首页 > 最新文献

PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science最新文献

英文 中文
DUDES: Deep Uncertainty Distillation using Ensembles for Semantic Segmentation DUDES:利用集合进行语义分割的深度不确定性蒸馏
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-03-25 DOI: 10.1007/s41064-024-00280-4
Steven Landgraf, Kira Wursthorn, Markus Hillemann, Markus Ulrich

The intersection of deep learning and photogrammetry unveils a critical need for balancing the power of deep neural networks with interpretability and trustworthiness, especially for safety-critical application like autonomous driving, medical imaging, or machine vision tasks with high demands on reliability. Quantifying the predictive uncertainty is a promising endeavour to open up the use of deep neural networks for such applications. Unfortunately, most current available methods are computationally expensive. In this work, we present a novel approach for efficient and reliable uncertainty estimation for semantic segmentation, which we call Deep Uncertainty Distillation using Ensembles for Segmentation (DUDES). DUDES applies student-teacher distillation with a Deep Ensemble to accurately approximate predictive uncertainties with a single forward pass while maintaining simplicity and adaptability. Experimentally, DUDES accurately captures predictive uncertainties without sacrificing performance on the segmentation task and indicates impressive capabilities of highlighting wrongly classified pixels and out-of-domain samples through high uncertainties on the Cityscapes and Pascal VOC 2012 dataset. With DUDES, we manage to simultaneously simplify and outperform previous work on Deep-Ensemble-based Uncertainty Distillation.

深度学习与摄影测量学的交叉点揭示了平衡深度神经网络的强大功能与可解释性和可信度的关键需求,尤其是对于自动驾驶、医疗成像或对可靠性要求极高的机器视觉任务等安全关键型应用而言。量化预测的不确定性是将深度神经网络用于此类应用的一项大有可为的工作。遗憾的是,目前大多数可用方法的计算成本都很高。在这项工作中,我们提出了一种高效、可靠的语义分割不确定性估算新方法,我们称之为 "使用集合进行分割的深度不确定性蒸馏(DUDES)"。DUDES 利用深度集合进行学生-教师蒸馏,在保持简单性和适应性的同时,只需一次前向传递就能准确地近似预测不确定性。实验结果表明,DUDES 在不牺牲分割任务性能的情况下准确捕捉了预测不确定性,并在 Cityscapes 和 Pascal VOC 2012 数据集上通过高不确定性突出显示了错误分类的像素和域外样本,令人印象深刻。通过 DUDES,我们成功地简化了基于深度集合的不确定性蒸馏,并超越了之前的研究成果。
{"title":"DUDES: Deep Uncertainty Distillation using Ensembles for Semantic Segmentation","authors":"Steven Landgraf, Kira Wursthorn, Markus Hillemann, Markus Ulrich","doi":"10.1007/s41064-024-00280-4","DOIUrl":"https://doi.org/10.1007/s41064-024-00280-4","url":null,"abstract":"<p>The intersection of deep learning and photogrammetry unveils a critical need for balancing the power of deep neural networks with interpretability and trustworthiness, especially for safety-critical application like autonomous driving, medical imaging, or machine vision tasks with high demands on reliability. Quantifying the predictive uncertainty is a promising endeavour to open up the use of deep neural networks for such applications. Unfortunately, most current available methods are computationally expensive. In this work, we present a novel approach for efficient and reliable uncertainty estimation for semantic segmentation, which we call <b>D</b>eep <b>U</b>ncertainty <b>D</b>istillation using <b>E</b>nsembles for <b>S</b>egmentation (DUDES). DUDES applies student-teacher distillation with a Deep Ensemble to accurately approximate predictive uncertainties with a single forward pass while maintaining simplicity and adaptability. Experimentally, DUDES accurately captures predictive uncertainties without sacrificing performance on the segmentation task and indicates impressive capabilities of highlighting wrongly classified pixels and out-of-domain samples through high uncertainties on the Cityscapes and Pascal VOC 2012 dataset. With DUDES, we manage to simultaneously simplify and outperform previous work on Deep-Ensemble-based Uncertainty Distillation.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"273 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Geospatial Approach to Mapping and Monitoring Real Estate-Induced Urban Expansion in the National Capital Region of Delhi 绘制和监测德里国家首都地区由房地产引发的城市扩张的地理空间方法
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-03-18 DOI: 10.1007/s41064-024-00278-y
Mohd Waseem Naikoo, Shahfahad, Swapan Talukdar, Mohd Rihan, Ishita Afreen Ahmed, Hoang Thi Hang, M. Ishtiaq, Atiqur Rahman

Monitoring of real estate growth is essential with the increasing demand for housing and working space in cities. In this study, a new methodological framework is proposed to map the area under real estate using geospatial techniques. In this framework, the built-up area and open land at successive stages of development are used to map the area under real estate. Three machine learning algorithms were used, namely random forest (RF), support vector machine (SVM), and feedforward neural networks (FFNN), to classify the land use and land cover (LULC) map of Delhi NCR during 1990–2018, which is the basic input for real estate mapping. The results of the study show that optimized RF performed better than SVM and FFNN in LULC classification. The real estate land increased by 279% in Delhi NCR during 1990–2018. The area under real estate increased by 33%, 47%, 29%, 21%, and 22% during 1990–1996, 1996–2003, 2003–2008, 2008–2014, and 2014–2018, respectively. Among the cities surrounding Delhi, Gurgaon, Rohtak, Noida, and Faridabad have witnessed maximum real estate growth. The approach used in this study could be used for real estate mapping in other cities across the world.

