Electrical muscle stimulation (EMS) has been shown to stimulate the production of myokines (i.e., brain-derived neurotrophic factor (BDNF)), but the most effective EMS parameters for myokine production have not been fully elucidated. The purpose of this study was to quantify the optimal EMS frequency for stimulating myokine production. This study included sixteen young adults (male, n = 13, age = 27.3 ± 5.5 years). Participants underwent four EMS interventions (20 min each) with the following conditions: (1) 4 Hz, (2) 20 Hz, (3) 80 Hz, and (4) control (no intervention). Blood samples were obtained before and immediately after EMS. For the control condition, blood samples were taken before and after 20 min of quiet sitting. BDNF and cathepsin-B levels were analyzed in serum. Compared to preintervention levels, stimulation at 20 Hz resulted in significantly greater postintervention cathepsin-B and BDNF levels (p < 0.01). On the other hand, the control condition did not result in a significant change between pre- and posttreatment. Furthermore, stimulation at 20 Hz caused significantly larger increases in cathepsin-B and BDNF levels than stimulation at 4-80 Hz or the control condition (p < 0.05). In conclusion, stimulation at 20 Hz effectively causes a robust cathepsin-B and BDNF response. Based on these results, we suggest a new strategy for rehabilitation of people with neurological disorders.
{"title":"Influence of stimulation frequency on brain-derived neurotrophic factor and cathepsin-B production in healthy young adults.","authors":"Yuichi Nishikawa, Hiroyuki Sakaguchi, Tatsuya Takada, Noriaki Maeda, Allison Hyngstrom","doi":"10.1007/s00360-024-01566-0","DOIUrl":"10.1007/s00360-024-01566-0","url":null,"abstract":"<p><p>Electrical muscle stimulation (EMS) has been shown to stimulate the production of myokines (i.e., brain-derived neurotrophic factor (BDNF)), but the most effective EMS parameters for myokine production have not been fully elucidated. The purpose of this study was to quantify the optimal EMS frequency for stimulating myokine production. This study included sixteen young adults (male, n = 13, age = 27.3 ± 5.5 years). Participants underwent four EMS interventions (20 min each) with the following conditions: (1) 4 Hz, (2) 20 Hz, (3) 80 Hz, and (4) control (no intervention). Blood samples were obtained before and immediately after EMS. For the control condition, blood samples were taken before and after 20 min of quiet sitting. BDNF and cathepsin-B levels were analyzed in serum. Compared to preintervention levels, stimulation at 20 Hz resulted in significantly greater postintervention cathepsin-B and BDNF levels (p < 0.01). On the other hand, the control condition did not result in a significant change between pre- and posttreatment. Furthermore, stimulation at 20 Hz caused significantly larger increases in cathepsin-B and BDNF levels than stimulation at 4-80 Hz or the control condition (p < 0.05). In conclusion, stimulation at 20 Hz effectively causes a robust cathepsin-B and BDNF response. Based on these results, we suggest a new strategy for rehabilitation of people with neurological disorders.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"493-499"},"PeriodicalIF":1.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-05-02DOI: 10.1007/s00360-024-01557-1
Charlotte Nelson, Angelina M Dichiera, Colin J Brauner
Salmonids possess a unique respiratory system comprised of three major components: highly pH-sensitive hemoglobins, red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of plasma accessible carbonic anhydrase (paCA), specifically with absence of paCA at the gills. These characteristics are thought to have evolved to enhance oxygen unloading to the tissues while protecting uptake at the gills. Our knowledge of this system is detailed in adults, but little is known about it through development. Developing rainbow trout (Oncorhynchus mykiss) express embryonic RBCs containing hemoglobins that are relatively insensitive to pH; however, availability of gill paCA and RBC pHi protection is unknown. We show that pre-hatch rainbow trout express gill paCA, which is lost in correlation with the emergence of highly pH-sensitive adult hemoglobins and RBC pHi protection. Rainbow trout therefore exhibit a switch in respiratory strategy with hatch. We conclude that gill paCA likely represents an embryonic trait in rainbow trout and is constrained in adults due to their highly pH-sensitive hemoglobins.
