Pub Date : 2025-04-01Epub Date: 2025-02-28DOI: 10.1007/s00360-025-01606-3
Andreas Borchel, Frank Nilsen
Caligus elongatus is a marine copepod ectoparasite on a wide variety of fish species. It has also been observed on fish farms cultivating Atlantic salmon and reports shows that this parasite can be a problem for the industry and for the fish's welfare. Freshwater is used as one of the non-medical treatment methods against the salmon louse (Lepeophtheirus salmonis). However, the efficacy of freshwater treatment against C. elongatus is still unknown. This study aims to fill this gap by examining the salinity tolerance limits of both adult and copepodid life stages of C. elongatus. Our findings reveal that detached adult C. elongatus exhibit low tolerance to reduced salinity, with mortality occurring within hours at salinities below 20 ppt. In contrast, copepodid stages demonstrated a slightly higher tolerance, surviving at salinities as low as 15 ppt for one day. Adult lice attached to a host quickly detached from the fish as soon as the salinity was lower than 20 ppt, suggesting that freshwater delousing might be effective in this species. To further understand the genetic basis of acclimation to reduced salinities, we performed RNA-sequencing to assemble the first transcriptome of this species and identify differentially expressed genes. Several genes regulated upon low-salinity transfer were identified. These include genes involved in proline metabolism, energy metabolism, and the transport of various ions and betaine, an osmolyte. The potential roles of these genes in salinity acclimation are discussed within an evolutionary context, providing valuable insights into the survival mechanisms of C. elongatus under low-salinity conditions.
{"title":"Transcriptomic insights into the low-salinity tolerance of the sea louse Caligus elongatus.","authors":"Andreas Borchel, Frank Nilsen","doi":"10.1007/s00360-025-01606-3","DOIUrl":"10.1007/s00360-025-01606-3","url":null,"abstract":"<p><p>Caligus elongatus is a marine copepod ectoparasite on a wide variety of fish species. It has also been observed on fish farms cultivating Atlantic salmon and reports shows that this parasite can be a problem for the industry and for the fish's welfare. Freshwater is used as one of the non-medical treatment methods against the salmon louse (Lepeophtheirus salmonis). However, the efficacy of freshwater treatment against C. elongatus is still unknown. This study aims to fill this gap by examining the salinity tolerance limits of both adult and copepodid life stages of C. elongatus. Our findings reveal that detached adult C. elongatus exhibit low tolerance to reduced salinity, with mortality occurring within hours at salinities below 20 ppt. In contrast, copepodid stages demonstrated a slightly higher tolerance, surviving at salinities as low as 15 ppt for one day. Adult lice attached to a host quickly detached from the fish as soon as the salinity was lower than 20 ppt, suggesting that freshwater delousing might be effective in this species. To further understand the genetic basis of acclimation to reduced salinities, we performed RNA-sequencing to assemble the first transcriptome of this species and identify differentially expressed genes. Several genes regulated upon low-salinity transfer were identified. These include genes involved in proline metabolism, energy metabolism, and the transport of various ions and betaine, an osmolyte. The potential roles of these genes in salinity acclimation are discussed within an evolutionary context, providing valuable insights into the survival mechanisms of C. elongatus under low-salinity conditions.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"155-171"},"PeriodicalIF":1.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143525326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-03-14DOI: 10.1007/s00360-025-01610-7
Evan B Othman, Ismail M Maulood, Nazar M Shareef Mahmood
The present study investigates the roles of melatonin (MEL) and its agonist ramelteon (RAM) on blood pressure regulation, nitric oxide (NO), and oxidative stress and plasma endothelin-1(ET-1) levels in continuous light exposure and pinealectomized conditions. This study includes two experiments. The first experiment involved control, continuous light emitting diode (LED) exposure, continuous LED + MEL administration, and continuous LED + RAM. The second experiment included control, pinealectomy, pinealectomy + MEL administration, pinealectomy + RAM administration, and pinealectomy + continuous LED exposure. The present results showed significant increase of systolic blood pressure (SBP) of continuous LED exposure group, pinealectomy, and pinealectomy with continuous LED exposure. On the contrary, MEL and RAM both decreased SBP. Additionally, the continuous LED exposure considerably increased malondialdehyde (MDA). However, MEL increased both plasma ET-1 slightly and ET-1 significantly but RAM dramatically increased ET-1. While, both of MEL and RAM decreased MDA. In the second experiment, while MDA dramatically increased after pinealectomy and pinealectomy with LED illumination, ET-1 and NO were only a little reduced. Melatonin elevated plasma ET-1 and NO significantly. While, MDA was greatly reduced by MEL but not by RAM. The results suggested that MEL and RAM could attenuate SBP mostly via increasing NO generation and oxidative stress reduction.