随着城市对住房和工作空间的需求不断增加,对房地产增长的监测至关重要。本研究提出了一个新的方法框架,利用地理空间技术绘制房地产面积图。在这一框架中,建筑面积和连续发展阶段的空地被用来绘制房地产下面积图。研究使用了三种机器学习算法,即随机森林(RF)、支持向量机(SVM)和前馈神经网络(FFNN),对 1990-2018 年期间德里新德里地区的土地利用和土地覆被地图(LULC)进行分类,该地图是房地产测绘的基本输入。研究结果表明,在 LULC 分类方面,优化 RF 的表现优于 SVM 和 FFNN。1990-2018 年间,德里北区的房地产用地增加了 279%。在 1990-1996 年、1996-2003 年、2003-2008 年、2008-2014 年和 2014-2018 年期间,房地产面积分别增加了 33%、47%、29%、21% 和 22%。在德里周边城市中,古尔冈、罗塔克、诺伊达和法里达巴德的房地产增长幅度最大。本研究采用的方法可用于绘制全球其他城市的房地产地图。
{"title":"A Geospatial Approach to Mapping and Monitoring Real Estate-Induced Urban Expansion in the National Capital Region of Delhi","authors":"Mohd Waseem Naikoo, Shahfahad, Swapan Talukdar, Mohd Rihan, Ishita Afreen Ahmed, Hoang Thi Hang, M. Ishtiaq, Atiqur Rahman","doi":"10.1007/s41064-024-00278-y","DOIUrl":"https://doi.org/10.1007/s41064-024-00278-y","url":null,"abstract":"<p>Monitoring of real estate growth is essential with the increasing demand for housing and working space in cities. In this study, a new methodological framework is proposed to map the area under real estate using geospatial techniques. In this framework, the built-up area and open land at successive stages of development are used to map the area under real estate. Three machine learning algorithms were used, namely random forest (RF), support vector machine (SVM), and feedforward neural networks (FFNN), to classify the land use and land cover (LULC) map of Delhi NCR during 1990–2018, which is the basic input for real estate mapping. The results of the study show that optimized RF performed better than SVM and FFNN in LULC classification. The real estate land increased by 279% in Delhi NCR during 1990–2018. The area under real estate increased by 33%, 47%, 29%, 21%, and 22% during 1990–1996, 1996–2003, 2003–2008, 2008–2014, and 2014–2018, respectively. Among the cities surrounding Delhi, Gurgaon, Rohtak, Noida, and Faridabad have witnessed maximum real estate growth. The approach used in this study could be used for real estate mapping in other cities across the world.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"70 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building Detection from SkySat Images with Transfer Learning: a Case Study over Ankara 利用迁移学习从天空卫星图像中探测建筑物:安卡拉上空的案例研究
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-03-18 DOI: 10.1007/s41064-024-00279-x
Kanako Sawa, Ilyas Yalcin, Sultan Kocaman

The detection and continuous updating of buildings in geodatabases has long been a major research area in geographic information science and is an important theme for national mapping agencies. Advancements in machine learning techniques, particularly state-of-the-art deep learning (DL) models, offer promising solutions for extracting and modeling building rooftops from images. However, tasks such as automatic labelling of learning data and the generalizability of models remain challenging. In this study, we assessed the sensor and geographic area adaptation capabilities of a pretrained DL model implemented in the ArcGIS environment using very-high-resolution (50 cm) SkySat imagery. The model was trained for digitizing building footprints via Mask R‑CNN with a ResNet50 backbone using aerial and satellite images from parts of the USA. Here, we utilized images from three different SkySat satellites with various acquisition dates and off-nadir angles and refined the pretrained model using small numbers of buildings as training data (5–53 buildings) over Ankara. We evaluated the buildings in areas with different characteristics, such as urban transformation, slums, regular, and obtained high accuracies with F‑1 scores of 0.92, 0.94, and 0.96 from SkySat 4, 7, and 17, respectively. The study findings showed that the DL model has high transfer learning capability for Ankara using only a few buildings and that the recent SkySat satellites demonstrate superior image quality.

长期以来,地理数据库中建筑物的检测和持续更新一直是地理信息科学的一个主要研究领域,也是国家测绘机构的一个重要课题。机器学习技术的进步,尤其是最先进的深度学习(DL)模型,为从图像中提取建筑物屋顶并对其进行建模提供了前景广阔的解决方案。然而,学习数据的自动标注和模型的通用性等任务仍然具有挑战性。在本研究中,我们利用超高分辨率(50 厘米)的 SkySat 图像,评估了在 ArcGIS 环境中实施的预训练 DL 模型的传感器和地理区域适应能力。利用美国部分地区的航空和卫星图像,通过以 ResNet50 为骨干的 Mask R-CNN 对该模型进行了训练,以实现建筑物足迹的数字化。在这里,我们使用了来自三颗不同的 SkySat 卫星的图像,这些图像具有不同的采集日期和离底角度,并使用安卡拉上空的少量建筑物作为训练数据(5-53 栋建筑物)对预训练模型进行了改进。我们对城市改造、贫民窟、常规等不同特征区域的建筑物进行了评估,从 SkySat 4、7 和 17 号卫星获得的 F-1 分数分别为 0.92、0.94 和 0.96,准确度较高。研究结果表明,DL 模型在安卡拉的迁移学习能力很强,只使用了几栋建筑,而且最近的 SkySat 卫星显示出卓越的图像质量。
{"title":"Building Detection from SkySat Images with Transfer Learning: a Case Study over Ankara","authors":"Kanako Sawa, Ilyas Yalcin, Sultan Kocaman","doi":"10.1007/s41064-024-00279-x","DOIUrl":"https://doi.org/10.1007/s41064-024-00279-x","url":null,"abstract":"<p>The detection and continuous updating of buildings in geodatabases has long been a major research area in geographic information science and is an important theme for national mapping agencies. Advancements in machine learning techniques, particularly state-of-the-art deep learning (DL) models, offer promising solutions for extracting and modeling building rooftops from images. However, tasks such as automatic labelling of learning data and the generalizability of models remain challenging. In this study, we assessed the sensor and geographic area adaptation capabilities of a pretrained DL model implemented in the ArcGIS environment using very-high-resolution (50 cm) SkySat imagery. The model was trained for digitizing building footprints via Mask R‑CNN with a ResNet50 backbone using aerial and satellite images from parts of the USA. Here, we utilized images from three different SkySat satellites with various acquisition dates and off-nadir angles and refined the pretrained model using small numbers of buildings as training data (5–53 buildings) over Ankara. We evaluated the buildings in areas with different characteristics, such as urban transformation, slums, regular, and obtained high accuracies with F‑1 scores of 0.92, 0.94, and 0.96 from SkySat 4, 7, and 17, respectively. The study findings showed that the DL model has high transfer learning capability for Ankara using only a few buildings and that the recent SkySat satellites demonstrate superior image quality.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"40 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic Flood Detection from Sentinel-1 Data Using a Nested UNet Model and a NASA Benchmark Dataset 利用嵌套 UNet 模型和 NASA 基准数据集从哨兵-1 数据中自动检测洪水
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-03-12 DOI: 10.1007/s41064-024-00275-1
Binayak Ghosh, Shagun Garg, Mahdi Motagh, Sandro Martinis

