首页 > 最新文献

Trends in Cell Biology最新文献

英文 中文
Translation is an emerging constraint on protein homeostasis in ageing. 翻译是老龄化过程中蛋白质平衡的一个新的制约因素。
IF 13 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-02-28 DOI: 10.1016/j.tcb.2024.02.001
Jack Llewellyn, Simon J Hubbard, Joe Swift

Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.

蛋白质是提供结构并发挥重要运输、信号和酶作用的分子机器。细胞表达的蛋白质需要对其浓度、折叠、定位和修饰进行严格调节;然而,这种蛋白质平衡状态不断受到组织级压力的干扰。虽然健康组织中的细胞能够通过表达伴侣蛋白等方式缓冲这些干扰,但随着年龄的增长,蛋白质平衡会丧失,并可能导致蛋白质折叠疾病所特有的蛋白质聚集。在此,我们回顾了有关细胞老化过程中转录组和蛋白质组调控逐渐脱节的报道。我们讨论了与年龄相关的细胞对组织微环境中特定压力源的反应变化如何因核糖体蛋白的丢失、核糖体暂停和翻译错误而加剧。
{"title":"Translation is an emerging constraint on protein homeostasis in ageing.","authors":"Jack Llewellyn, Simon J Hubbard, Joe Swift","doi":"10.1016/j.tcb.2024.02.001","DOIUrl":"10.1016/j.tcb.2024.02.001","url":null,"abstract":"<p><p>Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ATP-driven extractor ATAD1/Msp1 proof-reads protein translocation into mitochondria ATP驱动的提取器ATAD1/Msp1校对蛋白质转运到线粒体的过程
IF 19 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-01 DOI: 10.1016/j.tcb.2024.07.007

The accumulation of translocation intermediates in the mitochondrial import machinery threatens cellular fitness and is associated with cancer and neurodegeneration. A recent study by Weidberg and colleagues identifies ATAD1 as an ATP-driven extraction machine on the mitochondrial surface that pulls precursors into the cytosol to prevent clogging of mitochondrial import pores.

线粒体导入机制中转运中间体的积累会威胁细胞的健康,并与癌症和神经变性有关。Weidberg 及其同事最近的一项研究发现,ATAD1 是线粒体表面由 ATP 驱动的提取机器,它能将前体拉入细胞质,防止线粒体导入孔堵塞。
{"title":"The ATP-driven extractor ATAD1/Msp1 proof-reads protein translocation into mitochondria","authors":"","doi":"10.1016/j.tcb.2024.07.007","DOIUrl":"https://doi.org/10.1016/j.tcb.2024.07.007","url":null,"abstract":"<p>The accumulation of translocation intermediates in the mitochondrial import machinery threatens cellular fitness and is associated with cancer and neurodegeneration. A recent study by <span><span>Weidberg and colleagues</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> identifies ATAD1 as an ATP-driven extraction machine on the mitochondrial surface that pulls precursors into the cytosol to prevent clogging of mitochondrial import pores.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":19.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysosomal control of the cGAS-STING signaling. 溶酶体对 cGAS-STING 信号转导的控制。
IF 13 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-06-06 DOI: 10.1016/j.tcb.2024.05.004
Yinfeng Xu, Wei Wan

The cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway has a crucial role in combating pathogen infection. However, its aberrant activation is involved in several human disorders. Lysosomes are emerging as key negative regulators of cGAS-STING signaling. Here, we discuss the lysosomal control of cGAS-STING signaling and its implication in human disorders.

环GMP-AMP(cGAMP)合成酶(cGAS)-干扰素基因刺激器(STING)通路在对抗病原体感染方面发挥着至关重要的作用。然而,它的异常激活与多种人类疾病有关。溶酶体正在成为 cGAS-STING 信号转导的关键负调控因子。在此,我们将讨论溶酶体对 cGAS-STING 信号转导的控制及其对人类疾病的影响。
{"title":"Lysosomal control of the cGAS-STING signaling.","authors":"Yinfeng Xu, Wei Wan","doi":"10.1016/j.tcb.2024.05.004","DOIUrl":"10.1016/j.tcb.2024.05.004","url":null,"abstract":"<p><p>The cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway has a crucial role in combating pathogen infection. However, its aberrant activation is involved in several human disorders. Lysosomes are emerging as key negative regulators of cGAS-STING signaling. Here, we discuss the lysosomal control of cGAS-STING signaling and its implication in human disorders.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Germline regulation of the somatic mitochondrial stress response. 种系对体细胞线粒体应激反应的调控。
IF 13 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-07-20 DOI: 10.1016/j.tcb.2024.07.004
Liankui Zhou, Ying Liu

Mitochondria are pivotal organelles for cellular energy production and the regulation of stress responses. Recent research has elucidated complex mechanisms through which mitochondrial stress in one tissue can impact distant tissues, thereby promoting overall organismal health. Two recent studies by Shen et al. and Charmpilas et al. have demonstrated that an intact germline serves as a crucial signaling hub for the activation of the somatic mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans.

