Pub Date : 2024-12-01Epub Date: 2024-08-19DOI: 10.1007/s00360-024-01578-w
Fazul Nabi, Muhammad Asif Arain, Mohammad Farooque Hassan, Qurban Ali Shah, Mikhlid H Almutairi, Jameel Ahmed Buzdar
The current research was conducted to assess the effect of in ovo feeding (IOF) of selenium (Se) and zinc (Zn) on hatchability, production performance, liver, intestinal morphology, antioxidant levels and expression levels of immune-related genes in broiler chickens. A total of 400 fertilized eggs were equally divided into four groups: control (non-injected), sham (in ovo injection of 0.75% NaCl), Se (@ 1.5 µg/egg in ovo injection) and Zn (500 µg/egg in ovo injection) groups respectively. On the seventeenth day of incubation, treatment solutions were administered into amniotic fluid of fertilized eggs. The results revealed that Se and Zn supplementation significantly (P < 0.05) enhanced hatchability, post-hatch growth, organ development, and liver antioxidant capability. Histopathological examination revealed a typical hepatocyte morphology, well-arranged cells, and a significant (P < 0.05) decrease in apoptosis in both selenium and zinc groups. Additionally, selenium and zinc produced auspicious effects on intestinal epithelium and villi surface area. Interestingly, our results revealed that IOF of Se and Zn modulated the expression of immune-related genes in comparison to the control and sham groups. Conclusively, IOF of Se and Zn augmented health and productivity by enhancing the cellular immunity in the broiler chickens, thus IOF can be utilized as an effective strategy to promote health and immunity in broiler chickens.
{"title":"Effects of in ovo supplementation of selenium (Se) and zinc (zn) on hatchability and production performance of broiler chickens.","authors":"Fazul Nabi, Muhammad Asif Arain, Mohammad Farooque Hassan, Qurban Ali Shah, Mikhlid H Almutairi, Jameel Ahmed Buzdar","doi":"10.1007/s00360-024-01578-w","DOIUrl":"10.1007/s00360-024-01578-w","url":null,"abstract":"<p><p>The current research was conducted to assess the effect of in ovo feeding (IOF) of selenium (Se) and zinc (Zn) on hatchability, production performance, liver, intestinal morphology, antioxidant levels and expression levels of immune-related genes in broiler chickens. A total of 400 fertilized eggs were equally divided into four groups: control (non-injected), sham (in ovo injection of 0.75% NaCl), Se (@ 1.5 µg/egg in ovo injection) and Zn (500 µg/egg in ovo injection) groups respectively. On the seventeenth day of incubation, treatment solutions were administered into amniotic fluid of fertilized eggs. The results revealed that Se and Zn supplementation significantly (P < 0.05) enhanced hatchability, post-hatch growth, organ development, and liver antioxidant capability. Histopathological examination revealed a typical hepatocyte morphology, well-arranged cells, and a significant (P < 0.05) decrease in apoptosis in both selenium and zinc groups. Additionally, selenium and zinc produced auspicious effects on intestinal epithelium and villi surface area. Interestingly, our results revealed that IOF of Se and Zn modulated the expression of immune-related genes in comparison to the control and sham groups. Conclusively, IOF of Se and Zn augmented health and productivity by enhancing the cellular immunity in the broiler chickens, thus IOF can be utilized as an effective strategy to promote health and immunity in broiler chickens.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"887-897"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-05DOI: 10.1007/s00360-024-01579-9
Julita Sadowska, Karen M Carlson, C Loren Buck, Trixie N Lee, Khrystyne N Duddleston
Energy conservation associated with hibernation is maximized at the intersection of low body temperature (Tb), long torpor bouts, and few interbout arousals. In the arctic ground squirrel (Urocitellus parryii), energy conservation during hibernation is best achieved at ambient temperatures (Ta) around 0 °C; however, they spend the majority of hibernation at considerably lower Ta. Because arctic ground squirrels switch to mixed fuel metabolism, including protein catabolism, at extreme low Ta of hibernation, we sought to investigate how microbial urea-nitrogen recycling is used under different thermal conditions. Injecting squirrels with isotopically labeled urea (13C/15N) during hibernation at Ta's of - 16 °C and 2 °C and while active and euthermic allowed us to assess the ureolytic activity of gut microbes and the amount of liberated nitrogen incorporated into tissues. We found greater incorporation of microbially-liberated nitrogen into tissues of hibernating squirrels. Although ureolytic activity appears higher in euthermic squirrels, liberated nitrogen likely makes up a smaller percentage of the available nitrogen pool in active, fed animals. Because non-lipid fuel is a limiting factor for torpor at lower Ta in this species, we hypothesized there would be greater incorporation of liberated nitrogen in animals hibernating at - 16 °C. However, we found higher microbial-ureolytic activity and incorporation of microbially-liberated nitrogen, particularly in the liver, in squirrels hibernating at 2 °C. Likely this is because squirrels hibernating at 2 °C had higher Tb and longer interbout arousals, a combination of factors creating more favorable conditions for gut microbes to thrive and maintain greater activity while giving the host more time to absorb microbial metabolites.