During flood events near real-time, synthetic aperture radar (SAR) satellite imagery has proven to be an efficient management tool for disaster management authorities. However, one of the challenges is accurate classification and segmentation of flooded water. A common method of SAR-based flood mapping is binary segmentation by thresholding, but this method is limited due to the effects of backscatter, geographical area, and surface characterstics. Recent advancements in deep learning algorithms for image segmentation have demonstrated excellent potential for improving flood detection. In this paper, we present a deep learning approach with a nested UNet architecture based on a backbone of EfficientNet-B7 by leveraging a publicly available Sentinel‑1 dataset provided jointly by NASA and the IEEE GRSS Committee. The performance of the nested UNet model was compared with several other UNet-based convolutional neural network architectures. The models were trained on flood events from Nebraska and North Alabama in the USA, Bangladesh, and Florence, Italy. Finally, the generalization capacity of the trained nested UNet model was compared to the other architectures by testing on Sentinel‑1 data from flood events of varied geographical regions such as Spain, India, and Vietnam. The impact of using different polarization band combinations of input data on the segmentation capabilities of the nested UNet and other models is also evaluated using Shapley scores. The results of these experiments show that the UNet model architectures perform comparably to the UNet++ with EfficientNet-B7 backbone for both the NASA dataset as well as the other test cases. Therefore, it can be inferred that these models can be trained on certain flood events provided in the dataset and used for flood detection in other geographical areas, thus proving the transferability of these models. However, the effect of polarization still varies across different test cases from around the world in terms of performance; the model trained with the combinations of individual bands, VV and VH, and polarization ratios gives the best results.

事实证明,在接近实时的洪水事件中,合成孔径雷达(SAR)卫星图像是灾害管理部门的有效管理工具。然而,其中一项挑战是对洪水进行准确的分类和分割。基于合成孔径雷达的洪水绘图的常用方法是通过阈值进行二元分割,但由于后向散射、地理区域和表面特征的影响,这种方法受到限制。最近,用于图像分割的深度学习算法取得了进步,在改进洪水检测方面展现出了巨大的潜力。在本文中,我们利用由美国国家航空航天局(NASA)和电气和电子工程师学会 GRSS 委员会联合提供的公开 Sentinel-1 数据集,提出了一种基于 EfficientNet-B7 骨干的嵌套 UNet 架构的深度学习方法。嵌套 UNet 模型的性能与其他几种基于 UNet 的卷积神经网络架构进行了比较。这些模型在美国内布拉斯加州和北阿拉巴马州、孟加拉国以及意大利佛罗伦萨的洪水事件中进行了训练。最后,通过对来自西班牙、印度和越南等不同地理区域洪水事件的哨兵-1 数据进行测试,比较了训练有素的嵌套 UNet 模型与其他架构的泛化能力。此外,还使用 Shapley 分数评估了输入数据的不同偏振波段组合对嵌套 UNet 和其他模型的分割能力的影响。这些实验结果表明,在 NASA 数据集和其他测试案例中,UNet 模型架构的性能与带有 EfficientNet-B7 主干网的 UNet++ 相当。因此,可以推断这些模型可以根据数据集中提供的某些洪水事件进行训练,并用于其他地理区域的洪水检测,从而证明了这些模型的可移植性。然而,在世界各地的不同测试案例中,极化的效果在性能上仍然存在差异;使用单个波段、VV 和 VH 以及极化比率组合训练的模型效果最佳。
{"title":"Automatic Flood Detection from Sentinel-1 Data Using a Nested UNet Model and a NASA Benchmark Dataset","authors":"Binayak Ghosh, Shagun Garg, Mahdi Motagh, Sandro Martinis","doi":"10.1007/s41064-024-00275-1","DOIUrl":"https://doi.org/10.1007/s41064-024-00275-1","url":null,"abstract":"<p>During flood events near real-time, synthetic aperture radar (SAR) satellite imagery has proven to be an efficient management tool for disaster management authorities. However, one of the challenges is accurate classification and segmentation of flooded water. A common method of SAR-based flood mapping is binary segmentation by thresholding, but this method is limited due to the effects of backscatter, geographical area, and surface characterstics. Recent advancements in deep learning algorithms for image segmentation have demonstrated excellent potential for improving flood detection. In this paper, we present a deep learning approach with a nested UNet architecture based on a backbone of EfficientNet-B7 by leveraging a publicly available Sentinel‑1 dataset provided jointly by NASA and the IEEE GRSS Committee. The performance of the nested UNet model was compared with several other UNet-based convolutional neural network architectures. The models were trained on flood events from Nebraska and North Alabama in the USA, Bangladesh, and Florence, Italy. Finally, the generalization capacity of the trained nested UNet model was compared to the other architectures by testing on Sentinel‑1 data from flood events of varied geographical regions such as Spain, India, and Vietnam. The impact of using different polarization band combinations of input data on the segmentation capabilities of the nested UNet and other models is also evaluated using Shapley scores. The results of these experiments show that the UNet model architectures perform comparably to the UNet++ with EfficientNet-B7 backbone for both the NASA dataset as well as the other test cases. Therefore, it can be inferred that these models can be trained on certain flood events provided in the dataset and used for flood detection in other geographical areas, thus proving the transferability of these models. However, the effect of polarization still varies across different test cases from around the world in terms of performance; the model trained with the combinations of individual bands, VV and VH, and polarization ratios gives the best results.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"13 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disaster Risk Assessment of Fluvial and Pluvial Flood Using the Google Earth Engine Platform: a Case Study for the Filyos River Basin 利用谷歌地球引擎平台对冲积和冲积洪水进行灾害风险评估:菲尤斯河流域案例研究
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-03-08 DOI: 10.1007/s41064-024-00277-z