线粒体是细胞产生能量和调节应激反应的关键细胞器。最近的研究阐明了一种复杂的机制,通过这种机制,一个组织中的线粒体应激可影响远处的组织,从而促进整个机体的健康。Shen 等人和 Charmpilas 等人最近的两项研究表明,完整的种系是激活草履虫体细胞线粒体未折叠蛋白反应(UPRmt)的关键信号枢纽。
{"title":"Germline regulation of the somatic mitochondrial stress response.","authors":"Liankui Zhou, Ying Liu","doi":"10.1016/j.tcb.2024.07.004","DOIUrl":"10.1016/j.tcb.2024.07.004","url":null,"abstract":"<p><p>Mitochondria are pivotal organelles for cellular energy production and the regulation of stress responses. Recent research has elucidated complex mechanisms through which mitochondrial stress in one tissue can impact distant tissues, thereby promoting overall organismal health. Two recent studies by Shen et al. and Charmpilas et al. have demonstrated that an intact germline serves as a crucial signaling hub for the activation of the somatic mitochondrial unfolded protein response (UPR<sup>mt</sup>) in Caenorhabditis elegans.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accessible high-speed image-activated cell sorting. 无障碍高速图像激活细胞分拣。
IF 13 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-01 Epub Date: 2024-05-23 DOI: 10.1016/j.tcb.2024.04.007
Terra M Kuhn, Malte Paulsen, Sara Cuylen-Haering

Over the past six decades, fluorescence-activated cell sorting (FACS) has become an essential technology for basic and clinical research by enabling the isolation of cells of interest in high throughput. Recent technological advancements have started a new era of flow cytometry. By combining the spatial resolution of microscopy with high-speed cell sorting, new instruments allow cell sorting based on simple image-derived parameters or sophisticated image analysis algorithms, thereby greatly expanding the scope of applications. In this review, we discuss the systems that are commercially available or have been described in enough methodological and engineering detail to allow their replication. We summarize their strengths and limitations and highlight applications that have the potential to transform various fields in basic life science research and clinical settings.

在过去的六十年里,荧光激活细胞分拣(FACS)通过高通量分离感兴趣的细胞,已成为基础和临床研究的一项重要技术。最近的技术进步开启了流式细胞仪的新时代。通过将显微镜的空间分辨率与高速细胞分拣相结合,新仪器可根据简单的图像衍生参数或复杂的图像分析算法进行细胞分拣,从而大大扩展了应用范围。在这篇综述中,我们将讨论市场上已有的系统,或在方法和工程方面有足够详细描述的系统,以便进行复制。我们总结了它们的优势和局限性,并重点介绍了有可能改变基础生命科学研究和临床环境中各个领域的应用。
{"title":"Accessible high-speed image-activated cell sorting.","authors":"Terra M Kuhn, Malte Paulsen, Sara Cuylen-Haering","doi":"10.1016/j.tcb.2024.04.007","DOIUrl":"10.1016/j.tcb.2024.04.007","url":null,"abstract":"<p><p>Over the past six decades, fluorescence-activated cell sorting (FACS) has become an essential technology for basic and clinical research by enabling the isolation of cells of interest in high throughput. Recent technological advancements have started a new era of flow cytometry. By combining the spatial resolution of microscopy with high-speed cell sorting, new instruments allow cell sorting based on simple image-derived parameters or sophisticated image analysis algorithms, thereby greatly expanding the scope of applications. In this review, we discuss the systems that are commercially available or have been described in enough methodological and engineering detail to allow their replication. We summarize their strengths and limitations and highlight applications that have the potential to transform various fields in basic life science research and clinical settings.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer takes many paths through G1/S. 癌症在G1/S有很多途径。
IF 13 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-08-01 Epub Date: 2023-11-10 DOI: 10.1016/j.tcb.2023.10.007
Erik S Knudsen, Agnieszka K Witkiewicz, Seth M Rubin

In the commonly accepted paradigm for control of the mammalian cell cycle, sequential cyclin-dependent kinase (CDK) and cyclin activities drive the orderly transition from G1 to S phase. However, recent studies using different technological approaches and examining a broad range of cancer cell types are challenging this established paradigm. An alternative model is evolving in which cell cycles utilize different drivers and take different trajectories through the G1/S transition. We are discovering that cancer cells in particular can adapt their drivers and trajectories, which has important implications for antiproliferative therapies. These studies have helped to refine an understanding of how CDK inhibition impinges on proliferation and have significance for understanding fundamental features of cell biology and cancer.

