首页 > 最新文献

Neurogenetics最新文献

英文 中文
A perspective on epigenomic aging processes in the human brain and their plasticity in patients with mental disorders - a systematic review. 透视人脑表观基因组衰老过程及其在精神障碍患者中的可塑性--系统综述。
IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-05 DOI: 10.1007/s10048-024-00771-x
Jan Postberg, Michèle Tina Schubert, Vincent Nin, Lukas Wagner, Martina Piefke

The debate surrounding nature versus nurture remains a central question in neuroscience, psychology, and in psychiatry, holding implications for both aging processes and the etiology of mental illness. Epigenetics can serve as a bridge between genetic predisposition and environmental influences, thus offering a potential avenue for addressing these questions. Epigenetic clocks, in particular, offer a theoretical framework for measuring biological age based on DNA methylation signatures, enabling the identification of disparities between biological and chronological age. This structured review seeks to consolidate current knowledge regarding the relationship between mental disorders and epigenetic age within the brain. Through a comprehensive literature search encompassing databases such as EBSCO, PubMed, and ClinicalTrials.gov, relevant studies were identified and analyzed. Studies that met inclusion criteria were scrutinized, focusing on those with large sample sizes, analyses of both brain tissue and blood samples, investigation of frontal cortex markers, and a specific emphasis on schizophrenia and depressive disorders. Our review revealed a paucity of significant findings, yet notable insights emerged from studies meeting specific criteria. Studies characterized by extensive sample sizes, analysis of brain tissue and blood samples, assessment of frontal cortex markers, and a focus on schizophrenia and depressive disorders yielded particularly noteworthy results. Despite the limited number of significant findings, these studies shed light on the complex interplay between epigenetic aging and mental illness. While the current body of literature on epigenetic aging in mental disorders presents limited significant findings, it underscores the importance of further research in this area. Future studies should prioritize large sample sizes, comprehensive analyses of brain tissue and blood samples, exploration of specific brain regions such as the frontal cortex, and a focus on key mental disorders. Such endeavors will contribute to a deeper understanding of the relationship between epigenetic aging and mental illness, potentially informing novel diagnostic and therapeutic approaches.

围绕天性与后天培养的争论仍然是神经科学、心理学和精神病学的核心问题,对衰老过程和精神疾病的病因学都有影响。表观遗传学可以在遗传易感性和环境影响之间架起一座桥梁,从而为解决这些问题提供一条潜在的途径。表观遗传学时钟尤其提供了一个理论框架,可根据 DNA 甲基化特征来测量生物年龄,从而识别生物年龄与计时年龄之间的差异。本结构性综述旨在整合当前有关精神障碍与大脑表观遗传年龄之间关系的知识。通过对 EBSCO、PubMed 和 ClinicalTrials.gov 等数据库进行全面的文献检索,确定并分析了相关研究。我们对符合纳入标准的研究进行了仔细审查,重点关注那些样本量大、同时分析脑组织和血液样本、调查额叶皮层标记物以及特别强调精神分裂症和抑郁障碍的研究。我们的综述显示,重大发现并不多,但在符合特定标准的研究中却出现了值得注意的见解。这些研究的特点是样本量大、分析脑组织和血液样本、评估额叶皮层标记物,而且重点关注精神分裂症和抑郁障碍,这些研究的结果尤其值得关注。尽管重要发现的数量有限,但这些研究揭示了表观遗传衰老与精神疾病之间复杂的相互作用。虽然目前有关精神疾病表观遗传衰老的文献中的重要发现有限,但它强调了在这一领域开展进一步研究的重要性。未来的研究应优先考虑大样本量、对脑组织和血液样本进行全面分析、对额叶皮层等特定脑区进行探索,并重点关注主要的精神疾病。这些努力将有助于更深入地了解表观遗传衰老与精神疾病之间的关系,并有可能为新的诊断和治疗方法提供依据。
{"title":"A perspective on epigenomic aging processes in the human brain and their plasticity in patients with mental disorders - a systematic review.","authors":"Jan Postberg, Michèle Tina Schubert, Vincent Nin, Lukas Wagner, Martina Piefke","doi":"10.1007/s10048-024-00771-x","DOIUrl":"10.1007/s10048-024-00771-x","url":null,"abstract":"<p><p>The debate surrounding nature versus nurture remains a central question in neuroscience, psychology, and in psychiatry, holding implications for both aging processes and the etiology of mental illness. Epigenetics can serve as a bridge between genetic predisposition and environmental influences, thus offering a potential avenue for addressing these questions. Epigenetic clocks, in particular, offer a theoretical framework for measuring biological age based on DNA methylation signatures, enabling the identification of disparities between biological and chronological age. This structured review seeks to consolidate current knowledge regarding the relationship between mental disorders and epigenetic age within the brain. Through a comprehensive literature search encompassing databases such as EBSCO, PubMed, and ClinicalTrials.gov, relevant studies were identified and analyzed. Studies that met inclusion criteria were scrutinized, focusing on those with large sample sizes, analyses of both brain tissue and blood samples, investigation of frontal cortex markers, and a specific emphasis on schizophrenia and depressive disorders. Our review revealed a paucity of significant findings, yet notable insights emerged from studies meeting specific criteria. Studies characterized by extensive sample sizes, analysis of brain tissue and blood samples, assessment of frontal cortex markers, and a focus on schizophrenia and depressive disorders yielded particularly noteworthy results. Despite the limited number of significant findings, these studies shed light on the complex interplay between epigenetic aging and mental illness. While the current body of literature on epigenetic aging in mental disorders presents limited significant findings, it underscores the importance of further research in this area. Future studies should prioritize large sample sizes, comprehensive analyses of brain tissue and blood samples, exploration of specific brain regions such as the frontal cortex, and a focus on key mental disorders. Such endeavors will contribute to a deeper understanding of the relationship between epigenetic aging and mental illness, potentially informing novel diagnostic and therapeutic approaches.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"351-366"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the therapeutic prospects of IFNW1 and IFNA21: insights into glioma pathogenesis and clinical significance. 揭示 IFNW1 和 IFNA21 的治疗前景:深入了解胶质瘤的发病机制和临床意义。
IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-03 DOI: 10.1007/s10048-024-00769-5
Hong Cheng, Yingjie Zhao, Xiaoli Hou, Fang Ling, Jing Wang, Yixia Wang, Yasen Cao

