首页 > 最新文献

PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science最新文献

英文 中文
Generating Virtual Training Labels for Crop Classification from Fused Sentinel-1 and Sentinel-2 Time Series 基于融合Sentinel-1和Sentinel-2时间序列的作物分类虚拟训练标签生成
4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-09-26 DOI: 10.1007/s41064-023-00256-w
Maryam Teimouri, Mehdi Mokhtarzade, Nicolas Baghdadi, Christian Heipke
Abstract Convolutional neural networks (CNNs) have shown results superior to most traditional image understanding approaches in many fields, incl. crop classification from satellite time series images. However, CNNs require a large number of training samples to properly train the network. The process of collecting and labeling such samples using traditional methods can be both, time-consuming and costly. To address this issue and improve classification accuracy, generating virtual training labels (VTL) from existing ones is a promising solution. To this end, this study proposes a novel method for generating VTL based on sub-dividing the training samples of each crop using self-organizing maps (SOM), and then assigning labels to a set of unlabeled pixels based on the distance to these sub-classes. We apply the new method to crop classification from Sentinel images. A three-dimensional (3D) CNN is utilized for extracting features from the fusion of optical and radar time series. The results of the evaluation show that the proposed method is effective in generating VTL, as demonstrated by the achieved overall accuracy (OA) of 95.3% and kappa coefficient (KC) of 94.5%, compared to 91.3% and 89.9% for a solution without VTL. The results suggest that the proposed method has the potential to enhance the classification accuracy of crops using VTL.
卷积神经网络(cnn)在许多领域显示出优于大多数传统图像理解方法的结果,包括从卫星时间序列图像中进行作物分类。然而,cnn需要大量的训练样本才能正确训练网络。使用传统方法收集和标记这些样品的过程既耗时又昂贵。为了解决这个问题并提高分类精度,从现有的训练标签生成虚拟训练标签(VTL)是一个很有前途的解决方案。为此,本研究提出了一种基于自组织地图(SOM)对每个作物的训练样本进行细分,然后根据与这些子类的距离为一组未标记像素分配标签的新方法来生成VTL。我们将新方法应用于Sentinel图像的作物分类。利用三维(3D) CNN从光学和雷达时间序列融合中提取特征。评价结果表明,该方法可以有效地生成虚拟带库,总体精度(OA)为95.3%,kappa系数(KC)为94.5%,而无虚拟带库溶液的总体精度为91.3%,kappa系数为89.9%。结果表明,所提出的方法具有提高VTL作物分类精度的潜力。
{"title":"Generating Virtual Training Labels for Crop Classification from Fused Sentinel-1 and Sentinel-2 Time Series","authors":"Maryam Teimouri, Mehdi Mokhtarzade, Nicolas Baghdadi, Christian Heipke","doi":"10.1007/s41064-023-00256-w","DOIUrl":"https://doi.org/10.1007/s41064-023-00256-w","url":null,"abstract":"Abstract Convolutional neural networks (CNNs) have shown results superior to most traditional image understanding approaches in many fields, incl. crop classification from satellite time series images. However, CNNs require a large number of training samples to properly train the network. The process of collecting and labeling such samples using traditional methods can be both, time-consuming and costly. To address this issue and improve classification accuracy, generating virtual training labels (VTL) from existing ones is a promising solution. To this end, this study proposes a novel method for generating VTL based on sub-dividing the training samples of each crop using self-organizing maps (SOM), and then assigning labels to a set of unlabeled pixels based on the distance to these sub-classes. We apply the new method to crop classification from Sentinel images. A three-dimensional (3D) CNN is utilized for extracting features from the fusion of optical and radar time series. The results of the evaluation show that the proposed method is effective in generating VTL, as demonstrated by the achieved overall accuracy (OA) of 95.3% and kappa coefficient (KC) of 94.5%, compared to 91.3% and 89.9% for a solution without VTL. The results suggest that the proposed method has the potential to enhance the classification accuracy of crops using VTL.","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134960018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Physical and Chemical Characteristics of Marine Mucilage Utilizing In-Situ and Remote Sensing Data (Sentinel-1, -2, -3) 利用原位和遥感数据评估海洋黏液的理化特性(Sentinel-1, -2, -3)
4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-09-19 DOI: 10.1007/s41064-023-00254-y
Umut Gunes Sefercik, Ismail Colkesen, Taskin Kavzoglu, Nizamettin Ozdogan, Muhammed Yusuf Ozturk
{"title":"Assessing the Physical and Chemical Characteristics of Marine Mucilage Utilizing In-Situ and Remote Sensing Data (Sentinel-1, -2, -3)","authors":"Umut Gunes Sefercik, Ismail Colkesen, Taskin Kavzoglu, Nizamettin Ozdogan, Muhammed Yusuf Ozturk","doi":"10.1007/s41064-023-00254-y","DOIUrl":"https://doi.org/10.1007/s41064-023-00254-y","url":null,"abstract":"","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135060842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Multispectral and Hyperspectral Imagery for Mapping Sugarcane Varieties 多光谱与高光谱影像在甘蔗品种定位中的比较分析
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-09-06 DOI: 10.1007/s41064-023-00255-x
A. Sedighi, S. Hamzeh, M. K. Firozjaei, Hamid Valipoori Goodarzi, A. Naseri