在普遍接受的哺乳动物细胞周期控制范式中,连续的周期蛋白依赖性激酶(CDK)和周期蛋白活性驱动从G1期到S期的有序过渡。然而,最近的研究使用不同的技术方法和检查广泛的癌细胞类型正在挑战这种既定的范式。另一种模型正在发展,其中细胞周期利用不同的驱动因素,并通过G1/S转变采取不同的轨迹。我们发现,特别是癌细胞可以调整它们的驱动因素和轨迹,这对抗增殖治疗具有重要意义。这些研究有助于完善对CDK抑制如何影响增殖的理解,并对理解细胞生物学和癌症的基本特征具有重要意义。
{"title":"Cancer takes many paths through G1/S.","authors":"Erik S Knudsen, Agnieszka K Witkiewicz, Seth M Rubin","doi":"10.1016/j.tcb.2023.10.007","DOIUrl":"10.1016/j.tcb.2023.10.007","url":null,"abstract":"<p><p>In the commonly accepted paradigm for control of the mammalian cell cycle, sequential cyclin-dependent kinase (CDK) and cyclin activities drive the orderly transition from G1 to S phase. However, recent studies using different technological approaches and examining a broad range of cancer cell types are challenging this established paradigm. An alternative model is evolving in which cell cycles utilize different drivers and take different trajectories through the G1/S transition. We are discovering that cancer cells in particular can adapt their drivers and trajectories, which has important implications for antiproliferative therapies. These studies have helped to refine an understanding of how CDK inhibition impinges on proliferation and have significance for understanding fundamental features of cell biology and cancer.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper and iron orchestrate cell-state transitions in cancer and immunity. 铜和铁协调癌症和免疫中的细胞状态转变
IF 13 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-29 DOI: 10.1016/j.tcb.2024.07.005
Sebastian Müller, Tatiana Cañeque, Stéphanie Solier, Raphaël Rodriguez

Whereas genetic mutations can alter cell properties, nongenetic mechanisms can drive rapid and reversible adaptations to changes in their physical environment, a phenomenon termed 'cell-state transition'. Metals, in particular copper and iron, have been shown to be rate-limiting catalysts of cell-state transitions controlling key chemical reactions in mitochondria and the cell nucleus, which govern metabolic and epigenetic changes underlying the acquisition of distinct cell phenotypes. Acquisition of a distinct cell identity, independently of genetic alterations, is an underlying phenomenon of various biological processes, including development, inflammation, erythropoiesis, aging, and cancer. Here, mechanisms that have been uncovered related to the role of these metals in the regulation of cell plasticity are described, illustrating how copper and iron can be exploited for therapeutic intervention.

基因突变可以改变细胞特性,而非遗传机制则可以推动细胞快速、可逆地适应物理环境的变化,这种现象被称为 "细胞状态转换"。金属,尤其是铜和铁,已被证明是细胞状态转换的限速催化剂,控制着线粒体和细胞核中的关键化学反应,而线粒体和细胞核中的关键化学反应又控制着新陈代谢和表观遗传学的变化,是获得独特细胞表型的基础。独立于基因改变的独特细胞特性的获得是包括发育、炎症、红细胞生成、衰老和癌症在内的各种生物过程的基本现象。本文介绍了已发现的与这些金属在细胞可塑性调控中的作用有关的机制,说明了如何利用铜和铁进行治疗干预。
{"title":"Copper and iron orchestrate cell-state transitions in cancer and immunity.","authors":"Sebastian Müller, Tatiana Cañeque, Stéphanie Solier, Raphaël Rodriguez","doi":"10.1016/j.tcb.2024.07.005","DOIUrl":"https://doi.org/10.1016/j.tcb.2024.07.005","url":null,"abstract":"<p><p>Whereas genetic mutations can alter cell properties, nongenetic mechanisms can drive rapid and reversible adaptations to changes in their physical environment, a phenomenon termed 'cell-state transition'. Metals, in particular copper and iron, have been shown to be rate-limiting catalysts of cell-state transitions controlling key chemical reactions in mitochondria and the cell nucleus, which govern metabolic and epigenetic changes underlying the acquisition of distinct cell phenotypes. Acquisition of a distinct cell identity, independently of genetic alterations, is an underlying phenomenon of various biological processes, including development, inflammation, erythropoiesis, aging, and cancer. Here, mechanisms that have been uncovered related to the role of these metals in the regulation of cell plasticity are described, illustrating how copper and iron can be exploited for therapeutic intervention.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipids and chromatin: a tale of intriguing connections shaping genomic landscapes. 脂质和染色质:塑造基因组景观的奇妙联系。
IF 13 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-25 DOI: 10.1016/j.tcb.2024.06.004
Maria Laura Sosa Ponce, Jennifer A Cobb, Vanina Zaremberg