{"title":"Developing rainbow trout (Oncorhynchus mykiss) lose branchial plasma accessible carbonic anhydrase expression with hatch and the transition to pH-sensitive, adult hemoglobin polymorphs.","authors":"Charlotte Nelson, Angelina M Dichiera, Colin J Brauner","doi":"10.1007/s00360-024-01557-1","DOIUrl":"10.1007/s00360-024-01557-1","url":null,"abstract":"<p><p>Salmonids possess a unique respiratory system comprised of three major components: highly pH-sensitive hemoglobins, red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of plasma accessible carbonic anhydrase (paCA), specifically with absence of paCA at the gills. These characteristics are thought to have evolved to enhance oxygen unloading to the tissues while protecting uptake at the gills. Our knowledge of this system is detailed in adults, but little is known about it through development. Developing rainbow trout (Oncorhynchus mykiss) express embryonic RBCs containing hemoglobins that are relatively insensitive to pH; however, availability of gill paCA and RBC pHi protection is unknown. We show that pre-hatch rainbow trout express gill paCA, which is lost in correlation with the emergence of highly pH-sensitive adult hemoglobins and RBC pHi protection. Rainbow trout therefore exhibit a switch in respiratory strategy with hatch. We conclude that gill paCA likely represents an embryonic trait in rainbow trout and is constrained in adults due to their highly pH-sensitive hemoglobins.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"537-543"},"PeriodicalIF":1.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-07-02DOI: 10.1007/s00360-024-01568-y
Vanessa K Lo, Kenneth W Zillig, Dennis E Cocherell, Anne E Todgham, Nann A Fangue
Southern Distinct Population Segment (sDPS) green sturgeon spawn solely in one stretch of the Sacramento River in California. Management of this spawning habitat is complicated by cold water temperature requirements for the conservation of winter-run Chinook salmon. This study assessed whether low incubation and rearing temperatures resulted in carryover effects across embryo to early juvenile life stages on scaling relationships in growth and metabolism in northern DPS green sturgeon used as a proxy for sDPS green sturgeon. Fish were incubated and reared at 11 °C and 15 °C, with a subset experiencing a reciprocal temperature transfer post-hatch, to assess recovery from cold incubation or to simulate a cold-water dam release which would chill rearing larvae. Growth and metabolic rate of embryos and larvae were measured to 118 days post hatch. Reciprocal temperature transfers revealed a greater effect of low temperature exposure during larval rearing rather than during egg incubation. While 11 °C eggs hatched at a smaller length, log-transformed length-weight relationships showed that these differences in developmental trajectory dissipated as individuals achieved juvenile morphology. However, considerable size-at-age differences persisted between rearing temperatures, with 15 °C fish requiring 60 days post-hatch to achieve 1 g in mass, whereas 11 °C fish required 120 days to achieve 1 g, resulting in fish of the same age at the completion of the experiment with a ca. 37-fold difference in weight. Consequently, our study suggests that cold rearing temperatures have far more consequential downstream effects than cold embryo incubation temperatures. Growth delays from 11 °C rearing temperatures would greatly increase the period of vulnerability to predation in larval green sturgeon. The scaling relationship between log-transformed whole-body metabolism and mass exhibited a steeper slope and thus an increased oxygen requirement with size in 11 °C reared fish, potentially indicating an energetically unsustainable situation. Understanding how cold temperatures affect green sturgeon ontogeny is necessary to refine our larval recruitment estimations for this threatened species.