{"title":"Comparative Analysis of Multispectral and Hyperspectral Imagery for Mapping Sugarcane Varieties","authors":"A. Sedighi, S. Hamzeh, M. K. Firozjaei, Hamid Valipoori Goodarzi, A. Naseri","doi":"10.1007/s41064-023-00255-x","DOIUrl":"https://doi.org/10.1007/s41064-023-00255-x","url":null,"abstract":"","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"26 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82060067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guiding Deep Learning with Expert Knowledge for Dense Stereo Matching 用专家知识指导深度学习进行密集立体匹配
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-07-28 DOI: 10.1007/s41064-023-00252-0
Waseem Iqbal, J. Paffenholz, M. Mehltretter
{"title":"Guiding Deep Learning with Expert Knowledge for Dense Stereo Matching","authors":"Waseem Iqbal, J. Paffenholz, M. Mehltretter","doi":"10.1007/s41064-023-00252-0","DOIUrl":"https://doi.org/10.1007/s41064-023-00252-0","url":null,"abstract":"","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"1 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87870794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Crowd-aware Thresholded Loss for Object Detection in Wide Area Motion Imagery 广域运动图像中人群感知阈值损失的目标检测
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-07-24 DOI: 10.1007/s41064-023-00253-z
P. U. Hatipoglu, C. Iyigun, Sinan Kalkan
{"title":"Crowd-aware Thresholded Loss for Object Detection in Wide Area Motion Imagery","authors":"P. U. Hatipoglu, C. Iyigun, Sinan Kalkan","doi":"10.1007/s41064-023-00253-z","DOIUrl":"https://doi.org/10.1007/s41064-023-00253-z","url":null,"abstract":"","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"93 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80218625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Downscaling of Snow Water Equivalent Using Machine Learning Methods Over the Zayandehroud River Basin, Iran 伊朗zayandehoud河流域雪水当量的机器学习空间降尺度研究
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-07-21 DOI: 10.1007/s41064-023-00249-9
M. Moradizadeh, Mohammadali Alijanian, R. Moeini
{"title":"Spatial Downscaling of Snow Water Equivalent Using Machine Learning Methods Over the Zayandehroud River Basin, Iran","authors":"M. Moradizadeh, Mohammadali Alijanian, R. Moeini","doi":"10.1007/s41064-023-00249-9","DOIUrl":"https://doi.org/10.1007/s41064-023-00249-9","url":null,"abstract":"","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"33 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85210321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of InSAR Tropospheric Correction Methods over North-West Iran 伊朗西北部InSAR对流层校正方法的评价
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-07-19 DOI: 10.1007/s41064-023-00250-2
M. Kavehei, M. Yazdi, M. Dehghani
{"title":"Evaluation of InSAR Tropospheric Correction Methods over North-West Iran","authors":"M. Kavehei, M. Yazdi, M. Dehghani","doi":"10.1007/s41064-023-00250-2","DOIUrl":"https://doi.org/10.1007/s41064-023-00250-2","url":null,"abstract":"","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"1 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83082714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Metaheuristic Optimization-Based Solution to MTF-GLP-Based Pansharpening 基于mtf - glp的泛锐化的元启发式优化解决方案
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-06-16 DOI: 10.1007/s41064-023-00248-w
Cigdem Serifoglu Yilmaz, Oguz Gungor
{"title":"A Metaheuristic Optimization-Based Solution to MTF-GLP-Based Pansharpening","authors":"Cigdem Serifoglu Yilmaz, Oguz Gungor","doi":"10.1007/s41064-023-00248-w","DOIUrl":"https://doi.org/10.1007/s41064-023-00248-w","url":null,"abstract":"","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"7 1","pages":"245 - 272"},"PeriodicalIF":4.1,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90493541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Drone Regulations on Drone Use in Geospatial Applications and Research: Focus on Visual Range Conditions, Geofencing and Privacy Considerations 无人机法规对无人机在地理空间应用和研究中的影响:关注视距条件、地理围栏和隐私考虑
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-06-15 DOI: 10.1007/s41064-023-00246-y
A. Alamouri, A. Lampert, M. Gerke
{"title":"Impact of Drone Regulations on Drone Use in Geospatial Applications and Research: Focus on Visual Range Conditions, Geofencing and Privacy Considerations","authors":"A. Alamouri, A. Lampert, M. Gerke","doi":"10.1007/s41064-023-00246-y","DOIUrl":"https://doi.org/10.1007/s41064-023-00246-y","url":null,"abstract":"","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"29 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76875138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Comparison of an Optimised Multiresolution Segmentation Approach with Deep Neural Networks for Delineating Agricultural Fields from Sentinel-2 Images 基于深度神经网络的优化多分辨率分割方法在Sentinel-2图像中划分农田的比较
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2023-06-07 DOI: 10.1007/s41064-023-00247-x
G. Tetteh, M. Schwieder, S. Erasmi, Christopher Conrad, A. Gocht
{"title":"Comparison of an Optimised Multiresolution Segmentation Approach with Deep Neural Networks for Delineating Agricultural Fields from Sentinel-2 Images","authors":"G. Tetteh, M. Schwieder, S. Erasmi, Christopher Conrad, A. Gocht","doi":"10.1007/s41064-023-00247-x","DOIUrl":"https://doi.org/10.1007/s41064-023-00247-x","url":null,"abstract":"","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"1 1","pages":"295 - 312"},"PeriodicalIF":4.1,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89965231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1