{"title":"The impact of melatonin and its agonist on blood pressure and serum endothelin-1 in continuous light and pinealectomized rats.","authors":"Evan B Othman, Ismail M Maulood, Nazar M Shareef Mahmood","doi":"10.1007/s00360-025-01610-7","DOIUrl":"10.1007/s00360-025-01610-7","url":null,"abstract":"<p><p>The present study investigates the roles of melatonin (MEL) and its agonist ramelteon (RAM) on blood pressure regulation, nitric oxide (NO), and oxidative stress and plasma endothelin-1(ET-1) levels in continuous light exposure and pinealectomized conditions. This study includes two experiments. The first experiment involved control, continuous light emitting diode (LED) exposure, continuous LED + MEL administration, and continuous LED + RAM. The second experiment included control, pinealectomy, pinealectomy + MEL administration, pinealectomy + RAM administration, and pinealectomy + continuous LED exposure. The present results showed significant increase of systolic blood pressure (SBP) of continuous LED exposure group, pinealectomy, and pinealectomy with continuous LED exposure. On the contrary, MEL and RAM both decreased SBP. Additionally, the continuous LED exposure considerably increased malondialdehyde (MDA). However, MEL increased both plasma ET-1 slightly and ET-1 significantly but RAM dramatically increased ET-1. While, both of MEL and RAM decreased MDA. In the second experiment, while MDA dramatically increased after pinealectomy and pinealectomy with LED illumination, ET-1 and NO were only a little reduced. Melatonin elevated plasma ET-1 and NO significantly. While, MDA was greatly reduced by MEL but not by RAM. The results suggested that MEL and RAM could attenuate SBP mostly via increasing NO generation and oxidative stress reduction.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"215-225"},"PeriodicalIF":1.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143631085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-07DOI: 10.1007/s00360-024-01600-1
E S Porter, A K Gamperl
We developed and validated a surgical technique to measure central venous pressure (CVP) in Nile tilapia, and investigated the effects of an acute temperature decrease (from 30 vs. 24 °C) and changes in heart rate (fH) using zatebradine hydrocholoride, which decreases intrinsic fH, on this species' cardiac function. As predicted, fH and cardiac output ( ) were ~ 40% lower in the acutely cooled fish, and both groups had very comparable (i.e., within 10%) values for stroke volume (VS). The CVP of fish acutely exposed to 24 °C was consistently ~ 0.04 kPa higher than in those measured at 30 °C across all concentrations of zatebradine (i.e., CVP increased from 0.04 to 0.11 kPa vs. - 0.01-0.07 kPa for 24 vs. 30 °C tilapia, respectively, as fH was reduced). However, this did not result in an increase in VS due to a right-shifted relationship between CVP and VS for the 24 °C fish. These data suggest that the VS of tilapia is less sensitive to changes/increases in CVP when temperature is acutely lowered, and that regardless of increases in preload (CVP), is primarily modulated by fH in this species.