{"title":"Microbial urea-nitrogen recycling in arctic ground squirrels: the effect of ambient temperature of hibernation.","authors":"Julita Sadowska, Karen M Carlson, C Loren Buck, Trixie N Lee, Khrystyne N Duddleston","doi":"10.1007/s00360-024-01579-9","DOIUrl":"10.1007/s00360-024-01579-9","url":null,"abstract":"<p><p>Energy conservation associated with hibernation is maximized at the intersection of low body temperature (T<sub>b</sub>), long torpor bouts, and few interbout arousals. In the arctic ground squirrel (Urocitellus parryii), energy conservation during hibernation is best achieved at ambient temperatures (T<sub>a</sub>) around 0 °C; however, they spend the majority of hibernation at considerably lower T<sub>a</sub>. Because arctic ground squirrels switch to mixed fuel metabolism, including protein catabolism, at extreme low T<sub>a</sub> of hibernation, we sought to investigate how microbial urea-nitrogen recycling is used under different thermal conditions. Injecting squirrels with isotopically labeled urea (<sup>13</sup>C/<sup>15</sup>N) during hibernation at T<sub>a</sub>'s of - 16 °C and 2 °C and while active and euthermic allowed us to assess the ureolytic activity of gut microbes and the amount of liberated nitrogen incorporated into tissues. We found greater incorporation of microbially-liberated nitrogen into tissues of hibernating squirrels. Although ureolytic activity appears higher in euthermic squirrels, liberated nitrogen likely makes up a smaller percentage of the available nitrogen pool in active, fed animals. Because non-lipid fuel is a limiting factor for torpor at lower T<sub>a</sub> in this species, we hypothesized there would be greater incorporation of liberated nitrogen in animals hibernating at - 16 °C. However, we found higher microbial-ureolytic activity and incorporation of microbially-liberated nitrogen, particularly in the liver, in squirrels hibernating at 2 °C. Likely this is because squirrels hibernating at 2 °C had higher T<sub>b</sub> and longer interbout arousals, a combination of factors creating more favorable conditions for gut microbes to thrive and maintain greater activity while giving the host more time to absorb microbial metabolites.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"909-924"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-07DOI: 10.1007/s00360-024-01587-9
Claudia Silva Rubio, Anne B Kim, William K Milsom, Matthew E Pamenter, Gilbecca Rae Smith, Frank van Breukelen
<p><p>Common tenrecs (Tenrec ecaudatus) are fossorial mammals that use burrows during both active and hibernating seasons in Madagascar and its neighboring islands. Prevailing thought was that tenrecs hibernate for 8-9 months individually, but 13 tenrecs were removed from the same sealed burrow 1 m deep from the surface. Such group hibernation in sealed burrows presumably creates a hypoxic and/or hypercapnic environment and suggests that this placental mammal may have an increased tolerance to hypoxia and hypercapnia. Higher tolerances to hypoxia and hypercapnia have been documented for other mammals capable of hibernation and to determine if this is the case for tenrecs, we exposed them to acute hypoxia (4 h of 16 or 7% O<sub>2</sub>), progressive hypoxia (2 h of 16, 10 and 4% O<sub>2</sub>), or progressive hypercapnia (2 h of 2, 5 and 10% CO<sub>2</sub>) at cold (16 °C) or warm (28 °C) ambient temperatures (T<sub>a</sub>). Oxygen equilibrium curves were also constructed on the whole blood of tenrecs at 10, 25, and 37 °C to determine if hemoglobin (Hb)-O<sub>2</sub> affinity contributes to hypoxia tolerance. In animals held at 16 °C, normoxic and normocapnic levels of oxygen consumption rate ( <math> <msub> <mrow><mover><mtext>V</mtext> <mo>˙</mo></mover> <mtext>O</mtext></mrow> <mn>2</mn></msub> </math> ), body