{"title":"Effects of low temperature on growth and metabolism of larval green sturgeon (Acipenser medirostris) across early ontogeny.","authors":"Vanessa K Lo, Kenneth W Zillig, Dennis E Cocherell, Anne E Todgham, Nann A Fangue","doi":"10.1007/s00360-024-01568-y","DOIUrl":"10.1007/s00360-024-01568-y","url":null,"abstract":"<p><p>Southern Distinct Population Segment (sDPS) green sturgeon spawn solely in one stretch of the Sacramento River in California. Management of this spawning habitat is complicated by cold water temperature requirements for the conservation of winter-run Chinook salmon. This study assessed whether low incubation and rearing temperatures resulted in carryover effects across embryo to early juvenile life stages on scaling relationships in growth and metabolism in northern DPS green sturgeon used as a proxy for sDPS green sturgeon. Fish were incubated and reared at 11 °C and 15 °C, with a subset experiencing a reciprocal temperature transfer post-hatch, to assess recovery from cold incubation or to simulate a cold-water dam release which would chill rearing larvae. Growth and metabolic rate of embryos and larvae were measured to 118 days post hatch. Reciprocal temperature transfers revealed a greater effect of low temperature exposure during larval rearing rather than during egg incubation. While 11 °C eggs hatched at a smaller length, log-transformed length-weight relationships showed that these differences in developmental trajectory dissipated as individuals achieved juvenile morphology. However, considerable size-at-age differences persisted between rearing temperatures, with 15 °C fish requiring 60 days post-hatch to achieve 1 g in mass, whereas 11 °C fish required 120 days to achieve 1 g, resulting in fish of the same age at the completion of the experiment with a ca. 37-fold difference in weight. Consequently, our study suggests that cold rearing temperatures have far more consequential downstream effects than cold embryo incubation temperatures. Growth delays from 11 °C rearing temperatures would greatly increase the period of vulnerability to predation in larval green sturgeon. The scaling relationship between log-transformed whole-body metabolism and mass exhibited a steeper slope and thus an increased oxygen requirement with size in 11 °C reared fish, potentially indicating an energetically unsustainable situation. Understanding how cold temperatures affect green sturgeon ontogeny is necessary to refine our larval recruitment estimations for this threatened species.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"427-442"},"PeriodicalIF":1.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-17DOI: 10.1007/s00360-024-01571-3
Monika Ostap-Chec, Daniel Bajorek, Weronika Antoł, Daniel Stec, Krzysztof Miler
Honey bees (Apis mellifera) are one of the most crucial pollinators, providing vital ecosystem services. Their development and functioning depend on essential nutrients and substances found in the environment. While collecting nectar as a vital carbohydrate source, bees routinely encounter low doses of ethanol from yeast fermentation. Yet, the effects of repeated ethanol exposure on bees' survival and physiology remain poorly understood. Here, we investigate the impacts of constant and occasional consumption of food spiked with 1% ethanol on honey bee mortality and alcohol dehydrogenase (ADH) activity. This ethanol concentration might be tentatively judged close to that in natural conditions. We conducted an experiment in which bees were exposed to three types of long-term diets: constant sugar solution (control group that simulated conditions of no access to ethanol), sugar solution spiked with ethanol every third day (that simulated occasional, infrequent exposure to ethanol) and daily ethanol consumption (simulating constant, routine exposure to ethanol). The results revealed that both constant and occasional ethanol consumption increased the mortality of bees, but only after several days. These mortality rates rose with the frequency of ethanol intake. The ADH activity remained similar in bees from all groups. Our findings indicate that exposure of bees to ethanol carries harmful effects that accumulate over time. Further research is needed to pinpoint the exact ethanol doses ingested with food and exposure frequency in bees in natural conditions.