我们开发并验证了一种测量尼罗罗非鱼中心静脉压(CVP)的手术技术,并研究了使用盐酸扎特布定(zatebradine hydrochloride)降低内源性fH的急性降温(从30°C vs. 24°C)和心率(fH)变化对该物种心功能的影响。正如预测的那样,急性冷却鱼的fH和心输出量(Q˙)降低了约40%,两组的脑卒中容积(VS)值非常相似(即在10%以内)。在所有浓度的zatebradine中,急性暴露于24°C的鱼的CVP始终比在30°C下测量的鱼高~ 0.04 kPa(即,随着fH的降低,24°C与30°C罗非鱼的CVP分别从0.04增加到0.11 kPa,而- 0.01-0.07 kPa)。然而,由于24°C鱼的CVP和VS之间的右移关系,这并没有导致VS的增加。这些数据表明,当温度急剧降低时,罗非鱼的VS对CVP的变化/增加不太敏感,并且无论预负荷(CVP)增加与否,该物种的Q˙主要由fH调节。
{"title":"Effects of acute cooling and bradycardia on central venous pressure and cardiac function in Nile tilapia (Oreochromis niloticus).","authors":"E S Porter, A K Gamperl","doi":"10.1007/s00360-024-01600-1","DOIUrl":"10.1007/s00360-024-01600-1","url":null,"abstract":"<p><p>We developed and validated a surgical technique to measure central venous pressure (CVP) in Nile tilapia, and investigated the effects of an acute temperature decrease (from 30 vs. 24 °C) and changes in heart rate (f<sub>H</sub>) using zatebradine hydrocholoride, which decreases intrinsic f<sub>H,</sub> on this species' cardiac function. As predicted, f<sub>H</sub> and cardiac output ( <math><mover><mi>Q</mi> <mo>˙</mo></mover> </math> ) were ~ 40% lower in the acutely cooled fish, and both groups had very comparable (i.e., within 10%) values for stroke volume (V<sub>S</sub>)<sub>.</sub> The CVP of fish acutely exposed to 24 °C was consistently ~ 0.04 kPa higher than in those measured at 30 °C across all concentrations of zatebradine (i.e., CVP increased from 0.04 to 0.11 kPa vs. - 0.01-0.07 kPa for 24 vs. 30 °C tilapia, respectively, as f<sub>H</sub> was reduced). However, this did not result in an increase in V<sub>S</sub> due to a right-shifted relationship between CVP and V<sub>S</sub> for the 24 °C fish. These data suggest that the V<sub>S</sub> of tilapia is less sensitive to changes/increases in CVP when temperature is acutely lowered, and that regardless of increases in preload (CVP), <math><mover><mi>Q</mi> <mo>˙</mo></mover> </math> is primarily modulated by f<sub>H</sub> in this species.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"173-179"},"PeriodicalIF":1.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The knowledge about the occurrence and biochemical characteristics of key digestive enzymes is crucial for an enhanced understanding of the dietary ecophysiology of the species. On the other hand, integrative studies on digestive physiology and on tissue content of glycogen, glucose, lipid and protein in groups of ecological and economic importance are currently limited. In this work, we determined the occurrence and biochemical characteristics in intestine of key digestive enzymes activities as indexes of the ability to digest different dietary substrates and of functional differentiation for digestion/absorption of nutrients along with the intestinal coefficient as index of dietary habit and digestion efficiency in adults of Odonthtestes argentinensis inhabiting Mar Chiquita Coastal Lagoon (Buenos Aires, Argentina). Furthermore, to identify storage sites, glycogen, triglycerides and protein content in different tissues were also analyzed. The presence and biochemical characteristics of amylase, maltase, sucrase, lipase, trypsin and aminopeptidase-N activity in intestine, as well as the tissue content of glycogen, triglycerides and protein suggests that adults of O.argentinensis exhibit an adequate digestive battery to potentially perform complete hydrolysis of various dietary substrates and capacity for storage and/or utilization of energy reserves. Our study provides novel insights into the digestive/metabolic traits in adults of the resident silverside O. argentinensis from Mar Chiquita Coastal Lagoon.