Abstract

The aim of this study is to conduct a risk analysis of fluvial and pluvial flood disasters, focusing on the vulnerability of those residing in the river basin in coastal regions. However, there are numerous factors and indicators that need to be considered for this type of analysis. Swift and precise acquisition and evaluation of such data is an arduous task, necessitating significant public investment. Remote sensing offers unique data and information flow solutions in areas where access to information is restricted. The Google Earth Engine (GEE), a remote sensing platform, offers strong support to users and researchers in this context. A data-based and informative case study has been conducted to evaluate the disaster risk analysis capacity of the platform. Data on three factors and 17 indicators for assessing disaster risk were determined using coding techniques and web geographic information system (web GIS) applications. The study focused on the Filyos River basin in Turkey. Various satellite images and datasets were utilized to identify indicators, while land use was determined using classification studies employing machine learning algorithms on the GEE platform. Using various applications, we obtained information on ecological vulnerability, fluvial and pluvial flooding analyses, and the value of indicators related to construction and population density. Within the scope of the analysis, it has been determined that the disaster risk index (DRI) value for the basin is 4. This DRI value indicates that an unacceptable risk level exists for the 807,889 individuals residing in the basin.

摘要 本研究的目的是对河流和冲积洪水灾害进行风险分析,重点是沿海地区河流流域居民的脆弱性。然而,此类分析需要考虑众多因素和指标。迅速、准确地获取和评估这些数据是一项艰巨的任务,需要大量的公共投资。在信息获取受限的地区,遥感技术提供了独特的数据和信息流解决方案。在这方面,遥感平台谷歌地球引擎(GEE)为用户和研究人员提供了强有力的支持。为评估该平台的灾害风险分析能力,开展了一项基于数据和信息的案例研究。利用编码技术和网络地理信息系统(web GIS)应用程序确定了评估灾害风险的三个因素和 17 个指标的数据。研究的重点是土耳其的 Filyos 河流域。我们利用各种卫星图像和数据集来确定指标,同时利用 GEE 平台上的机器学习算法进行分类研究,确定土地使用情况。通过各种应用,我们获得了有关生态脆弱性、河流和冲积洪水分析以及与建筑和人口密度相关的指标值的信息。在分析范围内,确定该流域的灾害风险指数(DRI)值为 4。该 DRI 值表明,对于居住在该流域的 807 889 人而言,存在不可接受的风险水平。
{"title":"Disaster Risk Assessment of Fluvial and Pluvial Flood Using the Google Earth Engine Platform: a Case Study for the Filyos River Basin","authors":"","doi":"10.1007/s41064-024-00277-z","DOIUrl":"https://doi.org/10.1007/s41064-024-00277-z","url":null,"abstract":"<h3>Abstract</h3> <p>The aim of this study is to conduct a risk analysis of fluvial and pluvial flood disasters, focusing on the vulnerability of those residing in the river basin in coastal regions. However, there are numerous factors and indicators that need to be considered for this type of analysis. Swift and precise acquisition and evaluation of such data is an arduous task, necessitating significant public investment. Remote sensing offers unique data and information flow solutions in areas where access to information is restricted. The Google Earth Engine (GEE), a remote sensing platform, offers strong support to users and researchers in this context. A data-based and informative case study has been conducted to evaluate the disaster risk analysis capacity of the platform. Data on three factors and 17 indicators for assessing disaster risk were determined using coding techniques and web geographic information system (web GIS) applications. The study focused on the Filyos River basin in Turkey. Various satellite images and datasets were utilized to identify indicators, while land use was determined using classification studies employing machine learning algorithms on the GEE platform. Using various applications, we obtained information on ecological vulnerability, fluvial and pluvial flooding analyses, and the value of indicators related to construction and population density. Within the scope of the analysis, it has been determined that the disaster risk index (DRI) value for the basin is 4. This DRI value indicates that an unacceptable risk level exists for the 807,889 individuals residing in the basin.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"1 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
German and European Ground Motion Service: a Comparison 德国和欧洲地动服务:比较
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-02-27 DOI: 10.1007/s41064-024-00273-3
Markus Even, Malte Westerhaus, Hansjörg Kutterer

Since the end of 2022, two ground motion services that cover the complete area of Germany are available as web services: the German Ground Motion Service (Bodenbewegungsdienst Deutschland, BBD) provided by the Federal Institute for Geosciences and Natural Resources (BGR), and the first release of the European Ground Motion Service (EGMS) as part of the Copernicus Land Monitoring Service. Both services are based on InSAR displacement estimations generated from Sentinel‑1 data. It would seem relevant to compare the products of the two services against one another, assess the data coverage they provide, and investigate how well they perform compared to other geodetic techniques. For a study commissioned by the surveying authority of the state of Baden-Württemberg (Landesamt für Geoinformation und Landentwicklung Baden-Württemberg, LGL), BBD and EGMS data from different locations in Baden-Württemberg, Saarland, and North Rhine-Westphalia (NRW) were investigated and validated against levelling and GNSS data. We found that both services provide good data quality. BBD shows slightly better calibration precision than EGMS. The coverage provided by EGMS is better than that of BBD on motorways, federal roads, and train tracks of the Deutsche Bahn. As an example, where both services have difficulties in determining the correct displacements, as they cannot be described well by the displacement models used for processing, we present the test case of the cavern field at Epe (NRW). Finally, we discuss the implications of our findings for the use of the products of BBD and EGMS for monitoring tasks.