Recent studies in yeast reveal an intricate interplay between nuclear envelope (NE) architecture and lipid metabolism, and between lipid signaling and both epigenome and genome integrity. In this review, we highlight the reciprocal connection between lipids and histone modifications, which enable metabolic reprogramming in response to nutrients. The endoplasmic reticulum (ER)-NE regulates the compartmentalization and temporal availability of epigenetic metabolites and its lipid composition also impacts nuclear processes, such as transcriptional silencing and the DNA damage response (DDR). We also discuss recent work providing mechanistic insight into lipid droplet (LD) formation and sterols in the nucleus, and the collective data showing Opi1 as a central factor in both membrane sensing and transcriptional regulation of lipid-chromatin interrelated processes.

最近的酵母研究揭示了核包膜(NE)结构与脂质代谢之间以及脂质信号转导与表观基因组和基因组完整性之间错综复杂的相互作用。在这篇综述中,我们将重点介绍脂质与组蛋白修饰之间的相互联系,这种联系能使代谢重编程对营养物质做出响应。内质网(ER)-NE 调节着表观遗传代谢产物的分区和时间可用性,其脂质组成也影响着转录沉默和 DNA 损伤应答(DDR)等核过程。我们还讨论了最近的工作,这些工作提供了对细胞核中脂滴(LD)形成和固醇的机理认识,以及显示 Opi1 是膜感应和转录调控脂质-染色质相互关联过程的核心因子的集体数据。
{"title":"Lipids and chromatin: a tale of intriguing connections shaping genomic landscapes.","authors":"Maria Laura Sosa Ponce, Jennifer A Cobb, Vanina Zaremberg","doi":"10.1016/j.tcb.2024.06.004","DOIUrl":"10.1016/j.tcb.2024.06.004","url":null,"abstract":"<p><p>Recent studies in yeast reveal an intricate interplay between nuclear envelope (NE) architecture and lipid metabolism, and between lipid signaling and both epigenome and genome integrity. In this review, we highlight the reciprocal connection between lipids and histone modifications, which enable metabolic reprogramming in response to nutrients. The endoplasmic reticulum (ER)-NE regulates the compartmentalization and temporal availability of epigenetic metabolites and its lipid composition also impacts nuclear processes, such as transcriptional silencing and the DNA damage response (DDR). We also discuss recent work providing mechanistic insight into lipid droplet (LD) formation and sterols in the nucleus, and the collective data showing Opi1 as a central factor in both membrane sensing and transcriptional regulation of lipid-chromatin interrelated processes.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolism and HSC fate: what NADPH is made for. 新陈代谢与造血干细胞的命运:NADPH 的作用。
IF 13 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-24 DOI: 10.1016/j.tcb.2024.07.003
Claudia Morganti, Massimo Bonora, Keisuke Ito

Mitochondrial metabolism plays a central role in the regulation of hematopoietic stem cell (HSC) biology. Mitochondrial fatty acid oxidation (FAO) is pivotal in controlling HSC self-renewal and differentiation. Herein, we discuss recent evidence suggesting that NADPH generated in the mitochondria can influence the fate of HSCs. Although NADPH has multiple functions, HSCs show high levels of NADPH that are preferentially used for cholesterol biosynthesis. Endogenous cholesterol supports the biogenesis of extracellular vesicles (EVs), which are essential for maintaining HSC properties. We also highlight the significance of EVs in hematopoiesis through autocrine signaling. Elucidating the mitochondrial NADPH-cholesterol axis as part of the metabolic requirements of healthy HSCs will facilitate the development of new therapies for hematological disorders.