temperature (T<sub>b</sub>), and heart rate (HR) were highly variable between individuals. This inter-individual variation was greatly reduced in animals held at 28 °C for oxygen consumption rate and body temperature. Both hypoxia (acute and progressive) and progressive hypercapnia led to decreases in <math> <msub> <mrow><mover><mtext>V</mtext> <mo>˙</mo></mover> <mtext>O</mtext></mrow> <mn>2</mn></msub> </math> as well as the variation in <math> <msub> <mrow><mover><mtext>V</mtext> <mo>˙</mo></mover> <mtext>O</mtext></mrow> <mn>2</mn></msub> </math> between animals held at 16 °C. The fall in oxygen consumption rate in 7% O<sub>2</sub> independent of changes in body temperature in tenrecs held at 16 °C is unique and not consistent with the typical hypoxic metabolic response seen in other hibernating species that depends on concomitant falls in T<sub>b</sub>. In animals held at 28 °C, exposure to O<sub>2</sub> levels as low as 4% and CO<sub>2</sub> levels as high as 10% had no significant effect on <math> <msub> <mrow><mover><mtext>V</mtext> <mo>˙</mo></mover> <mtext>O</mtext></mrow> <mn>2</mn></msub> </math> , HR, or T<sub>b</sub>, indicative of high tolerance to both hypoxia and hypercapnia. High variation in heart rate remained between individuals in all gas compositions and at all temperatures. Tenrec Hb-O<sub>2</sub> affinity was similar to other homeothermic placental mammals and likely does not contribute to the increased hypoxia tolerance. Ultimately, our results suggest changes in T<sub>a</sub> dictate physiological responses to hypoxia or hypercapnia in tenrecs, responses more characteristic of reptiles than of most placental ma
普通箭猪(Tenrec ecaudatus)是一种穴居哺乳动物,在马达加斯加及其邻近岛屿的活动和冬眠季节都使用洞穴。人们普遍认为恬莱鼠的个体冬眠期为 8-9 个月,但我们从距离地表 1 米深的同一密封洞穴中取出了 13 只恬莱鼠。这种在密封洞穴中的集体冬眠可能会造成缺氧和/或高碳酸环境,并表明这种有胎盘的哺乳动物可能对缺氧和高碳酸环境的耐受性更强。为了确定天牛的情况是否如此,我们让天牛在低温(16 °C)或高温(28 °C)环境下(Ta)暴露于急性缺氧(4 小时 16% 或 7% 的氧气)、渐进性缺氧(2 小时 16%、10% 和 4% 的氧气)或渐进性高碳酸血症(2 小时 2%、5% 和 10% 的二氧化碳)。此外,还在 10、25 和 37 °C条件下构建了腱鱼全血的氧平衡曲线,以确定血红蛋白(Hb)-O2 亲和力是否有助于耐缺氧性。在 16 °C的动物中,正常缺氧和正常碳酸血症水平下的耗氧率(V ˙ O 2)、体温(Tb)和心率(HR)在个体间存在很大差异。在 28 °C条件下,动物耗氧量和体温的个体间差异大大降低。缺氧(急性和进行性)和进行性高碳酸血症都会导致 V ˙ O 2 的下降,以及在 16 °C条件下动物之间 V ˙ O 2 的差异。在 7% O2 条件下,16 °C条件下滇金丝猴的耗氧率下降与体温变化无关,这种情况是独特的,与其他冬眠物种典型的缺氧代谢反应(取决于 Tb 的同时下降)不一致。在 28 °C下的动物,暴露于低至 4% 的氧气水平和高至 10% 的二氧化碳水平对 V ˙ O 2、心率或 Tb 没有显著影响,这表明它们对缺氧和高碳酸血症都有很高的耐受性。在所有气体成分和温度条件下,不同个体之间的心率仍存在很大差异。Tenrec的Hb-O2亲和力与其他胎盘哺乳动物相似,可能不会导致缺氧耐受性的提高。最终,我们的研究结果表明,Ta的变化决定了tenrecs对低氧或高碳酸血症的生理反应,这种反应是爬行动物的特征,而不是大多数胎盘哺乳动物的特征。鉴于鼩鼱的许多解剖学和生理学特征表明它们可能是祖先胎盘哺乳动物的代表,我们的研究结果表明典型的低氧代谢反应是在哺乳动物进化的后期演化而来的。
{"title":"Common tenrecs (Tenrec ecaudatus) reduce oxygen consumption in hypoxia and in hypercapnia without concordant changes to body temperature or heart rate.","authors":"Claudia Silva Rubio, Anne B Kim, William K Milsom, Matthew E Pamenter, Gilbecca Rae Smith, Frank van Breukelen","doi":"10.1007/s00360-024-01587-9","DOIUrl":"10.1007/s00360-024-01587-9","url":null,"abstract":"<p><p>Common tenrecs (Tenrec ecaudatus) are fossorial mammals that use burrows during both active and hibernating seasons in Madagascar and its neighboring islands. Prevailing thought was that tenrecs hibernate for 8-9 months individually, but 13 tenrecs were removed from the same sealed burrow 1 m deep from the surface. Such group hibernation in sealed burrows presumably creates a hypoxic and/or hypercapnic environment and suggests that this placental mammal may have an increased tolerance to hypoxia and hypercapnia. Higher tolerances to hypoxia and hypercapnia have been documented for other mammals capable of hibernation and to determine if this is the case for tenrecs, we exposed them to acute hypoxia (4 h of 16 or 7% O<sub>2</sub>), progressive hypoxia (2 