Glioma, a type of brain tumor, poses significant challenges due to its heterogeneous nature and limited treatment options. Interferon-related genes (IRGs) have emerged as potential players in glioma pathogenesis, yet their expression patterns and clinical implications remain to be fully elucidated. We conducted a comprehensive analysis to investigate the expression patterns and functional enrichment of IRGs in glioma. This involved constructing protein-protein interaction networks, heatmap analysis, survival curve plotting, diagnostic and prognostic assessments, differential expression analysis across glioma subgroups, GSVA, immune infiltration analysis, and drug sensitivity analysis. Our analysis revealed distinct expression patterns and functional enrichment of IRGs in glioma. Notably, IFNW1 and IFNA21 were markedly downregulated in glioma tissues compared to normal tissues, and higher expression levels were associated with improved overall survival and disease-specific survival. Furthermore, these genes showed diagnostic capabilities in distinguishing glioma tissues from normal tissues and were significantly downregulated in higher-grade and more aggressive gliomas. Differential expression analysis across glioma subgroups highlighted the association of IFNW1 and IFNA21 expression with key pathways and biological processes, including metabolic reprogramming and immune regulation. Immune infiltration analysis revealed their influence on immune cell composition in the tumor microenvironment. Additionally, elevated expression levels were associated with increased resistance to chemotherapeutic agents. Our findings underscore the potential of IFNW1 and IFNA21 as diagnostic biomarkers and prognostic indicators in glioma. Their roles in modulating glioma progression, immune response, and drug sensitivity highlight their significance as potential therapeutic targets. These results contribute to a deeper understanding of glioma biology and may inform the development of personalized treatment strategies for glioma patients.