了解关键消化酶的发生和生化特性对增进对该物种饮食生态生理的了解至关重要。另一方面,对消化生理学和糖原、葡萄糖、脂质和蛋白质组织含量具有生态和经济意义的综合研究目前还很有限。在这项工作中,我们测定了作为消化不同饲粮底物能力指标和营养物质消化/吸收功能分化指标的关键消化酶活性在肠道中的分布和生化特征,以及作为饮食习惯和消化效率指标的肠道系数。此外,为了确定储存位置,还分析了不同组织中糖原、甘油三酯和蛋白质的含量。肠道中淀粉酶、麦尔糖酶、蔗糖酶、脂肪酶、胰蛋白酶和氨基肽酶- n活性的生化特征,以及组织中糖原、甘油三酯和蛋白质的含量表明,阿根廷赤足成虫具有足够的消化系统,可以完全水解各种饲粮底物,并具有储存和/或利用能量储备的能力。我们的研究为Mar Chiquita海岸泻湖居住的阿根廷银边鱼(silverside O. argentinensis)的消化/代谢特征提供了新的见解。
{"title":"Digestive and metabolic profile of the resident population of the silverside Odontesthes argentinensis from Mar Chiquita Coastal Lagoon (Buenos Aires, Argentina).","authors":"Albanesi Camila, Méndez Eugenia, González-Castro Mariano, López-Mañanes Alejandra, Michiels María Soledad","doi":"10.1007/s00360-024-01594-w","DOIUrl":"10.1007/s00360-024-01594-w","url":null,"abstract":"<p><p>The knowledge about the occurrence and biochemical characteristics of key digestive enzymes is crucial for an enhanced understanding of the dietary ecophysiology of the species. On the other hand, integrative studies on digestive physiology and on tissue content of glycogen, glucose, lipid and protein in groups of ecological and economic importance are currently limited. In this work, we determined the occurrence and biochemical characteristics in intestine of key digestive enzymes activities as indexes of the ability to digest different dietary substrates and of functional differentiation for digestion/absorption of nutrients along with the intestinal coefficient as index of dietary habit and digestion efficiency in adults of Odonthtestes argentinensis inhabiting Mar Chiquita Coastal Lagoon (Buenos Aires, Argentina). Furthermore, to identify storage sites, glycogen, triglycerides and protein content in different tissues were also analyzed. The presence and biochemical characteristics of amylase, maltase, sucrase, lipase, trypsin and aminopeptidase-N activity in intestine, as well as the tissue content of glycogen, triglycerides and protein suggests that adults of O.argentinensis exhibit an adequate digestive battery to potentially perform complete hydrolysis of various dietary substrates and capacity for storage and/or utilization of energy reserves. Our study provides novel insights into the digestive/metabolic traits in adults of the resident silverside O. argentinensis from Mar Chiquita Coastal Lagoon.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"31-37"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-02-05DOI: 10.1007/s00360-025-01603-6
Agata Kaczmarek, Mieczysława Irena Boguś
Larvae of Galleria mellonella are well known for their parasitisation of honeybees, so developing new methods of controlling the pest population is an important issue. The present research examined the immunotoxic effects of 2-octenoic acid against wax moth larvae. The last instar larvae were used for all experimental analyses. The tested fatty acid doses LD50 and LD100 (9.66 µg/mg and 11.72 µg/mg of body mass) were applied topically to insects under in vivo conditions and the hemolymph was collected after 24 and 48 h. To check the in vitro impact of the 2-octenoic acid, the examined fatty acid was given directly to the cultured hemocytes (to a final concentration: 0.33 and 0.16 µg/µl) and incubated for 24 and 48 h. Current research using fluorescence microscopy and spectrofluorimetric measurements indicates the death of immunocompetent cells via the apoptosis pathway. Moreover, it shows the activation of caspases and an increase in the level of reactive oxygen/nitrogen damage after both in vivo and in vitro treatment of 2-octenoic acid. This points to the impact of both cellular and humoral elements on the immunological response to the toxic compound. Hence, 2-octenoic acid seems to have significant potential as an insecticide while being safe for humans and the environment. Therefore, further research into its potential is warranted.