{"title":"Occasional and constant exposure to dietary ethanol shortens the lifespan of worker honey bees.","authors":"Monika Ostap-Chec, Daniel Bajorek, Weronika Antoł, Daniel Stec, Krzysztof Miler","doi":"10.1007/s00360-024-01571-3","DOIUrl":"10.1007/s00360-024-01571-3","url":null,"abstract":"<p><p>Honey bees (Apis mellifera) are one of the most crucial pollinators, providing vital ecosystem services. Their development and functioning depend on essential nutrients and substances found in the environment. While collecting nectar as a vital carbohydrate source, bees routinely encounter low doses of ethanol from yeast fermentation. Yet, the effects of repeated ethanol exposure on bees' survival and physiology remain poorly understood. Here, we investigate the impacts of constant and occasional consumption of food spiked with 1% ethanol on honey bee mortality and alcohol dehydrogenase (ADH) activity. This ethanol concentration might be tentatively judged close to that in natural conditions. We conducted an experiment in which bees were exposed to three types of long-term diets: constant sugar solution (control group that simulated conditions of no access to ethanol), sugar solution spiked with ethanol every third day (that simulated occasional, infrequent exposure to ethanol) and daily ethanol consumption (simulating constant, routine exposure to ethanol). The results revealed that both constant and occasional ethanol consumption increased the mortality of bees, but only after several days. These mortality rates rose with the frequency of ethanol intake. The ADH activity remained similar in bees from all groups. Our findings indicate that exposure of bees to ethanol carries harmful effects that accumulate over time. Further research is needed to pinpoint the exact ethanol doses ingested with food and exposure frequency in bees in natural conditions.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"403-410"},"PeriodicalIF":1.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-07DOI: 10.1007/s00360-023-01530-4
Aslihan Terzi, Keri J Ngo, Philippe Mourrain
Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regulated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the brain's "antioxidant" at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that sleep-wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecular mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep pressure and cellularly, how this pressure is cleared.
{"title":"Phylogenetic conservation of the interdependent homeostatic relationship of sleep regulation and redox metabolism.","authors":"Aslihan Terzi, Keri J Ngo, Philippe Mourrain","doi":"10.1007/s00360-023-01530-4","DOIUrl":"10.1007/s00360-023-01530-4","url":null,"abstract":"<p><p>Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regulated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the brain's \"antioxidant\" at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that sleep-wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecular mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep pressure and cellularly, how this pressure is cleared.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"241-252"},"PeriodicalIF":1.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-11-01DOI: 10.1007/s00360-023-01523-3
Evan Lloyd, Aakriti Rastogi, Niah Holtz, Ben Aaronson, R Craig Albertson, Alex C Keene
Activity patterns tend to be highly stereotyped and critical for executing many different behaviors including foraging, social interactions, and predator avoidance. Differences in the circadian timing of locomotor activity and rest periods can facilitate habitat partitioning and the exploitation of novel niches. As a consequence, closely related species often display highly divergent activity patterns, suggesting that shifts from diurnal to nocturnal behavior, or vice versa, are critical for survival. In Africa's Lake Malawi alone, there are over 500 species of cichlids, which inhabit diverse environments and exhibit extensive phenotypic variation. We have previously identified a substantial range in activity patterns across adult Lake Malawi cichlid species, from strongly diurnal to strongly nocturnal. In many species, including fishes, ecological pressures differ dramatically across life-history stages, raising the possibility that activity patterns may change over ontogeny. To determine if rest-activity patterns change across life stages, we compared the locomotor patterns of six Lake Malawi cichlid species. While total rest and activity did not change between early juvenile and adult stages, rest-activity patterns did, with juveniles displaying distinct activity rhythms that are more robust than adults. One distinct difference between juveniles and adults is the emergence of complex social behavior. To determine whether social context is required for activity rhythms, we next measured locomotor behavior in group-housed adult fish. We found that when normal social interactions were allowed, locomotor activity patterns were restored, supporting the notion that social interactions promote circadian regulation of activity in adult fish. These findings reveal a previously unidentified link between developmental stage and social interactions in the circadian timing of cichlid activity.