胶质瘤是脑肿瘤的一种,由于其异质性和有限的治疗方案,它带来了巨大的挑战。干扰素相关基因(IRGs)已成为胶质瘤发病机制中的潜在参与者,但其表达模式和临床意义仍有待全面阐明。我们进行了一项全面的分析,以研究IRGs在胶质瘤中的表达模式和功能富集。其中包括构建蛋白-蛋白相互作用网络、热图分析、生存曲线绘制、诊断和预后评估、胶质瘤亚组间差异表达分析、GSVA、免疫浸润分析和药物敏感性分析。我们的分析揭示了胶质瘤中IRGs独特的表达模式和功能富集。值得注意的是,与正常组织相比,IFNW1和IFNA21在胶质瘤组织中明显下调,较高的表达水平与总生存率和疾病特异性生存率的改善相关。此外,这些基因在区分胶质瘤组织和正常组织方面显示出诊断能力,并且在分级较高和侵袭性较强的胶质瘤中明显下调。胶质瘤亚组的差异表达分析突显了IFNW1和IFNA21的表达与代谢重编程和免疫调节等关键通路和生物过程的关联。免疫浸润分析显示了它们对肿瘤微环境中免疫细胞组成的影响。此外,表达水平的升高与化疗药物耐药性的增加有关。我们的发现强调了 IFNW1 和 IFNA21 作为胶质瘤诊断生物标志物和预后指标的潜力。它们在调节胶质瘤进展、免疫反应和药物敏感性方面的作用凸显了它们作为潜在治疗靶点的重要性。这些结果有助于加深对胶质瘤生物学的理解,并为胶质瘤患者个性化治疗策略的开发提供参考。
{"title":"Unveiling the therapeutic prospects of IFNW1 and IFNA21: insights into glioma pathogenesis and clinical significance.","authors":"Hong Cheng, Yingjie Zhao, Xiaoli Hou, Fang Ling, Jing Wang, Yixia Wang, Yasen Cao","doi":"10.1007/s10048-024-00769-5","DOIUrl":"10.1007/s10048-024-00769-5","url":null,"abstract":"<p><p>Glioma, a type of brain tumor, poses significant challenges due to its heterogeneous nature and limited treatment options. Interferon-related genes (IRGs) have emerged as potential players in glioma pathogenesis, yet their expression patterns and clinical implications remain to be fully elucidated. We conducted a comprehensive analysis to investigate the expression patterns and functional enrichment of IRGs in glioma. This involved constructing protein-protein interaction networks, heatmap analysis, survival curve plotting, diagnostic and prognostic assessments, differential expression analysis across glioma subgroups, GSVA, immune infiltration analysis, and drug sensitivity analysis. Our analysis revealed distinct expression patterns and functional enrichment of IRGs in glioma. Notably, IFNW1 and IFNA21 were markedly downregulated in glioma tissues compared to normal tissues, and higher expression levels were associated with improved overall survival and disease-specific survival. Furthermore, these genes showed diagnostic capabilities in distinguishing glioma tissues from normal tissues and were significantly downregulated in higher-grade and more aggressive gliomas. Differential expression analysis across glioma subgroups highlighted the association of IFNW1 and IFNA21 expression with key pathways and biological processes, including metabolic reprogramming and immune regulation. Immune infiltration analysis revealed their influence on immune cell composition in the tumor microenvironment. Additionally, elevated expression levels were associated with increased resistance to chemotherapeutic agents. Our findings underscore the potential of IFNW1 and IFNA21 as diagnostic biomarkers and prognostic indicators in glioma. Their roles in modulating glioma progression, immune response, and drug sensitivity highlight their significance as potential therapeutic targets. These results contribute to a deeper understanding of glioma biology and may inform the development of personalized treatment strategies for glioma patients.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"337-350"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel splicing variant and gonadal mosaicism in DYRK1A gene identified by whole-genome sequencing in multiplex autism spectrum disorder families. 通过全基因组测序在多重自闭症谱系障碍家族中发现 DYRK1A 基因的新剪接变异和性腺嵌合。
IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-08 DOI: 10.1007/s10048-024-00768-6
Mehdi Agha Gholizadeh, Farkhondeh Behjati, Saghar Ghasemi Firouzabadi, Erfan Heidari, Ehsan Razmara, Navid Almadani, Ali Sharifi Zarchi, Masoud Garshasbi

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with considerable genetic heterogeneity. The disorder is clinically diagnosed based on DSM-5 criteria, featuring deficits in social communication and interaction, along with restricted and repetitive behaviours. Here, we performed whole-genome sequencing (WGS) on four individuals with ASD from two multiplex families (MPX), where more than one individual is affected, to identify potential single nucleotide variants (SNVs) and structural variants (SVs) in coding and non-coding regions. A rigorous bioinformatics pipeline was employed for variant detection, followed by segregation analysis. Our investigation revealed an unreported splicing variant in the DYRK1A gene (c.-77 + 2T > C; IVS1 + 2T > C; NM_001396.5), in heterozygote form in two affected children in one of the families (family B), which was absent in the healthy parents and siblings. This finding suggests the presence of gonadal mosaicism in one of the parents, representing the first documented instance of such inheritance for a variant in the DYRK1A gene associated with ASD. Furthermore, we identified a 50 bp deletion in intron 9 of the DLG2 gene in two affected patients from the same family, confirmed by PCR and Sanger sequencing. In Family A, we identified potential candidate variants associated with ASD shared by the two patients. These findings enhance our understanding of the genetic landscape of ASD, particularly in MPX families, and highlight the utility of WGS in uncovering novel genetic contributions to neurodevelopmental disorders.