自 2022 年底起,覆盖德国全部地区的两项地动服务可作为网络服务使用:联邦地球科学及自然资源研究所(BGR)提供的德国地动服务(Bodenbewegungsdienst Deutschland, BBD),以及哥白尼陆地监测服务(Copernicus Land Monitoring Service)的欧洲地动服务(EGMS)的首次发布。这两项服务都是基于哨兵 1 号数据生成的 InSAR 位移估算。似乎有必要对这两项服务的产品进行比较,评估它们提供的数据覆盖范围,并调查它们与其他大地测量技术相比的性能如何。在巴登符腾堡州测量局(LGL)委托进行的一项研究中,对来自巴登符腾堡州、萨尔州和北莱茵-威斯特法伦州(NRW)不同地点的 BBD 和 EGMS 数据进行了调查,并与水准测量和 GNSS 数据进行了验证。我们发现,两种服务都提供了良好的数据质量。BBD 的校准精度略高于 EGMS。在德国铁路的高速公路、联邦公路和火车轨道上,EGMS 提供的覆盖范围要优于 BBD。例如,由于处理过程中使用的位移模型无法很好地描述位移,因此两种服务在确定正确的位移方面都存在困难。最后,我们讨论了我们的研究结果对使用 BBD 和 EGMS 产品执行监测任务的影响。
{"title":"German and European Ground Motion Service: a Comparison","authors":"Markus Even, Malte Westerhaus, Hansjörg Kutterer","doi":"10.1007/s41064-024-00273-3","DOIUrl":"https://doi.org/10.1007/s41064-024-00273-3","url":null,"abstract":"<p>Since the end of 2022, two ground motion services that cover the complete area of Germany are available as web services: the German Ground Motion Service (<i>Bodenbewegungsdienst Deutschland</i>, BBD) provided by the Federal Institute for Geosciences and Natural Resources (BGR), and the first release of the European Ground Motion Service (EGMS) as part of the Copernicus Land Monitoring Service. Both services are based on InSAR displacement estimations generated from Sentinel‑1 data. It would seem relevant to compare the products of the two services against one another, assess the data coverage they provide, and investigate how well they perform compared to other geodetic techniques. For a study commissioned by the surveying authority of the state of Baden-Württemberg (<i>Landesamt für Geoinformation und Landentwicklung Baden-Württemberg</i>, LGL), BBD and EGMS data from different locations in Baden-Württemberg, Saarland, and North Rhine-Westphalia (NRW) were investigated and validated against levelling and GNSS data. We found that both services provide good data quality. BBD shows slightly better calibration precision than EGMS. The coverage provided by EGMS is better than that of BBD on motorways, federal roads, and train tracks of the <i>Deutsche Bahn</i>. As an example, where both services have difficulties in determining the correct displacements, as they cannot be described well by the displacement models used for processing, we present the test case of the cavern field at Epe (NRW). Finally, we discuss the implications of our findings for the use of the products of BBD and EGMS for monitoring tasks.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"21 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139988097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Die analoge Photogrammetrie für terrestrische thematische Anwendungen in ausgewählten Spektralbereichen 选定光谱范围内的陆地专题应用模拟摄影测量法
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-02-07 DOI: 10.1007/s41064-024-00274-2
Cornelia Gläßer, Eckhardt Seyfert

Terrestrische spektrale Verfahren für verschiedene thematische Anwendungen erleben mit der Verbreitung der digitalen Aufnahmetechnik in vielen Fachbereichen eine Renaissance oder es erschließen sich neue Anwendungsmöglichkeiten. Bei den daraus resultierenden Veröffentlichungen, zumeist in den Fachzeitschriften der Anwender, entsteht teilweise der Eindruck, dass ein neues Anwendungsfeld erschlossen worden sei. Häufig wurden bereits vor Jahrzehnten diese Themen als relevant eingestuft und mit den zu dieser Zeit aktuellen Sensoren und Methoden bearbeitet. Vermutlich ist eine der Ursachen dieser Auffassung, dass diese alten analogen Literaturquellen noch nicht im Internet verfügbar sind. Mit dem vorliegenden Artikel soll versucht werden, eine Übersicht über verschiedene Anwendungen terrestrischer analoger spektraler fotografischer Aufnahmemethoden in Deutschland zu geben. Thematisch orientieren die Beispiele vor allem auf die Bereiche Geologie, Bergbau, Böden und Vegetation.

Vielleicht gibt der Artikel auch die Anregung, das gesamte Inhaltsverzeichnis unserer Fachzeitschriften und anderer Veröffentlichungen digital aufzubereiten und damit einen Beitrag zur Wissenschaftsgeschichte zu leisten.

随着数字记录技术在许多专业领域的普及,用于各种专题应用的地面光谱方法正经历着一次复兴,或者说新的应用可能性正在打开。由此产生的出版物(大多发表在用户的专业期刊上)有时会给人一种新的应用领域已经开启的印象。通常情况下,这些主题在几十年前就已被归类为相关主题,并使用当时可用的传感器和方法进行处理。造成这种观点的原因之一,大概是这些旧的模拟文献资料尚未在互联网上提供。本文旨在概述陆地模拟光谱摄影记录方法在德国的各种应用。从主题上看,例子主要集中在地质、采矿、土壤和植被领域,也许这篇文章还将推动我们将专业期刊和其他出版物的全部目录数字化,从而为科学史做出贡献。
{"title":"Die analoge Photogrammetrie für terrestrische thematische Anwendungen in ausgewählten Spektralbereichen","authors":"Cornelia Gläßer, Eckhardt Seyfert","doi":"10.1007/s41064-024-00274-2","DOIUrl":"https://doi.org/10.1007/s41064-024-00274-2","url":null,"abstract":"<p>Terrestrische spektrale Verfahren für verschiedene thematische Anwendungen erleben mit der Verbreitung der digitalen Aufnahmetechnik in vielen Fachbereichen eine Renaissance oder es erschließen sich neue Anwendungsmöglichkeiten. Bei den daraus resultierenden Veröffentlichungen, zumeist in den Fachzeitschriften der Anwender, entsteht teilweise der Eindruck, dass ein neues Anwendungsfeld erschlossen worden sei. Häufig wurden bereits vor Jahrzehnten diese Themen als relevant eingestuft und mit den zu dieser Zeit aktuellen Sensoren und Methoden bearbeitet. Vermutlich ist eine der Ursachen dieser Auffassung, dass diese alten analogen Literaturquellen noch nicht im Internet verfügbar sind. Mit dem vorliegenden Artikel soll versucht werden, eine Übersicht über verschiedene Anwendungen terrestrischer analoger spektraler fotografischer Aufnahmemethoden in Deutschland zu geben. Thematisch orientieren die Beispiele vor allem auf die Bereiche Geologie, Bergbau, Böden und Vegetation.</p><p>Vielleicht gibt der Artikel auch die Anregung, das gesamte Inhaltsverzeichnis unserer Fachzeitschriften und anderer Veröffentlichungen digital aufzubereiten und damit einen Beitrag zur Wissenschaftsgeschichte zu leisten.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"254 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Low-cost Photogrammetry for 4D Short-term Glacier Dynamics Monitoring 用于 4D 短期冰川动态监测的深度学习低成本摄影测量技术
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-02-06 DOI: 10.1007/s41064-023-00272-w
Francesco Ioli, Niccolò Dematteis, Daniele Giordan, Francesco Nex, Livio Pinto