{"title":"Ontogeny and social context regulate the circadian activity patterns of Lake Malawi cichlids.","authors":"Evan Lloyd, Aakriti Rastogi, Niah Holtz, Ben Aaronson, R Craig Albertson, Alex C Keene","doi":"10.1007/s00360-023-01523-3","DOIUrl":"10.1007/s00360-023-01523-3","url":null,"abstract":"<p><p>Activity patterns tend to be highly stereotyped and critical for executing many different behaviors including foraging, social interactions, and predator avoidance. Differences in the circadian timing of locomotor activity and rest periods can facilitate habitat partitioning and the exploitation of novel niches. As a consequence, closely related species often display highly divergent activity patterns, suggesting that shifts from diurnal to nocturnal behavior, or vice versa, are critical for survival. In Africa's Lake Malawi alone, there are over 500 species of cichlids, which inhabit diverse environments and exhibit extensive phenotypic variation. We have previously identified a substantial range in activity patterns across adult Lake Malawi cichlid species, from strongly diurnal to strongly nocturnal. In many species, including fishes, ecological pressures differ dramatically across life-history stages, raising the possibility that activity patterns may change over ontogeny. To determine if rest-activity patterns change across life stages, we compared the locomotor patterns of six Lake Malawi cichlid species. While total rest and activity did not change between early juvenile and adult stages, rest-activity patterns did, with juveniles displaying distinct activity rhythms that are more robust than adults. One distinct difference between juveniles and adults is the emergence of complex social behavior. To determine whether social context is required for activity rhythms, we next measured locomotor behavior in group-housed adult fish. We found that when normal social interactions were allowed, locomotor activity patterns were restored, supporting the notion that social interactions promote circadian regulation of activity in adult fish. These findings reveal a previously unidentified link between developmental stage and social interactions in the circadian timing of cichlid activity.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"299-313"},"PeriodicalIF":1.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-06-10DOI: 10.1007/s00360-024-01567-z
Russell G Foster
Circadian rhythms and the sleep/wake cycle allows us, and most life on Earth, to function optimally in a dynamic world, adjusting all aspects of biology to the varied and complex demands imposed by the 24-hour rotation of the Earth upon its axis. A key element in understanding these rhythms, and the success of the field in general, has been because researchers have adopted a comparative approach. Across all taxa, fundamental questions relating to the generation and regulation of sleep and circadian rhythms have been address using biochemical, molecular, cellular, system and computer modelling techniques. Furthermore, findings have been placed into an ecological and evolutionary context. By addressing both the "How" - mechanistic, and "Why" - evolutionary questions in parallel, the field has achieved remarkable successes, including how circadian rhythms are generated and regulated by light. Yet many key questions remain. In this special issue on the Comparative Physiology of Sleep and Circadian Rhythms, celebrating the 100th anniversary of the Journal of Comparative Physiology, important new discoveries are detailed. These findings illustrate the power of comparative physiology to address novel questions and demonstrate that sleep and circadian physiology are embedded within the biological framework of an organism.
{"title":"Introduction and reflections on the comparative physiology of sleep and circadian rhythms.","authors":"Russell G Foster","doi":"10.1007/s00360-024-01567-z","DOIUrl":"10.1007/s00360-024-01567-z","url":null,"abstract":"<p><p>Circadian rhythms and the sleep/wake cycle allows us, and most life on Earth, to function optimally in a dynamic world, adjusting all aspects of biology to the varied and complex demands imposed by the 24-hour rotation of the Earth upon its axis. A key element in understanding these rhythms, and the success of the field in general, has been because researchers have adopted a comparative approach. Across all taxa, fundamental questions relating to the generation and regulation of sleep and circadian rhythms have been address using biochemical, molecular, cellular, system and computer modelling techniques. Furthermore, findings have been placed into an ecological and evolutionary context. By addressing both the \"How\" - mechanistic, and \"Why\" - evolutionary questions in parallel, the field has achieved remarkable successes, including how circadian rhythms are generated and regulated by light. Yet many key questions remain. In this special issue on the Comparative Physiology of Sleep and Circadian Rhythms, celebrating the 100th anniversary of the Journal of Comparative Physiology, important new discoveries are detailed. These findings illustrate the power of comparative physiology to address novel questions and demonstrate that sleep and circadian physiology are embedded within the biological framework of an organism.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"225-231"},"PeriodicalIF":1.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-24DOI: 10.1007/s00360-023-01531-3
Rochelle L Coulson, Philippe Mourrain, Gordon X Wang
Individuals with neurodevelopmental disorders experience persistent sleep deficits, and there is increasing evidence that sleep dysregulation is an underlying cause, rather than merely an effect, of the synaptic and behavioral defects observed in these disorders. At the molecular level, dysregulation of the synaptic proteome is a common feature of neurodevelopmental disorders, though the mechanism connecting these molecular and behavioral phenotypes is an ongoing area of investigation. A role for eIF2α in shifting the local proteome in response to changes in the conditions at the synapse has emerged. Here, we discuss recent progress in characterizing the intersection of local synaptic translation and sleep and propose a reciprocal mechanism of dysregulation in the development of synaptic plasticity defects in neurodevelopmental disorders.