{"title":"The flavouring agent, 2-octenoic acid kills Galleria mellonella larvae by affecting the cellular and humoral elements of insect immunological system.","authors":"Agata Kaczmarek, Mieczysława Irena Boguś","doi":"10.1007/s00360-025-01603-6","DOIUrl":"10.1007/s00360-025-01603-6","url":null,"abstract":"<p><p>Larvae of Galleria mellonella are well known for their parasitisation of honeybees, so developing new methods of controlling the pest population is an important issue. The present research examined the immunotoxic effects of 2-octenoic acid against wax moth larvae. The last instar larvae were used for all experimental analyses. The tested fatty acid doses LD50 and LD100 (9.66 µg/mg and 11.72 µg/mg of body mass) were applied topically to insects under in vivo conditions and the hemolymph was collected after 24 and 48 h. To check the in vitro impact of the 2-octenoic acid, the examined fatty acid was given directly to the cultured hemocytes (to a final concentration: 0.33 and 0.16 µg/µl) and incubated for 24 and 48 h. Current research using fluorescence microscopy and spectrofluorimetric measurements indicates the death of immunocompetent cells via the apoptosis pathway. Moreover, it shows the activation of caspases and an increase in the level of reactive oxygen/nitrogen damage after both in vivo and in vitro treatment of 2-octenoic acid. This points to the impact of both cellular and humoral elements on the immunological response to the toxic compound. Hence, 2-octenoic acid seems to have significant potential as an insecticide while being safe for humans and the environment. Therefore, further research into its potential is warranted.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"13-22"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-02-05DOI: 10.1007/s00360-025-01604-5
Georgios Pissas, Maria Divani, Maria Tziastoudi, Christina Poulianiti, Maria-Anna Polyzou-Konsta, Evangelos Lykotsetas, Ioannis Stefanidis, Theodoros Eleftheriadis
Ischemia-reperfusion (I-R) injury represents a predominant etiology of acute kidney injury (AKI), for which effective treatments remain unavailable. In contrast, hibernating mammals exhibit notable resistance to cell death induced by I-R injury. However, the impact of I-R injury on cellular senescence-an important factor in AKI-has not been extensively studied in these species. Comparative biology may offer novel therapeutic insights. Renal proximal tubular epithelial cells (RPTECs) from the native hibernator Syrian hamster or mouse RPTECs were subjected to anoxia-reoxygenation. Proteins involved in DNA damage response (DDR) and cellular senescence were assessed using western blotting, reactive oxygen species (ROS) levels and cell death were quantified colorimetrically, and IL-6 with ELISA. Anoxia-reoxygenation induced oxidative stress in both mouse and hamster RPTECs; however, cell death was observed exclusively in mouse cells. While anoxia-reoxygenation elicited a DDR and subsequent senescence in mouse RPTECs, such responses were not detected in hamster RPTECs. Thus, RPTECs from the Syrian hamster exhibited increased ROS production upon reoxygenation but did not show DDR or cellular senescence. Further research is required to elucidate the specific protective molecular mechanisms in hibernators, which could potentially lead to the development of novel therapeutic approaches for I-R injury in non-hibernating species, including humans.
{"title":"In renal proximal tubular epithelial cells of the hibernator Syrian hamster, anoxia-reoxygenation-induced reactive oxygen species bursts do not trigger a DNA damage response and cellular senescence.","authors":"Georgios Pissas, Maria Divani, Maria Tziastoudi, Christina Poulianiti, Maria-Anna Polyzou-Konsta, Evangelos Lykotsetas, Ioannis Stefanidis, Theodoros Eleftheriadis","doi":"10.1007/s00360-025-01604-5","DOIUrl":"10.1007/s00360-025-01604-5","url":null,"abstract":"<p><p>Ischemia-reperfusion (I-R) injury represents a predominant etiology of acute kidney injury (AKI), for which effective treatments remain unavailable. In contrast, hibernating mammals exhibit notable resistance to cell death induced by I-R injury. However, the impact of I-R injury on cellular senescence-an important factor in AKI-has not been extensively studied in these species. Comparative biology may offer novel therapeutic insights. Renal proximal tubular epithelial cells (RPTECs) from the native hibernator Syrian hamster or mouse RPTECs were subjected to anoxia-reoxygenation. Proteins involved in DNA damage response (DDR) and cellular senescence were assessed using western blotting, reactive oxygen species (ROS) levels and cell death were quantified colorimetrically, and IL-6 with ELISA. Anoxia-reoxygenation induced oxidative stress in both mouse and hamster RPTECs; however, cell death was observed exclusively in mouse cells. While anoxia-reoxygenation elicited a DDR and subsequent senescence in mouse RPTECs, such responses were not detected in hamster RPTECs. Thus, RPTECs from the Syrian hamster exhibited increased ROS production upon reoxygenation but did not show DDR or cellular senescence. Further research is required to elucidate the specific protective molecular mechanisms in hibernators, which could potentially lead to the development of novel therapeutic approaches for I-R injury in non-hibernating species, including humans.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"91-101"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839863/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-20DOI: 10.1007/s00360-024-01597-7