h of 16, 10 and 4% O<sub>2</sub>), or progressive hypercapnia (2 h of 2, 5 and 10% CO<sub>2</sub>) at cold (16 °C) or warm (28 °C) ambient temperatures (T<sub>a</sub>). Oxygen equilibrium curves were also constructed on the whole blood of tenrecs at 10, 25, and 37 °C to determine if hemoglobin (Hb)-O<sub>2</sub> affinity contributes to hypoxia tolerance. In animals held at 16 °C, normoxic and normocapnic levels of oxygen consumption rate ( <math> <msub> <mrow><mover><mtext>V</mtext> <mo>˙</mo></mover> <mtext>O</mtext></mrow> <mn>2</mn></msub> </math> ), body temperature (T<sub>b</sub>), and heart rate (HR) were highly variable between individuals. This inter-individual variation was greatly reduced in animals held at 28 °C for oxygen consumption rate and body temperature. Both hypoxia (acute and progressive) and progressive hypercapnia led to decreases in <math> <msub> <mrow><mover><mtext>V</mtext> <mo>˙</mo></mover> <mtext>O</mtext></mrow> <mn>2</mn></msub> </math> as well as the variation in <math> <msub> <mrow><mover><mtext>V</mtext> <mo>˙</mo></mover> <mtext>O</mtext></mrow> <mn>2</mn></msub> </math> between animals held at 16 °C. The fall in oxygen consumption rate in 7% O<sub>2</sub> independent of changes in body temperature in tenrecs held at 16 °C is unique and not consistent with the typical hypoxic metabolic response seen in other hibernating species that depends on concomitant falls in T<sub>b</sub>. In animals held at 28 °C, exposure to O<sub>2</sub> levels as low as 4% and CO<sub>2</sub> levels as high as 10% had no significant effect on <math> <msub> <mrow><mover><mtext>V</mtext> <mo>˙</mo></mover> <mtext>O</mtext></mrow> <mn>2</mn></msub> </math> , HR, or T<sub>b</sub>, indicative of high tolerance to both hypoxia and hypercapnia. High variation in heart rate remained between individuals in all gas compositions and at all temperatures. Tenrec Hb-O<sub>2</sub> affinity was similar to other homeothermic placental mammals and likely does not contribute to the increased hypoxia tolerance. Ultimately, our results suggest changes in T<sub>a</sub> dictate physiological responses to hypoxia or hypercapnia in tenrecs, responses more characteristic of reptiles than of most placental ma","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"869-885"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-06DOI: 10.1007/s00360-024-01562-4
Till S Harter, Angelina M Dichiera, Andrew J Esbaugh
Carbonic anhydrase (CA) activity is ubiquitously found in all vertebrate species, tissues and cellular compartments. Most species have plasma-accessible CA (paCA) isoforms at the respiratory surfaces, where the enzyme catalyzes the conversion of plasma bicarbonate to carbon dioxide (CO2) that can be excreted by diffusion. A notable exception are the teleost fishes that appear to lack paCA at their gills. The present review: (i) recapitulates the significance of CA activity and distribution in vertebrates; (ii) summarizes the current evidence for the presence or absence of paCA at the gills of fishes, from the basal cyclostomes to the derived teleosts and extremophiles such as the Antarctic icefishes; (iii) explores the contribution of paCA to organismal CO2 excretion in fishes; and (iv) the functional significance of its absence at the gills, for the specialized system of O2 transport in most teleosts; (v) outlines the multiplicity and isoform distribution of membrane-associated CAs in fishes and methodologies to determine their plasma-accessible orientation; and (vi) sketches a tentative time line for the evolutionary dynamics of branchial paCA distribution in the major groups of fishes. Finally, this review highlights current gaps in the knowledge on branchial paCA function and provides recommendations for future work.