自闭症谱系障碍(ASD)是一种复杂的神经发育疾病,具有相当大的遗传异质性。临床上根据 DSM-5 标准诊断自闭症谱系障碍,主要表现为社交沟通和互动障碍,以及局限性和重复性行为。在这里,我们对来自两个多基因家族(MPX)(其中不止一个个体受到影响)的四名 ASD 患者进行了全基因组测序(WGS),以鉴定编码区和非编码区中潜在的单核苷酸变异(SNV)和结构变异(SV)。我们采用了严格的生物信息学方法进行变异检测,然后进行分离分析。我们的调查发现,在其中一个家族(B 家族)的两名患儿中,DYRK1A 基因中存在一个未报道的剪接变异(c.-77 + 2T > C; IVS1 + 2T > C; NM_001396.5),该变异以杂合子形式存在,而健康的父母和兄弟姐妹中则没有这种变异。这一发现表明,父母中的一方存在性腺嵌合现象,这是与 ASD 相关的 DYRK1A 基因变异出现这种遗传的首个记录实例。此外,我们还在同一家族的两名患者中发现了 DLG2 基因内含子 9 的 50 bp 缺失,并通过 PCR 和 Sanger 测序进行了确认。在家族 A 中,我们发现了这两名患者共有的与 ASD 相关的潜在候选变体。这些发现加深了我们对 ASD 遗传图谱的了解,尤其是在 MPX 家系中,并凸显了 WGS 在发现神经发育障碍的新遗传贡献方面的作用。
{"title":"Novel splicing variant and gonadal mosaicism in DYRK1A gene identified by whole-genome sequencing in multiplex autism spectrum disorder families.","authors":"Mehdi Agha Gholizadeh, Farkhondeh Behjati, Saghar Ghasemi Firouzabadi, Erfan Heidari, Ehsan Razmara, Navid Almadani, Ali Sharifi Zarchi, Masoud Garshasbi","doi":"10.1007/s10048-024-00768-6","DOIUrl":"10.1007/s10048-024-00768-6","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with considerable genetic heterogeneity. The disorder is clinically diagnosed based on DSM-5 criteria, featuring deficits in social communication and interaction, along with restricted and repetitive behaviours. Here, we performed whole-genome sequencing (WGS) on four individuals with ASD from two multiplex families (MPX), where more than one individual is affected, to identify potential single nucleotide variants (SNVs) and structural variants (SVs) in coding and non-coding regions. A rigorous bioinformatics pipeline was employed for variant detection, followed by segregation analysis. Our investigation revealed an unreported splicing variant in the DYRK1A gene (c.-77 + 2T > C; IVS1 + 2T > C; NM_001396.5), in heterozygote form in two affected children in one of the families (family B), which was absent in the healthy parents and siblings. This finding suggests the presence of gonadal mosaicism in one of the parents, representing the first documented instance of such inheritance for a variant in the DYRK1A gene associated with ASD. Furthermore, we identified a 50 bp deletion in intron 9 of the DLG2 gene in two affected patients from the same family, confirmed by PCR and Sanger sequencing. In Family A, we identified potential candidate variants associated with ASD shared by the two patients. These findings enhance our understanding of the genetic landscape of ASD, particularly in MPX families, and highlight the utility of WGS in uncovering novel genetic contributions to neurodevelopmental disorders.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"377-391"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The lethal homozygous variant in the ATP1A2 gene is associated with FARIMPD syndrome phenotypes in newborns. ATP1A2 基因的致命同源变异与新生儿的 FARIMPD 综合征表型有关。
IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-24 DOI: 10.1007/s10048-024-00775-7
Behzad Haj Mohammad Hassani, Kianoosh Malekzadeh

FARIMPD (Fetal akinesia, respiratory insufficiency, microcephaly, polymicrogyria, and dysmorphic facies) syndrome is a severe condition caused by ATP1A2 gene variants. The syndrome's novelty and rarity have limited its clinical and molecular knowledge. This research tries to provide new insight by investigating the cause of the early deaths due to FARIMPD syndrome in a particular family and reviewing previous studies. DNA and RNA were extracted from the blood samples of newborns and their parents, followed by whole exome sequencing and segregation analysis. A pathogenic homozygous nonsense variant (c.1234C > T: p.Arg412*) in the ATP1A2 gene was found in newborns. This variant is reported as homozygous for the first time. The migraine symptoms were the result of the heterozygous state of this particular variant, which supported the dominant inheritance pattern of this disease. Real-time PCR was used to analyze ATP1A2 gene expression in the newborns compared to parents and control subjects. The expression analysis also showed significant mRNA degradation in the newborns compared to heterozygous and healthy individuals, due to Nonsense-mediated mRNA Decay phenomena. Our study describes an ATP1A2 nonsense variant (c.1234C > T) that appears compatible with infant survival in the heterozygous and compound heterozygous states but is lethal in the homozygous state.