线粒体代谢在造血干细胞生物学调控中发挥着核心作用。线粒体脂肪酸氧化(FAO)是控制造血干细胞自我更新和分化的关键。在此,我们将讨论最近有证据表明线粒体中产生的NADPH可影响造血干细胞的命运。虽然 NADPH 具有多种功能,但造血干细胞显示出高水平的 NADPH,并优先用于胆固醇的生物合成。内源性胆固醇支持细胞外囊泡 (EV) 的生物生成,而细胞外囊泡对维持造血干细胞的特性至关重要。我们还强调了EVs通过自分泌信号在造血过程中的重要作用。阐明线粒体 NADPH 胆固醇轴是健康造血干细胞代谢需求的一部分,将有助于开发治疗血液病的新疗法。
{"title":"Metabolism and HSC fate: what NADPH is made for.","authors":"Claudia Morganti, Massimo Bonora, Keisuke Ito","doi":"10.1016/j.tcb.2024.07.003","DOIUrl":"10.1016/j.tcb.2024.07.003","url":null,"abstract":"<p><p>Mitochondrial metabolism plays a central role in the regulation of hematopoietic stem cell (HSC) biology. Mitochondrial fatty acid oxidation (FAO) is pivotal in controlling HSC self-renewal and differentiation. Herein, we discuss recent evidence suggesting that NADPH generated in the mitochondria can influence the fate of HSCs. Although NADPH has multiple functions, HSCs show high levels of NADPH that are preferentially used for cholesterol biosynthesis. Endogenous cholesterol supports the biogenesis of extracellular vesicles (EVs), which are essential for maintaining HSC properties. We also highlight the significance of EVs in hematopoiesis through autocrine signaling. Elucidating the mitochondrial NADPH-cholesterol axis as part of the metabolic requirements of healthy HSCs will facilitate the development of new therapies for hematological disorders.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smooth operator(s): dialing up and down neurotransmitter responses by G-protein regulators. 平稳的操作者:通过 G 蛋白调节器调节神经递质的反应。
IF 13 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-24 DOI: 10.1016/j.tcb.2024.07.002
Clementine E Philibert, Mikel Garcia-Marcos

G-protein-coupled receptors (GPCRs) are essential mediators of neuromodulation and prominent pharmacological targets. While activation of heterotrimeric G-proteins (Gαβɣ) by GPCRs is essential in this process, much less is known about the postreceptor mechanisms that influence G-protein activity. Neurons express G-protein regulators that shape the amplitude and kinetics of GPCR-mediated synaptic responses. Although many of these operate by directly altering how G-proteins handle guanine-nucleotides enzymatically, recent discoveries have revealed alternative mechanisms by which GPCR-stimulated G-protein responses are modulated at the synapse. In this review, we cover the molecular basis for, and consequences of, the action of two G-protein regulators that do not affect the enzymatic activity of G-proteins directly: Gα inhibitory interacting protein (GINIP), which binds active Gα subunits, and potassium channel tetramerization domain-containing 12 (KCTD12), which binds active Gβγ subunits.

G 蛋白偶联受体(GPCR)是神经调节的重要介质,也是重要的药理靶标。虽然 GPCR 对异源三聚体 G 蛋白(Gαβɣ)的激活在这一过程中至关重要,但人们对影响 G 蛋白活性的受体后机制知之甚少。神经元表达的 G 蛋白调节因子可影响 GPCR 介导的突触反应的幅度和动力学。虽然其中许多调节剂是通过直接改变 G 蛋白如何酶促处理鸟嘌呤核苷酸来发挥作用的,但最近的发现揭示了 GPCR 刺激的 G 蛋白反应在突触处受到调节的其他机制。在这篇综述中,我们将介绍两种不直接影响 G 蛋白酶活性的 G 蛋白调节剂作用的分子基础和后果:Gα抑制性相互作用蛋白(GINIP)能与活性Gα亚基结合,而含钾通道四聚体化结构域的12(KCTD12)能与活性Gβγ亚基结合。
{"title":"Smooth operator(s): dialing up and down neurotransmitter responses by G-protein regulators.","authors":"Clementine E Philibert, Mikel Garcia-Marcos","doi":"10.1016/j.tcb.2024.07.002","DOIUrl":"https://doi.org/10.1016/j.tcb.2024.07.002","url":null,"abstract":"<p><p>G-protein-coupled receptors (GPCRs) are essential mediators of neuromodulation and prominent pharmacological targets. While activation of heterotrimeric G-proteins (Gαβɣ) by GPCRs is essential in this process, much less is known about the postreceptor mechanisms that influence G-protein activity. Neurons express G-protein regulators that shape the amplitude and kinetics of GPCR-mediated synaptic responses. Although many of these operate by directly altering how G-proteins handle guanine-nucleotides enzymatically, recent discoveries have revealed alternative mechanisms by which GPCR-stimulated G-protein responses are modulated at the synapse. In this review, we cover the molecular basis for, and consequences of, the action of two G-protein regulators that do not affect the enzymatic activity of G-proteins directly: Gα inhibitory interacting protein (GINIP), which binds active Gα subunits, and potassium channel tetramerization domain-containing 12 (KCTD12), which binds active Gβγ subunits.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1