{"title":"The intersection of sleep and synaptic translation in synaptic plasticity deficits in neurodevelopmental disorders.","authors":"Rochelle L Coulson, Philippe Mourrain, Gordon X Wang","doi":"10.1007/s00360-023-01531-3","DOIUrl":"10.1007/s00360-023-01531-3","url":null,"abstract":"<p><p>Individuals with neurodevelopmental disorders experience persistent sleep deficits, and there is increasing evidence that sleep dysregulation is an underlying cause, rather than merely an effect, of the synaptic and behavioral defects observed in these disorders. At the molecular level, dysregulation of the synaptic proteome is a common feature of neurodevelopmental disorders, though the mechanism connecting these molecular and behavioral phenotypes is an ongoing area of investigation. A role for eIF2α in shifting the local proteome in response to changes in the conditions at the synapse has emerged. Here, we discuss recent progress in characterizing the intersection of local synaptic translation and sleep and propose a reciprocal mechanism of dysregulation in the development of synaptic plasticity defects in neurodevelopmental disorders.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"253-263"},"PeriodicalIF":1.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233386/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139941258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2023-03-11DOI: 10.1007/s00360-023-01480-x
Shauni E T Omond, John A Lesku
The behaviors that characterize sleep have been observed across a broad range of different species. While much attention has been placed on vertebrates (mostly mammals and birds), the grand diversity of invertebrates has gone largely unexplored. Here, we introduce the intrigue and special value in the study of sleeping platyhelminth flatworms. Flatworms are closely related to annelids and mollusks, and yet are comparatively simple. They lack a circulatory system, respiratory system, endocrine glands, a coelom, and an anus. They retain a central and peripheral nervous system, various sensory systems, and an ability to learn. Flatworms sleep, like other animals, a state which is regulated by prior sleep/wake history and by the neurotransmitter GABA. Furthermore, they possess a remarkable ability to regenerate from a mere fragment of the original animal. The regenerative capabilities of flatworms make them a unique bilaterally symmetric animal to study a link between sleep and neurodevelopment. Lastly, the recent applications of tools for probing the flatworm genome, metabolism, and brain activity make their entrance into the field of sleep research all the more timely.
{"title":"Why study sleep in flatworms?","authors":"Shauni E T Omond, John A Lesku","doi":"10.1007/s00360-023-01480-x","DOIUrl":"10.1007/s00360-023-01480-x","url":null,"abstract":"<p><p>The behaviors that characterize sleep have been observed across a broad range of different species. While much attention has been placed on vertebrates (mostly mammals and birds), the grand diversity of invertebrates has gone largely unexplored. Here, we introduce the intrigue and special value in the study of sleeping platyhelminth flatworms. Flatworms are closely related to annelids and mollusks, and yet are comparatively simple. They lack a circulatory system, respiratory system, endocrine glands, a coelom, and an anus. They retain a central and peripheral nervous system, various sensory systems, and an ability to learn. Flatworms sleep, like other animals, a state which is regulated by prior sleep/wake history and by the neurotransmitter GABA. Furthermore, they possess a remarkable ability to regenerate from a mere fragment of the original animal. The regenerative capabilities of flatworms make them a unique bilaterally symmetric animal to study a link between sleep and neurodevelopment. Lastly, the recent applications of tools for probing the flatworm genome, metabolism, and brain activity make their entrance into the field of sleep research all the more timely.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"233-239"},"PeriodicalIF":1.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233290/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9080382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-11DOI: 10.1007/s00360-024-01556-2
Christian D Harding, Kerry M M Walker, Talya D Hackett, Annika Herwig, Stuart N Peirson, Vladyslav V Vyazovskiy