FARIMPD(胎儿运动障碍、呼吸功能不全、小头畸形、多畸形和面容畸形)综合征是一种由 ATP1A2 基因变异引起的严重疾病。该综合征的新颖性和罕见性限制了对其临床和分子知识的了解。本研究试图通过调查一个特定家庭中因 FARIMPD 综合征而早逝的原因,并回顾以往的研究,来提供新的见解。研究人员从新生儿及其父母的血液样本中提取了DNA和RNA,然后进行了全外显子组测序和分离分析。在新生儿中发现了 ATP1A2 基因的致病性同源无义变异(c.1234C > T: p.Arg412*)。该变异首次被报告为同源性。偏头痛症状是这一特定变异的杂合状态所致,这支持了该疾病的显性遗传模式。研究人员采用实时 PCR 技术分析了新生儿与父母和对照组相比的 ATP1A2 基因表达情况。表达分析还显示,与杂合子和健康人相比,新生儿的 mRNA 降解明显,这是由于 Nonsense 介导的 mRNA Decay 现象所致。我们的研究描述了一种 ATP1A2 无义变体(c.1234C > T),该变体在杂合子和复合杂合子状态下似乎与婴儿存活相容,但在同种杂合子状态下则是致命的。
{"title":"The lethal homozygous variant in the ATP1A2 gene is associated with FARIMPD syndrome phenotypes in newborns.","authors":"Behzad Haj Mohammad Hassani, Kianoosh Malekzadeh","doi":"10.1007/s10048-024-00775-7","DOIUrl":"10.1007/s10048-024-00775-7","url":null,"abstract":"<p><p>FARIMPD (Fetal akinesia, respiratory insufficiency, microcephaly, polymicrogyria, and dysmorphic facies) syndrome is a severe condition caused by ATP1A2 gene variants. The syndrome's novelty and rarity have limited its clinical and molecular knowledge. This research tries to provide new insight by investigating the cause of the early deaths due to FARIMPD syndrome in a particular family and reviewing previous studies. DNA and RNA were extracted from the blood samples of newborns and their parents, followed by whole exome sequencing and segregation analysis. A pathogenic homozygous nonsense variant (c.1234C > T: p.Arg412*) in the ATP1A2 gene was found in newborns. This variant is reported as homozygous for the first time. The migraine symptoms were the result of the heterozygous state of this particular variant, which supported the dominant inheritance pattern of this disease. Real-time PCR was used to analyze ATP1A2 gene expression in the newborns compared to parents and control subjects. The expression analysis also showed significant mRNA degradation in the newborns compared to heterozygous and healthy individuals, due to Nonsense-mediated mRNA Decay phenomena. Our study describes an ATP1A2 nonsense variant (c.1234C > T) that appears compatible with infant survival in the heterozygous and compound heterozygous states but is lethal in the homozygous state.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"417-424"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TREK-1 channel as a therapeutic target for dexmedetomidine-mediated neuroprotection in cerebral ischemia. TREK-1通道作为右美托咪定介导的脑缺血神经保护治疗靶点
IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-08 DOI: 10.1007/s10048-024-00772-w
Yang Xu, XiaoDan Teng, Ming Wei, Yang Liu