Short-term monitoring of alpine glaciers is crucial to understand their response to climate change. This paper presents a low-cost multi-camera system tailored for 4D glacier monitoring using deep learning stereo-photogrammetry. Our approach integrates multi-temporal 3D reconstruction from stereo cameras and surface velocity estimation from a monoscopic camera through digital image correlation. To address the challenges posed by wide camera baselines in complex environments, we have integrated state-of-the-art deep learning feature matching algorithms into ICEpy4D, a Python toolkit designed for 4D monitoring (https://github.com/franioli/icepy4d). In a pilot study conducted on the debris-covered Belvedere Glacier (Italian Alps), our stereoscopic setup, with a camera base–height ratio close to one, captured daily images from May to November 2022. Our approach utilized SuperPoint and SuperGlue for feature matching, resulting in a daily 3D reconstruction of the glacier terminus, as traditional SIFT-like feature matching fails in this scenario. Using dense point clouds with decimetric accuracy, we estimated daily ice volume loss and glacier retreat at the terminus. The total ice volume loss was (63,000,text{m})({}^{3}) and the retreat was (17.8,text{m}). Surface kinematics revealed three times higher surface velocity during the warm season (May–September) than in the fall (September–November). Daily analyses revealed a significant short-term correlation between air temperature, glacier surface velocity and ice ablation, providing insight into the glacier’s response to external forces. The low cost and ease of deployment of the proposed system facilitates replication at other sites for short-term monitoring of glacier dynamics.