Chris M Wood, Bernd Pelster, Adalberto Luis Val
The pirarucu is one of the very few obligate air-breathing fish, employing a gigantic, highly vascularized air-breathing organ (ABO). Traditionally, the ABO is thought to serve mainly for O2 uptake (ṀO2), with the gills providing the major route for excretion of CO2 (ṀCO2) and N-waste. However, under aquatic hypercapnia, a common occurrence in its natural environment, branchial ṀCO2 to the water may become impaired. Under these conditions, does the ABO become an important route of ṀCO2 excretion to the air? We have answered this question by measuring ṀCO2 and ṀO2 in both air and water phases, as well as the pattern of air-breathing, in pirarucu under aquatic normocapnia and hypercapnia (3% CO2). Indeed, ṀCO2 to the air phase via the ABO increased 2- to 3-fold during exposure to high water PCO2, accounting for 59-71% of the total, with no change in the dominant contribution of the ABO to ṀO2 (71-75% of the total). These adjustments were quickly reversed upon restoration of aquatic normocapnia. During aquatic hypercapnia, ṀCO2 via the ABO became more effective over time, and the pattern of air-breathing changed, exhibiting increased frequency and decreased breath volume. Ammonia-N excretion (86-88% of total) dominated over urea-N excretion and tended to increase during exposure to aquatic hypercapnia. We conclude that the ability of the ABO to take on the dominant role in CO2 excretion when required may have been an important driver in the original evolution of air-breathing, as well as in the functionality of the ABO in modern air-breathing fish.
{"title":"Is the air-breathing organ a significant route for CO<sub>2</sub> excretion during aquatic hypercapnia in the pirarucu, Arapaima gigas?","authors":"Chris M Wood, Bernd Pelster, Adalberto Luis Val","doi":"10.1007/s00360-024-01597-7","DOIUrl":"10.1007/s00360-024-01597-7","url":null,"abstract":"<p><p>The pirarucu is one of the very few obligate air-breathing fish, employing a gigantic, highly vascularized air-breathing organ (ABO). Traditionally, the ABO is thought to serve mainly for O<sub>2</sub> uptake (ṀO<sub>2</sub>), with the gills providing the major route for excretion of CO<sub>2</sub> (ṀCO<sub>2</sub>) and N-waste. However, under aquatic hypercapnia, a common occurrence in its natural environment, branchial ṀCO<sub>2</sub> to the water may become impaired. Under these conditions, does the ABO become an important route of ṀCO<sub>2</sub> excretion to the air? We have answered this question by measuring ṀCO<sub>2</sub> and ṀO<sub>2</sub> in both air and water phases, as well as the pattern of air-breathing, in pirarucu under aquatic normocapnia and hypercapnia (3% CO<sub>2</sub>). Indeed, ṀCO<sub>2</sub> to the air phase via the ABO increased 2- to 3-fold during exposure to high water PCO<sub>2</sub>, accounting for 59-71% of the total, with no change in the dominant contribution of the ABO to ṀO<sub>2</sub> (71-75% of the total). These adjustments were quickly reversed upon restoration of aquatic normocapnia. During aquatic hypercapnia, ṀCO<sub>2</sub> via the ABO became more effective over time, and the pattern of air-breathing changed, exhibiting increased frequency and decreased breath volume. Ammonia-N excretion (86-88% of total) dominated over urea-N excretion and tended to increase during exposure to aquatic hypercapnia. We conclude that the ability of the ABO to take on the dominant role in CO<sub>2</sub> excretion when required may have been an important driver in the original evolution of air-breathing, as well as in the functionality of the ABO in modern air-breathing fish.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"39-51"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sleep deprivation (SD) can affect the adaptive thermogenesis in laboratory rodents, but the molecular mechanism and the crosstalk with other organs remain largely unknown. In order to investigate the effects and mechanisms of SD on thermoregulation and energy metabolism, here we measured the changes of body weight, body fat mass, body temperature, resting metabolic rate (RMR), and thermogenic gene expression in brown adipose tissue (BAT), white adipose tissue (WAT), skeleton muscle and liver in C57BL/6J mice during 7-day SD with rotating rod sleep deprivation device. Results showed that compared with the control group, the body weight and body fat mass of SD mice were decreased and RMR of SD mice increased. The gene expression of Ampk, Pgc1α and Ucp1 which related to thermogenesis in BAT and WAT were significantly increased, and the expression of Ampk, Serca1, Serca2 and Ucp3 which related to thermogenesis in skeletal muscle were significantly increased in SD mice. Taken together, these data demonstrated that 7-day SD enhanced the adaptive thermogenesis in mice by activating AMPK, including the upregulation of the AMPK - PGC1α - UCP1 pathway in BAT, and the AMPK - UCP3 and SLN - SERCA pathway in skeleton muscle. Our data provide the molecular evidence for SD-stimulated adaptive thermogenesis and energy metabolism in small mammals.