Our objective is to explore the protective effect of Dexmedetomidine on brain apoptosis and its mechanism through TREK-1 pathway. Forty male Sprague-Dawley rats were allocated into four groups: Sham, Cerebral Ischemia/Reperfusion Injury (CIRI), 50 µg/kg Dex, and 100 µg/kg Dex. A rat model of middle cerebral artery occlusion (MCAO) was employed to simulate cerebral embolism. Primary cortical neurons were exposed to Dex for 48 h, with some receiving additional treatment with 100 µM yohimbine hydrochloride (YOH) or TREK-1 small interfering RNA (siRNA). Neuronal damage was assessed using hematoxylin and eosin (HE) staining. Cell viability and apoptosis were measured by Cell Counting Kit-8 (CCK8) and flow cytometry, respectively. Protein and gene expression levels of Bcl-2, Bax, and TREK-1 were determined by Western blot and real-time polymerase chain reaction (PCR). Histopathological changes revealed that Dex treatment at both 50 µg/kg and 100 µg/kg significantly mitigated neuronal damage compared to the CIRI group. YOH treatment and Trek1 siRNA significantly reduced cell viability (p < 0.05). The mRNA expression and protein levels of TREK-1 and Bax were remarkably increased, while mRNA expression and protein levels of Bcl-2 was seriously decreased after CIRI modeling. In contrast, Dex treatment at both concentrations led to decreased TREK-1 and Bax expression and increased Bcl-2 expression in primary cortical neurons. Addition of 100 µM YOH and Trek1 siRNA reversed the effects of Dex on apoptosis-related genes (p < 0.05). Dex exerts neuroprotective effects through the TREK-1 pathway in vivo and in vitro.

我们的目的是探讨右美托咪定对脑细胞凋亡的保护作用及其通过 TREK-1 通路的机制。我们将 40 只雄性 Sprague-Dawley 大鼠分为四组:Sham 组、脑缺血再灌注损伤组(CIRI)、50 µg/kg Dex 组和 100 µg/kg Dex 组。采用大鼠大脑中动脉闭塞(MCAO)模型模拟脑栓塞。原代皮质神经元暴露于 Dex 48 小时,其中一些神经元还接受了 100 µM 盐酸育亨宾(YOH)或 TREK-1 小干扰 RNA(siRNA)的额外处理。使用苏木精和伊红(HE)染色评估神经元损伤。细胞活力和细胞凋亡分别用细胞计数试剂盒-8(CCK8)和流式细胞术测量。通过 Western 印迹和实时聚合酶链反应(PCR)测定 Bcl-2、Bax 和 TREK-1 的蛋白和基因表达水平。组织病理学变化显示,与CIRI组相比,50 µg/kg和100 µg/kg剂量的Dex治疗可明显减轻神经元损伤。YOH处理和Trek1 siRNA可明显降低细胞活力(p
{"title":"TREK-1 channel as a therapeutic target for dexmedetomidine-mediated neuroprotection in cerebral ischemia.","authors":"Yang Xu, XiaoDan Teng, Ming Wei, Yang Liu","doi":"10.1007/s10048-024-00772-w","DOIUrl":"10.1007/s10048-024-00772-w","url":null,"abstract":"<p><p>Our objective is to explore the protective effect of Dexmedetomidine on brain apoptosis and its mechanism through TREK-1 pathway. Forty male Sprague-Dawley rats were allocated into four groups: Sham, Cerebral Ischemia/Reperfusion Injury (CIRI), 50 µg/kg Dex, and 100 µg/kg Dex. A rat model of middle cerebral artery occlusion (MCAO) was employed to simulate cerebral embolism. Primary cortical neurons were exposed to Dex for 48 h, with some receiving additional treatment with 100 µM yohimbine hydrochloride (YOH) or TREK-1 small interfering RNA (siRNA). Neuronal damage was assessed using hematoxylin and eosin (HE) staining. Cell viability and apoptosis were measured by Cell Counting Kit-8 (CCK8) and flow cytometry, respectively. Protein and gene expression levels of Bcl-2, Bax, and TREK-1 were determined by Western blot and real-time polymerase chain reaction (PCR). Histopathological changes revealed that Dex treatment at both 50 µg/kg and 100 µg/kg significantly mitigated neuronal damage compared to the CIRI group. YOH treatment and Trek1 siRNA significantly reduced cell viability (p < 0.05). The mRNA expression and protein levels of TREK-1 and Bax were remarkably increased, while mRNA expression and protein levels of Bcl-2 was seriously decreased after CIRI modeling. In contrast, Dex treatment at both concentrations led to decreased TREK-1 and Bax expression and increased Bcl-2 expression in primary cortical neurons. Addition of 100 µM YOH and Trek1 siRNA reversed the effects of Dex on apoptosis-related genes (p < 0.05). Dex exerts neuroprotective effects through the TREK-1 pathway in vivo and in vitro.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"367-375"},"PeriodicalIF":1.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of gut-derived short-chain fatty acids in Parkinson's disease 肠道短链脂肪酸在帕金森病中的作用
IF 2.2 4区 医学 Q3 CLINICAL NEUROLOGY Pub Date : 2024-09-13 DOI: 10.1007/s10048-024-00779-3
Mohamed J. Saadh, Anfal Nabeel Mustafa, Mohammed Ahmed Mustafa, Renuka Jyothi. S, Hasan Khalid Dabis, G. V. Siva Prasad, Imad Jassim Mohammad, Ahmed Adnan, Ameer Hassan Idan

The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.