碳酸酐酶(CA)的活性普遍存在于所有脊椎动物、组织和细胞间隙中。大多数物种的呼吸道表面都有可进入血浆的 CA(paCA)异构体,这种酶在呼吸道表面催化血浆碳酸氢盐转化为二氧化碳(CO2),然后通过扩散排出体外。但远志鱼类是一个明显的例外,它们的鳃上似乎缺乏 paCA。本综述本综述:(i) 回顾了 CA 在脊椎动物中的活性和分布的意义;(ii) 总结了目前关于鱼类鳃部存在或不存在 paCA 的证据,包括从基本的环口纲鱼类到衍生的长目鱼类以及南极冰鱼等嗜极鱼类;(iii) 探讨了 paCA 对鱼类机体二氧化碳排泄的贡献,以及 (iv) paCA 在鱼类中的功能意义;(v)概述了鱼类中膜相关 CAs 的多样性和同工型分布,以及确定其等离子体可进入方向的方法;(vi)初步勾画了主要鱼类群中分支 paCA 分布的进化动态时间线。最后,本综述强调了目前在分支paCA功能方面的知识空白,并对未来的工作提出了建议。
{"title":"The physiological significance of plasma-accessible carbonic anhydrase in the respiratory systems of fishes.","authors":"Till S Harter, Angelina M Dichiera, Andrew J Esbaugh","doi":"10.1007/s00360-024-01562-4","DOIUrl":"10.1007/s00360-024-01562-4","url":null,"abstract":"<p><p>Carbonic anhydrase (CA) activity is ubiquitously found in all vertebrate species, tissues and cellular compartments. Most species have plasma-accessible CA (paCA) isoforms at the respiratory surfaces, where the enzyme catalyzes the conversion of plasma bicarbonate to carbon dioxide (CO<sub>2</sub>) that can be excreted by diffusion. A notable exception are the teleost fishes that appear to lack paCA at their gills. The present review: (i) recapitulates the significance of CA activity and distribution in vertebrates; (ii) summarizes the current evidence for the presence or absence of paCA at the gills of fishes, from the basal cyclostomes to the derived teleosts and extremophiles such as the Antarctic icefishes; (iii) explores the contribution of paCA to organismal CO<sub>2</sub> excretion in fishes; and (iv) the functional significance of its absence at the gills, for the specialized system of O<sub>2</sub> transport in most teleosts; (v) outlines the multiplicity and isoform distribution of membrane-associated CAs in fishes and methodologies to determine their plasma-accessible orientation; and (vi) sketches a tentative time line for the evolutionary dynamics of branchial paCA distribution in the major groups of fishes. Finally, this review highlights current gaps in the knowledge on branchial paCA function and provides recommendations for future work.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"717-737"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141260589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-18DOI: 10.1007/s00360-024-01560-6
Anthony Kovac, Greg G Goss
The mechanism(s) of sodium, chloride and pH regulation in teleost fishes has been the subject of intense interest for researchers over the past 100 years. The primary organ responsible for ionoregulatory homeostasis is the gill, and more specifically, gill ionocytes. Building on the theoretical and experimental research of the past, recent advances in molecular and cellular techniques in the past two decades have allowed for substantial advances in our understanding of mechanisms involved. With an increased diversity of teleost species and environmental conditions being investigated, it has become apparent that there are multiple strategies and mechanisms employed to achieve ion and acid-base homeostasis. This review will cover the historical developments in our understanding of the teleost fish gill, highlight some of the recent advances and conflicting information in our understanding of ionocyte function, and serve to identify areas that require further investigation to improve our understanding of complex cellular and molecular machineries involved in iono- and acid-base regulation.