{"title":"Sleep deprivation stimulates adaptive thermogenesis by activating AMPK pathway in mice.","authors":"Tian-Shu Zheng, Xin-Ran Gao, Rui-Ping Xu, Yi-Fei Zhao, Zhi-Teng Yang, De-Hua Wang","doi":"10.1007/s00360-024-01590-0","DOIUrl":"10.1007/s00360-024-01590-0","url":null,"abstract":"<p><p>Sleep deprivation (SD) can affect the adaptive thermogenesis in laboratory rodents, but the molecular mechanism and the crosstalk with other organs remain largely unknown. In order to investigate the effects and mechanisms of SD on thermoregulation and energy metabolism, here we measured the changes of body weight, body fat mass, body temperature, resting metabolic rate (RMR), and thermogenic gene expression in brown adipose tissue (BAT), white adipose tissue (WAT), skeleton muscle and liver in C57BL/6J mice during 7-day SD with rotating rod sleep deprivation device. Results showed that compared with the control group, the body weight and body fat mass of SD mice were decreased and RMR of SD mice increased. The gene expression of Ampk, Pgc1α and Ucp1 which related to thermogenesis in BAT and WAT were significantly increased, and the expression of Ampk, Serca1, Serca2 and Ucp3 which related to thermogenesis in skeletal muscle were significantly increased in SD mice. Taken together, these data demonstrated that 7-day SD enhanced the adaptive thermogenesis in mice by activating AMPK, including the upregulation of the AMPK - PGC1α - UCP1 pathway in BAT, and the AMPK - UCP3 and SLN - SERCA pathway in skeleton muscle. Our data provide the molecular evidence for SD-stimulated adaptive thermogenesis and energy metabolism in small mammals.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"141-153"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-12-06DOI: 10.1007/s00360-024-01596-8
Faiz-Ul Hassan, Muhammad Safdar, Muhammad Younus, Muhammad Asif Arain
The optimisation of livestock production relies on efficient energy metabolism. This review focused on elaborate regulatory processes governed by non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). It explores the complex energy metabolism processes in livestock, elucidating the functions of ncRNAs in the expression of genes and pathways. miRNAs have been identified as significant regulators of glycolysis and glucose metabolism, whereas lncRNAs are known to affect adipogenesis and mitochondrial activity. Moreover, circRNAs have a substantial influence on the regulation of energy. In addition, this is not only enriching non-coding RNA-mediated energy control but also sheds light on possible applications. It is derived from its ability to condense complex molecular systems, thereby offering crucial insights to researchers. Through a comprehensive analysis of the intricate relationship between ncRNAs and energy metabolism, the information of this review provides a valuable framework for the implementation of focused interventions that hold the potential to significantly enhance the efficiency of livestock production.
