这两个变量的压缩断裂标准。该标准将每块岩石在 20 兆帕准静态约束应力下破坏时的偏差应力作为单一的参考强度测量值。然后将其与现有的准静态和动态数据集进行比较。关于这三种硬度极高的花岗岩(UCS ∼ 200 MPa)的完整数据集,以及用于破坏预测的综合方法,有可能为众多岩石工程项目提供信息,并对科学界具有重要价值。
{"title":"A complete experimental study on hard granites: Microstructural characterization, mechanical response, and failure criterion","authors":"Stéphane Dumoulin , Isabelle Thenevin , Alexandre Kane , Ahmed Rouabhi , John-Paul Latham , Emad Jahangir , Hedi Sellami","doi":"10.1016/j.gete.2024.100592","DOIUrl":"10.1016/j.gete.2024.100592","url":null,"abstract":"<div><p>This study, performed during the ORCHYD European project, devoted to drilling deep geothermal boreholes, has many potential applications to mechanical studies. It gathers geological descriptions of three outcropping granites from Scandinavia (Kuru Grey and Red Bohus) and from the South of France (Sidobre). Microstructural investigations include optical microscopy and X-ray tomography. The three granites chosen contain grain sizes that cover all the common ranges for granites: fine, medium and coarse. As the mineral phase volume fractions are similar in each, the grain defects and grain boundaries are carefully studied in an attempt to understand the physical and mechanical properties of the three granite rock samples measured at laboratory specimen scale. The rocks are tested for UCS, BTS and triaxial compressive strength with confining pressures up to 225 MPa or/and high strain-rates up to 10<sup>3</sup>/s. The micro-structural parameters influencing the mechanical behaviour are highlighted. Test results show that the effect of confining pressure and strain-rate on compressive strength are uncoupled. These effects are then estimated independently, and a fracture criterion in compression accounting for both variables is proposed for the family of very hard granites. This criterion takes as a single reference strength measure for each rock the deviatoric stress at failure under 20 MPa confining stress in the quasi-static regime. It is then compared with existing datasets for which both quasi-static and dynamic regime data are available. This complete data set on these three very hard granites (UCS ∼ 200 MPa), together with a synthesis for failure prediction, has the potential to inform numerous rock engineering projects and be of value to the scientific community.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"40 ","pages":"Article 100592"},"PeriodicalIF":3.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352380824000595/pdfft?md5=a9ab308b23241c7272095cdbad5eba81&pid=1-s2.0-S2352380824000595-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}