{"title":"Cellular mechanisms of ion and acid-base regulation in teleost gill ionocytes.","authors":"Anthony Kovac, Greg G Goss","doi":"10.1007/s00360-024-01560-6","DOIUrl":"10.1007/s00360-024-01560-6","url":null,"abstract":"<p><p>The mechanism(s) of sodium, chloride and pH regulation in teleost fishes has been the subject of intense interest for researchers over the past 100 years. The primary organ responsible for ionoregulatory homeostasis is the gill, and more specifically, gill ionocytes. Building on the theoretical and experimental research of the past, recent advances in molecular and cellular techniques in the past two decades have allowed for substantial advances in our understanding of mechanisms involved. With an increased diversity of teleost species and environmental conditions being investigated, it has become apparent that there are multiple strategies and mechanisms employed to achieve ion and acid-base homeostasis. This review will cover the historical developments in our understanding of the teleost fish gill, highlight some of the recent advances and conflicting information in our understanding of ionocyte function, and serve to identify areas that require further investigation to improve our understanding of complex cellular and molecular machineries involved in iono- and acid-base regulation.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"645-662"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-17DOI: 10.1007/s00360-024-01553-5
Erin M Leonard, Cosima S Porteus, Deidre Brink, William K Milsom
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
{"title":"Fish gill chemosensing: knowledge gaps and inconsistencies.","authors":"Erin M Leonard, Cosima S Porteus, Deidre Brink, William K Milsom","doi":"10.1007/s00360-024-01553-5","DOIUrl":"10.1007/s00360-024-01553-5","url":null,"abstract":"<p><p>In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO<sub>2</sub>, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"1-33"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-07DOI: 10.1007/s00360-024-01561-5
Alex M Zimmer
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
{"title":"Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding.","authors":"Alex M Zimmer","doi":"10.1007/s00360-024-01561-5","DOIUrl":"10.1007/s00360-024-01561-5","url":null,"abstract":"<p><p>The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"697-715"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-23DOI: 10.1007/s00360-024-01586-w
Steve F Perry, Bernd Pelster
{"title":"The multifunctional fish gill.","authors":"Steve F Perry, Bernd Pelster","doi":"10.1007/s00360-024-01586-w","DOIUrl":"10.1007/s00360-024-01586-w","url":null,"abstract":"","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"555"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-07DOI: 10.1007/s00360-024-01538-4
Naomi K Pleizier, Colin J Brauner
Total dissolved gas supersaturation (TDGS) occurs when air mixes with water under pressure, which can be caused by features such as hydroelectric dams and waterfalls. Total dissolved gas supersaturation can cause harmful bubbles to grow in the tissues of aquatic animals, a condition known as gas bubble trauma (GBT). As gills are the primary gas exchange surface for most fish, it is through the gills that elevated total dissolved gases enter the blood and tissues of a fish. We describe the role of the gills in admitting TDGS into the body and discuss potential effects of bubbles in the gills on blood oxygen and carbon dioxide diffusion, blood ion and pH homeostasis, and nitrogenous waste excretion, as well as downstream effects on aerobic swimming performance.
{"title":"Causes and consequences of gas bubble trauma on fish gill function.","authors":"Naomi K Pleizier, Colin J Brauner","doi":"10.1007/s00360-024-01538-4","DOIUrl":"10.1007/s00360-024-01538-4","url":null,"abstract":"<p><p>Total dissolved gas supersaturation (TDGS) occurs when air mixes with water under pressure, which can be caused by features such as hydroelectric dams and waterfalls. Total dissolved gas supersaturation can cause harmful bubbles to grow in the tissues of aquatic animals, a condition known as gas bubble trauma (GBT). As gills are the primary gas exchange surface for most fish, it is through the gills that elevated total dissolved gases enter the blood and tissues of a fish. We describe the role of the gills in admitting TDGS into the body and discuss potential effects of bubbles in the gills on blood oxygen and carbon dioxide diffusion, blood ion and pH homeostasis, and nitrogenous waste excretion, as well as downstream effects on aerobic swimming performance.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"739-747"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-13DOI: 10.1007/s00360-024-01555-3
Jason P Breves, Ciaran A Shaughnessy
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
{"title":"Endocrine control of gill ionocyte function in euryhaline fishes.","authors":"Jason P Breves, Ciaran A Shaughnessy","doi":"10.1007/s00360-024-01555-3","DOIUrl":"10.1007/s00360-024-01555-3","url":null,"abstract":"<p><p>The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na<sup>+</sup>, Cl<sup>-</sup>, and Ca<sup>2+</sup> with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na<sup>+</sup>/K<sup>+</sup>-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"663-684"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}