Vocalisations are increasingly being recognised as an important aspect of normal rodent behaviour yet little is known of how they interact with other spontaneous behaviours such as sleep and torpor, particularly in a social setting. We obtained chronic recordings of the vocal behaviour of adult male and female Djungarian hamsters (Phodopus sungorus) housed under short photoperiod (8 h light, 16 h dark, square wave transitions), in different social contexts. The animals were kept in isolation or in same-sex sibling pairs, separated by a grid which allowed non-physical social interaction. On approximately 20% of days hamsters spontaneously entered torpor, a state of metabolic depression that coincides with the rest phase of many small mammal species in response to actual or predicted energy shortages. Animals produced ultrasonic vocalisations (USVs) with a peak frequency of 57 kHz in both social and asocial conditions and there was a high degree of variability in vocalisation rate between subjects. Vocalisation rate was correlated with locomotor activity across the 24-h light cycle, occurring more frequently during the dark period when the hamsters were more active and peaking around light transitions. Solitary-housed animals did not vocalise whilst torpid and animals remained in torpor despite overlapping with vocalisations in social-housing. Besides a minor decrease in peak USV frequency when isolated hamsters were re-paired with their siblings, changing social contexts did not influence vocalisation behaviour or structure. In rare instances, temporally overlapping USVs occurred when animals were socially-housed and were grouped in such a way that could indicate coordination. We did not observe broadband calls (BBCs) contemporaneous with USVs in this paradigm, corroborating their correlation with physical aggression which was absent from our experiment. Overall, we find little evidence to suggest a direct social function of hamster USVs. We conclude that understanding the effects of vocalisations on spontaneous behaviours, such as sleep and torpor, will inform experimental design of future studies, especially where the role of social interactions is investigated.
{"title":"Ultrasonic vocalisation rate tracks the diurnal pattern of activity in winter phenotype Djungarian hamsters (Phodopus sungorus).","authors":"Christian D Harding, Kerry M M Walker, Talya D Hackett, Annika Herwig, Stuart N Peirson, Vladyslav V Vyazovskiy","doi":"10.1007/s00360-024-01556-2","DOIUrl":"10.1007/s00360-024-01556-2","url":null,"abstract":"<p><p>Vocalisations are increasingly being recognised as an important aspect of normal rodent behaviour yet little is known of how they interact with other spontaneous behaviours such as sleep and torpor, particularly in a social setting. We obtained chronic recordings of the vocal behaviour of adult male and female Djungarian hamsters (Phodopus sungorus) housed under short photoperiod (8 h light, 16 h dark, square wave transitions), in different social contexts. The animals were kept in isolation or in same-sex sibling pairs, separated by a grid which allowed non-physical social interaction. On approximately 20% of days hamsters spontaneously entered torpor, a state of metabolic depression that coincides with the rest phase of many small mammal species in response to actual or predicted energy shortages. Animals produced ultrasonic vocalisations (USVs) with a peak frequency of 57 kHz in both social and asocial conditions and there was a high degree of variability in vocalisation rate between subjects. Vocalisation rate was correlated with locomotor activity across the 24-h light cycle, occurring more frequently during the dark period when the hamsters were more active and peaking around light transitions. Solitary-housed animals did not vocalise whilst torpid and animals remained in torpor despite overlapping with vocalisations in social-housing. Besides a minor decrease in peak USV frequency when isolated hamsters were re-paired with their siblings, changing social contexts did not influence vocalisation behaviour or structure. In rare instances, temporally overlapping USVs occurred when animals were socially-housed and were grouped in such a way that could indicate coordination. We did not observe broadband calls (BBCs) contemporaneous with USVs in this paradigm, corroborating their correlation with physical aggression which was absent from our experiment. Overall, we find little evidence to suggest a direct social function of hamster USVs. We conclude that understanding the effects of vocalisations on spontaneous behaviours, such as sleep and torpor, will inform experimental design of future studies, especially where the role of social interactions is investigated.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"383-401"},"PeriodicalIF":1.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}