对高山冰川进行短期监测对于了解它们对气候变化的反应至关重要。本文介绍了利用深度学习立体摄影测量技术为四维冰川监测量身定制的低成本多相机系统。我们的方法整合了立体相机的多时空三维重建和单镜相机通过数字图像关联进行的表面速度估算。为了应对复杂环境中宽相机基线带来的挑战,我们将最先进的深度学习特征匹配算法集成到了专为四维监测设计的 Python 工具包 ICEpy4D 中 (https://github.com/franioli/icepy4d)。在对意大利阿尔卑斯山被碎石覆盖的贝尔维德雷冰川(Belvedere Glacier)进行的试点研究中,我们的立体设置(相机基高比接近1)捕获了2022年5月至11月期间的每日图像。我们的方法利用 SuperPoint 和 SuperGlue 进行特征匹配,从而实现了冰川终点的每日三维重建,因为传统的 SIFT 类特征匹配在这种情况下会失效。利用分米精度的高密度点云,我们估算了冰川终点的每日冰量损失和冰川退缩。总冰量损失为(63,000text{m})({}^{3}),冰川退缩为(17.8text{m})。地表运动学显示,暖季(5月至9月)的地表速度是秋季(9月至11月)的三倍。每日分析表明,气温、冰川表面速度和冰消融之间存在明显的短期相关性,这为了解冰川对外力作用的反应提供了依据。拟议系统成本低,易于部署,便于在其他地点复制,以对冰川动态进行短期监测。
{"title":"Deep Learning Low-cost Photogrammetry for 4D Short-term Glacier Dynamics Monitoring","authors":"Francesco Ioli, Niccolò Dematteis, Daniele Giordan, Francesco Nex, Livio Pinto","doi":"10.1007/s41064-023-00272-w","DOIUrl":"https://doi.org/10.1007/s41064-023-00272-w","url":null,"abstract":"<p>Short-term monitoring of alpine glaciers is crucial to understand their response to climate change. This paper presents a low-cost multi-camera system tailored for 4D glacier monitoring using deep learning stereo-photogrammetry. Our approach integrates multi-temporal 3D reconstruction from stereo cameras and surface velocity estimation from a monoscopic camera through digital image correlation. To address the challenges posed by wide camera baselines in complex environments, we have integrated state-of-the-art deep learning feature matching algorithms into ICEpy4D, a Python toolkit designed for 4D monitoring (https://github.com/franioli/icepy4d). In a pilot study conducted on the debris-covered Belvedere Glacier (Italian Alps), our stereoscopic setup, with a camera base–height ratio close to one, captured daily images from May to November 2022. Our approach utilized SuperPoint and SuperGlue for feature matching, resulting in a daily 3D reconstruction of the glacier terminus, as traditional SIFT-like feature matching fails in this scenario. Using dense point clouds with decimetric accuracy, we estimated daily ice volume loss and glacier retreat at the terminus. The total ice volume loss was <span>(63,000,text{m})</span><span>({}^{3})</span> and the retreat was <span>(17.8,text{m})</span>. Surface kinematics revealed three times higher surface velocity during the warm season (May–September) than in the fall (September–November). Daily analyses revealed a significant short-term correlation between air temperature, glacier surface velocity and ice ablation, providing insight into the glacier’s response to external forces. The low cost and ease of deployment of the proposed system facilitates replication at other sites for short-term monitoring of glacier dynamics.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"51 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Examining Multidecadal Variations in Glacier Surface Temperature at Debris-Covered Alamkouh Glacier in Iran (1985–2020) Using the Landsat Surface Temperature Product 利用大地遥感卫星表面温度产品研究伊朗被碎屑覆盖的 Alamkouh 冰川表面温度的十年变化(1985-2020 年
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-01-29 DOI: 10.1007/s41064-023-00270-y
Neamat Karimi, Omid Torabi, Amirhossein Sarbazvatan, Sara Sheshangosht
<p>This study aimed to assess the temporal changes in glacier surface temperature (GST) for the debris-covered Alamkouh glacier (over 88% of the total glacier area is debris covered), located in Iran, over the period from 1985 to 2020. The analysis employed the Landsat surface temperature product at a spatial resolution of 30 m. The research pursued three primary objectives: (1) a spatiotemporal analysis of GST changes, (2) an evaluation of correlations between GST and glacier variables such as ice-thickness change and albedo, and (3) the identification of factors influencing GST, including air temperature, cloud cover, precipitation, and snowfall, utilizing the Global Land Data Assimilation System dataset. Spatial changes were analyzed using the Mann–Kendall trend test and Sen’s slope estimator, revealing statistically significant positive or negative trends in all multitemporal parameters. The spatial change analysis showed that GST increased between 0 and +0.2 °C/a from 1985 to 2020. The mean annual GST increase for the entire glacier is 0.086 °C/a, signifying a 3 °C rise over 36 years. High-altitude regions exhibit more substantial GST increases than lower-altitude areas do, although a discernible pattern across the glacier’s surface remains elusive. To complement the spatial GST analysis, we divided the study period into four periods, 1985–1990, 1990–2000, 2000–2010, and 2010–2020, and mean GST was calculated separately for ablation months. Results indicate stability in mean GST from 1985–1990 to 1990–2000, followed by a significant increase of 2.3 °C/decade from 1990–2000 to 2000–2010, representing the largest increase observed. Temporal change analysis over 36 years reveals that the most significant warming occurs in debris-covered areas (0.139 °C/a), with less warming observed in debris-free regions (0.097 °C/a) during both accumulation and ablation months. The study employed the normalized difference snow index to identify debris-free areas and assess their potential impact on GST. First, the results establish a robust inverse relationship between GST and the extent of debris-free terrain. Second, the analysis demonstrates a significant reduction in debris-free terrain at a rate of −0.035% per month since 1985, culminating in a 15.12% decline over 36 years, encompassing both accumulation and ablation periods. Additionally, outcomes from the albedo analysis reveal a robust negative correlation between albedo and mean GST, with an R<sup>2</sup> of 0.57. The examination of albedo alterations shows a substantial annual decrease of approximately −0.08/a across the entirety of the glacier terrain, while albedo remains stable in low-elevation areas over the 36-year period, with significant changes occurring in high-elevation debris-free regions. In contrast, a comprehensive examination reveals that a robust association between the glacier ice-thinning rate and GST change cannot be ascertained. Among climate variables, air temperature exhibits s
本研究旨在评估位于伊朗的碎屑覆盖的阿拉姆库赫冰川(冰川总面积的 88% 以上被碎屑覆盖)在 1985 年至 2020 年期间的冰川表面温度(GST)的时间变化。分析采用了空间分辨率为 30 米的大地遥感卫星表面温度产品。该研究有三个主要目标:(1)对冰川表面温度变化进行时空分析;(2)评估冰川表面温度与冰川变量(如冰厚变化和反照率)之间的相关性;(3)利用全球陆地数据同化系统数据集确定影响冰川表面温度的因素,包括气温、云层、降水和降雪。利用 Mann-Kendall 趋势检验和森斜率估算器分析了空间变化,结果显示所有多时参数在统计上都呈现显著的正或负趋势。空间变化分析表明,从 1985 年到 2020 年,全球平均温升在 0 到 +0.2 °C/a 之间。整个冰川的年平均 GST 升幅为 0.086 °C/a,即在 36 年内上升了 3 °C。与低海拔地区相比,高海拔地区的 GST 增幅更大,但整个冰川表面的明显模式仍然难以捉摸。为了补充空间 GST 分析,我们将研究期间分为 1985-1990、1990-2000、2000-2010 和 2010-2020 四个时期,并分别计算了消融月份的平均 GST。结果表明,1985-1990 年至 1990-2000 年期间平均 GST 保持稳定,1990-2000 年至 2000-2010 年期间 GST 显著增加,增幅最大,为 2.3 ℃/十年。36 年的时间变化分析表明,在积雪月和消融月期间,瓦砾覆盖地区的升温最为显著(0.139 °C/a),而无瓦砾地区的升温较小(0.097 °C/a)。研究采用归一化差异积雪指数来识别无瓦砾地区,并评估其对全球变暖潜势的影响。首先,研究结果表明,全球降雪量与无碎片地形的范围之间存在稳健的反比关系。其次,分析表明,自 1985 年以来,无碎片地形以每月-0.035%的速度显著减少,在 36 年的时间里减少了 15.12%,其中包括积雪期和消融期。此外,反照率分析结果表明,反照率与平均全球降水量之间存在明显的负相关关系,R2 为 0.57。对反照率变化的研究表明,整个冰川地形的反照率每年大幅下降约-0.08/a,而低海拔地区的反照率在 36 年间保持稳定,高海拔无碎屑地区发生了显著变化。与此相反,通过全面研究发现,冰川冰层减薄率与全球降水量变化之间无法确定稳固的联系。在气候变量中,气温显著变暖,从 1985 年到 2020 年以 0.016 °C/a 的速度增长,而其他变量则保持稳定。了解这些对冰川表面温度的多方面影响对于适应冰川地区持续的气候变化至关重要。要厘清气候参数之间错综复杂的相互作用及其对冰川动力学的累积影响,还需要进一步的研究。
{"title":"Examining Multidecadal Variations in Glacier Surface Temperature at Debris-Covered Alamkouh Glacier in Iran (1985–2020) Using the Landsat Surface Temperature Product","authors":"Neamat Karimi, Omid Torabi, Amirhossein Sarbazvatan, Sara Sheshangosht","doi":"10.1007/s41064-023-00270-y","DOIUrl":"https://doi.org/10.1007/s41064-023-00270-y","url":null,"abstract":"&lt;p&gt;This study aimed to assess the temporal changes in glacier surface temperature (GST) for the debris-covered Alamkouh glacier (over 88% of the total glacier area is debris covered), located in Iran, over the period from 1985 to 2020. The analysis employed the Landsat surface temperature product at a spatial resolution of 30 m. The research pursued three primary objectives: (1) a spatiotemporal analysis of GST changes, (2) an evaluation of correlations between GST and glacier variables such as ice-thickness change and albedo, and (3) the identification of factors influencing GST, including air temperature, cloud cover, precipitation, and snowfall, utilizing the Global Land Data Assimilation System dataset. Spatial changes were analyzed using the Mann–Kendall trend test and Sen’s slope estimator, revealing statistically significant positive or negative trends in all multitemporal parameters. The spatial change analysis showed that GST increased between 0 and +0.2 °C/a from 1985 to 2020. The mean annual GST increase for the entire glacier is 0.086 °C/a, signifying a 3 °C rise over 36 years. High-altitude regions exhibit more substantial GST increases than lower-altitude areas do, although a discernible pattern across the glacier’s surface remains elusive. To complement the spatial GST analysis, we divided the study period into four periods, 1985–1990, 1990–2000, 2000–2010, and 2010–2020, and mean GST was calculated separately for ablation months. Results indicate stability in mean GST from 1985–1990 to 1990–2000, followed by a significant increase of 2.3 °C/decade from 1990–2000 to 2000–2010, representing the largest increase observed. Temporal change analysis over 36 years reveals that the most significant warming occurs in debris-covered areas (0.139 °C/a), with less warming observed in debris-free regions (0.097 °C/a) during both accumulation and ablation months. The study employed the normalized difference snow index to identify debris-free areas and assess their potential impact on GST. First, the results establish a robust inverse relationship between GST and the extent of debris-free terrain. Second, the analysis demonstrates a significant reduction in debris-free terrain at a rate of −0.035% per month since 1985, culminating in a 15.12% decline over 36 years, encompassing both accumulation and ablation periods. Additionally, outcomes from the albedo analysis reveal a robust negative correlation between albedo and mean GST, with an R&lt;sup&gt;2&lt;/sup&gt; of 0.57. The examination of albedo alterations shows a substantial annual decrease of approximately −0.08/a across the entirety of the glacier terrain, while albedo remains stable in low-elevation areas over the 36-year period, with significant changes occurring in high-elevation debris-free regions. In contrast, a comprehensive examination reveals that a robust association between the glacier ice-thinning rate and GST change cannot be ascertained. Among climate variables, air temperature exhibits s","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"142 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of SAR Image Resolution, Wavelength and Land Cover Type on Characteristics of Persistent Scatterer 合成孔径雷达图像分辨率、波长和土地覆盖类型对持久散射体特征的影响
IF 4.1 4区 地球科学 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Pub Date : 2024-01-10 DOI: 10.1007/s41064-023-00266-8
Yahui Chong, Qiming Zeng, Jiang Long