Graphical abstract

本文研究了短链脂肪酸(SCFA)在帕金森病(PD)中的新功能。肠道微生物群发酵膳食纤维产生的 SCFAs 与肠道-大脑轴的功能障碍和神经炎症有关。这些过程与帕金森病的发展密不可分。本文通过广泛的文献综述,探讨了 SCFAs 在治疗帕金森病方面的潜在治疗意义,包括其调节胃肠道通透性、神经炎症和神经元存活的能力。总体而言,本文强调了 SCFAs 作为调理和治疗帕金森病靶点的潜在治疗作用。
{"title":"The role of gut-derived short-chain fatty acids in Parkinson's disease","authors":"Mohamed J. Saadh, Anfal Nabeel Mustafa, Mohammed Ahmed Mustafa, Renuka Jyothi. S, Hasan Khalid Dabis, G. V. Siva Prasad, Imad Jassim Mohammad, Ahmed Adnan, Ameer Hassan Idan","doi":"10.1007/s10048-024-00779-3","DOIUrl":"https://doi.org/10.1007/s10048-024-00779-3","url":null,"abstract":"<p>The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":"7 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes ATP8A2的ATPase结构域中的一种新型错义变异,以及由错义变异引起的ATP8A2相关疾病的表型变异综述
IF 2.2 4区 医学 Q3 CLINICAL NEUROLOGY Pub Date : 2024-07-27 DOI: 10.1007/s10048-024-00773-9
Kyle P. Flannery, Sylvia Safwat, Eli Matsell, Namarata Battula, Ahlam A. A. Hamed, Inaam N. Mohamed, Maha A. Elseed, Mahmoud Koko, Rayan Abubaker, Fatima Abozar, Liena E. O. Elsayed, Vikram Bhise, Robert S. Molday, Mustafa A. Salih, Ashraf Yahia, M. Chiara Manzini

ATPase, class 1, type 8 A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, impaired intellectual development, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings born from a consanguineous, first-cousin union from Sudan presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.

ATPase, class 1, type 8 A, member 2 (ATP8A2)是一种P4-ATPase,在磷脂跨质膜转运中起着关键作用。已知 ATP8A2 的致病变异可导致小脑共济失调、智力发育受损和失衡综合征 4(CAMRQ4),而失衡综合征 4 通常与脑病、全面发育迟缓和严重运动障碍有关。在这里,我们介绍了一个由来自苏丹的嫡亲表兄弟姐妹所组成的家庭,该家庭中的两兄妹均表现为全面发育迟缓、智力障碍、痉挛、共济失调、眼球震颤和胼胝体薄弱。全外显子组测序发现,ATP8A2的核苷酸结合域存在一个同源错义变异(p.Leu538Pro),导致蛋白表达几乎完全丧失。这与同一结构域中导致蛋白质错误折叠和 ATPase 功能丧失的其他错义变异一致。此外,通过弥散加权成像,我们在内囊后肢发现了双侧高密度,这表明轴突束可能发生了微结构变化,而这种变化以前从未被发现过,并可能导致这些患者出现感觉运动障碍。
{"title":"A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes","authors":"Kyle P. Flannery, Sylvia Safwat, Eli Matsell, Namarata Battula, Ahlam A. A. Hamed, Inaam N. Mohamed, Maha A. Elseed, Mahmoud Koko, Rayan Abubaker, Fatima Abozar, Liena E. O. Elsayed, Vikram Bhise, Robert S. Molday, Mustafa A. Salih, Ashraf Yahia, M. Chiara Manzini","doi":"10.1007/s10048-024-00773-9","DOIUrl":"https://doi.org/10.1007/s10048-024-00773-9","url":null,"abstract":"<p>ATPase, class 1, type 8 A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in <i>ATP8A2</i> are known to cause cerebellar ataxia, impaired intellectual development, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings born from a consanguineous, first-cousin union from Sudan presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":"44 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of genotype-phenotype and familial features of Turkish dystrophinopathy patients. 土耳其肌营养不良症患者的基因型-表型和家族特征调查。
IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Pub Date : 2024-07-01 Epub Date: 2024-06-08 DOI: 10.1007/s10048-024-00765-9
Hande Ozkalayci, Elcin Bora, Tufan Cankaya, Mehmet Kocabey, Nadide Cemre Zubari, Uluc Yis, Ozlem Giray Bozkaya, Serkan Turan, Aynur Pekcanlar Akay, Ahmet Okay Caglayan, Ayfer Ulgenalp