{"title":"Regulation of energy metabolism by non-coding RNAs in livestock species: a review.","authors":"Faiz-Ul Hassan, Muhammad Safdar, Muhammad Younus, Muhammad Asif Arain","doi":"10.1007/s00360-024-01596-8","DOIUrl":"10.1007/s00360-024-01596-8","url":null,"abstract":"<p><p>The optimisation of livestock production relies on efficient energy metabolism. This review focused on elaborate regulatory processes governed by non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). It explores the complex energy metabolism processes in livestock, elucidating the functions of ncRNAs in the expression of genes and pathways. miRNAs have been identified as significant regulators of glycolysis and glucose metabolism, whereas lncRNAs are known to affect adipogenesis and mitochondrial activity. Moreover, circRNAs have a substantial influence on the regulation of energy. In addition, this is not only enriching non-coding RNA-mediated energy control but also sheds light on possible applications. It is derived from its ability to condense complex molecular systems, thereby offering crucial insights to researchers. Through a comprehensive analysis of the intricate relationship between ncRNAs and energy metabolism, the information of this review provides a valuable framework for the implementation of focused interventions that hold the potential to significantly enhance the efficiency of livestock production.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"1-12"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-10-10DOI: 10.1007/s00360-024-01589-7
Sofia Bouchebti, Eran Levin
Dietary fatty acids (FAs) are essential macronutrients affecting animal fitness, growth, and development. While the degree of saturation of FAs usually determines the level of absorption and allocation within the body, the utilization of dietary FAs across the life stages of individuals remains unknown. We used three different 13 C labeled FAs, with a different saturation level (linoleic acid (18:2), oleic acid (18:1), and palmitic acid (16:0)), to investigate the absorption and allocation of dietary FAs across the life stages of the Oriental hornet. Our results show that only larvae utilized all tested FAs as metabolic fuel, with palmitic acid being oxidized at the highest rate. Oleic and palmitic acids were predominantly incorporated into larval tissues, while oleic acid dominated pupal tissues. In contrast, linoleic and oleic acids were predominantly incorporated into adult tissues. These findings highlight a life stage-dependent shift in certain FAs utilization, with palmitic acid mostly utilized in early stages and linoleic acid in adulthood, while oleic acid remained consistently utilized across all life stages. This study emphasizes the importance of considering FA saturation and life stage dynamics in understanding FA utilization patterns.
膳食脂肪酸(FA)是影响动物体能、生长和发育的必需宏量营养素。虽然脂肪酸的饱和度通常决定了其在体内的吸收和分配水平,但个体在不同生命阶段对膳食脂肪酸的利用情况仍不清楚。我们使用三种不同饱和度的 13 C 标记脂肪酸(亚油酸(18:2)、油酸(18:1)和棕榈酸(16:0))来研究东方胡蜂不同生命阶段对食物中脂肪酸的吸收和分配。结果表明,只有幼虫利用所有测试的脂肪酸作为代谢燃料,其中棕榈酸的氧化率最高。油酸和棕榈酸主要进入幼虫组织,而油酸则主要进入蛹组织。相比之下,亚油酸和油酸则主要进入成虫组织。这些发现突显了某些脂肪酸的利用随生命阶段的变化而变化,棕榈酸主要在早期阶段被利用,亚油酸在成年阶段被利用,而油酸在所有生命阶段都被持续利用。这项研究强调了在了解脂肪酸利用模式时考虑脂肪酸饱和度和生命阶段动态的重要性。
{"title":"Differential fatty acids utilization across life stages in a Vespa species.","authors":"Sofia Bouchebti, Eran Levin","doi":"10.1007/s00360-024-01589-7","DOIUrl":"10.1007/s00360-024-01589-7","url":null,"abstract":"<p><p>Dietary fatty acids (FAs) are essential macronutrients affecting animal fitness, growth, and development. While the degree of saturation of FAs usually determines the level of absorption and allocation within the body, the utilization of dietary FAs across the life stages of individuals remains unknown. We used three different 13 C labeled FAs, with a different saturation level (linoleic acid (18:2), oleic acid (18:1), and palmitic acid (16:0)), to investigate the absorption and allocation of dietary FAs across the life stages of the Oriental hornet. Our results show that only larvae utilized all tested FAs as metabolic fuel, with palmitic acid being oxidized at the highest rate. Oleic and palmitic acids were predominantly incorporated into larval tissues, while oleic acid dominated pupal tissues. In contrast, linoleic and oleic acids were predominantly incorporated into adult tissues. These findings highlight a life stage-dependent shift in certain FAs utilization, with palmitic acid mostly utilized in early stages and linoleic acid in adulthood, while oleic acid remained consistently utilized across all life stages. This study emphasizes the importance of considering FA saturation and life stage dynamics in understanding FA utilization patterns.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"23-29"},"PeriodicalIF":1.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}