Persistent Scatterers (PS) are points selected by Persistent Scatterer for Synthetic Aperture Radar Interferometry (PS-InSAR) technology. PS density and quality determine the accuracy of deformation monitoring results. A comprehension of PS and its influencing factors could provide suggestions for data selection and parameter setting in the time series of InSAR, and it can also provide the decision basis for radar satellite engineers to select imaging modes for different application requirements. PS characteristics are mainly affected by SAR image resolution, wavelength and land cover type, etc. However, these influencing factors are coupled together, so it is difficult to study the relationship between the single factor and PS characteristics. Therefore, this paper adopted the Split-Spectrum to TerraSAR datasets to construct a series of simulated SAR datasets with different resolutions while keeping the other imaging parameters the same. We found that the PS density presents a declining linear trend as the bandwidth (resolution) decreases, while the deformation patterns of PS obtained from different bandwidth datasets are consistent. In addition, we proposed a simplified model to estimate the PS density obtained from 1/k bandwidth datasets. Then, we compared the PS results obtained from X-band TerraSAR datasets and C-band Sentinel-1A datasets and analyzed the reason for the difference from the perspective of spatiotemporal decorrelation. Finally, combined with the land cover map and Bayesian estimation, we obtained the distribution probability of PS on land cover types.

持久散射体(PS)是通过合成孔径雷达干涉测量(PS-InSAR)技术选择的点。持久散射体的密度和质量决定了形变监测结果的准确性。了解 PS 及其影响因素可为 InSAR 时间序列的数据选择和参数设置提供建议,也可为雷达卫星工程师针对不同应用需求选择成像模式提供决策依据。PS 特性主要受 SAR 图像分辨率、波长和土地覆被类型等因素的影响。然而,这些影响因素是耦合在一起的,因此很难研究单一因素与 PS 特性之间的关系。因此,本文在保持其他成像参数不变的情况下,对 TerraSAR 数据集采用 Split-Spectrum 方法,构建了一系列不同分辨率的模拟 SAR 数据集。我们发现,随着带宽(分辨率)的降低,PS 密度呈线性下降趋势,而不同带宽数据集得到的 PS 变形模式是一致的。此外,我们还提出了一个简化模型来估算从 1/k 带宽数据集获得的 PS 密度。然后,比较了 X 波段 TerraSAR 数据集和 C 波段 Sentinel-1A 数据集的 PS 结果,并从时空相关性的角度分析了差异的原因。最后,结合土地覆被图和贝叶斯估算,得到了 PS 在土地覆被类型上的分布概率。
{"title":"The Influence of SAR Image Resolution, Wavelength and Land Cover Type on Characteristics of Persistent Scatterer","authors":"Yahui Chong, Qiming Zeng, Jiang Long","doi":"10.1007/s41064-023-00266-8","DOIUrl":"https://doi.org/10.1007/s41064-023-00266-8","url":null,"abstract":"<p>Persistent Scatterers (PS) are points selected by Persistent Scatterer for Synthetic Aperture Radar Interferometry (PS-InSAR) technology. PS density and quality determine the accuracy of deformation monitoring results. A comprehension of PS and its influencing factors could provide suggestions for data selection and parameter setting in the time series of InSAR, and it can also provide the decision basis for radar satellite engineers to select imaging modes for different application requirements. PS characteristics are mainly affected by SAR image resolution, wavelength and land cover type, etc. However, these influencing factors are coupled together, so it is difficult to study the relationship between the single factor and PS characteristics. Therefore, this paper adopted the Split-Spectrum to TerraSAR datasets to construct a series of simulated SAR datasets with different resolutions while keeping the other imaging parameters the same. We found that the PS density presents a declining linear trend as the bandwidth (resolution) decreases, while the deformation patterns of PS obtained from different bandwidth datasets are consistent. In addition, we proposed a simplified model to estimate the PS density obtained from 1/<i>k</i> bandwidth datasets. Then, we compared the PS results obtained from X-band TerraSAR datasets and C-band Sentinel-1A datasets and analyzed the reason for the difference from the perspective of spatiotemporal decorrelation. Finally, combined with the land cover map and Bayesian estimation, we obtained the distribution probability of PS on land cover types.</p>","PeriodicalId":56035,"journal":{"name":"PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science","volume":"95 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
PFG-Journal of Photogrammetry Remote Sensing and Geoinformation Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1