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive allelic muscle diseases caused by dystrophin gene mutations. Eight hundred thirty-seven patients admitted between 1997 and 2022 were included in the study. Two hundred twenty patients were analyzed by multiplex PCR (mPCR) alone. Five hundred ninety-five patients were investigated by multiplex ligation-dependent probe amplification (MLPA), and 54 patients were examined by sequencing. Deletion was detected in 60% (132/220) of the cases in the mPCR group only and in 58.3% (347/595) of the cases with MLPA analysis. The rates of deletion and duplication were 87.7% and 12.3%, respectively, in the MLPA analysis. Single exon deletions were the most common mutation type. The introns 43-55 (81.8%) and exons 2-21 (13.1%) regions were detected as hot spots in deletions. It was determined that 89% of the mutations were suitable for exon skipping therapy. The reading frame rule did not hold in 7.6% of D/BMD cases (17/224). We detected twenty-five pathogenic/likely pathogenic variants in sequencing, five of which were novel variants. Nonsense mutation was the most common small mutation (44%). 21% of DMD patients were familial. We detected germline mosaicism in four families (4.3%) in the large rearrangement group and one gonosomal mosaicism in a family with a nonsense mutation. This is the largest study examining genotype and phenotype data in Turkish D/BMD families investigated by MLPA analysis. The reading frame hypothesis is not valid in all cases. Sharing the genotype and phenotype characteristics of these cases in the literature will shed light on the molecular structure of DMD and guide gene therapy research. In genetic counseling, carrier screening in the family and possible gonadal mosaicism should be emphasized.

杜兴氏肌营养不良症(DMD)和贝克氏肌营养不良症(BMD)是由肌营养不良蛋白基因突变引起的X连锁隐性等位基因肌肉疾病。该研究共纳入了 837 名 1997 年至 2022 年期间入院的患者。220 名患者仅通过多重 PCR(mPCR)进行了分析。595 名患者接受了多重连接依赖性探针扩增(MLPA)检查,54 名患者接受了测序检查。仅在 mPCR 组中,有 60% 的病例(132/220 例)检测到缺失,而在进行 MLPA 分析的病例中,有 58.3% 的病例(347/595 例)检测到缺失。在 MLPA 分析中,缺失率和重复率分别为 87.7% 和 12.3%。单外显子缺失是最常见的突变类型。内含子 43-55(81.8%)和外显子 2-21(13.1%)区域是缺失的热点。经测定,89%的突变适合进行外显子跳读治疗。7.6%的D/BMD病例(17/224)不符合阅读框规则。我们在测序中发现了 25 个致病/可能致病变异,其中 5 个是新型变异。无义变异是最常见的小变异(44%)。21%的DMD患者是家族性的。在大重排组中,我们在四个家族(4.3%)中检测到了种系镶嵌,在一个无义突变家族中检测到了一个性腺镶嵌。这是通过 MLPA 分析对土耳其 D/BMD 家系的基因型和表型数据进行的最大规模研究。阅读框假说并非在所有情况下都有效。在文献中分享这些病例的基因型和表型特征将揭示 DMD 的分子结构,并为基因治疗研究提供指导。在遗传咨询中,应强调家族中的携带者筛查和可能的性腺嵌合。
{"title":"Investigation of genotype-phenotype and familial features of Turkish dystrophinopathy patients.","authors":"Hande Ozkalayci, Elcin Bora, Tufan Cankaya, Mehmet Kocabey, Nadide Cemre Zubari, Uluc Yis, Ozlem Giray Bozkaya, Serkan Turan, Aynur Pekcanlar Akay, Ahmet Okay Caglayan, Ayfer Ulgenalp","doi":"10.1007/s10048-024-00765-9","DOIUrl":"10.1007/s10048-024-00765-9","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive allelic muscle diseases caused by dystrophin gene mutations. Eight hundred thirty-seven patients admitted between 1997 and 2022 were included in the study. Two hundred twenty patients were analyzed by multiplex PCR (mPCR) alone. Five hundred ninety-five patients were investigated by multiplex ligation-dependent probe amplification (MLPA), and 54 patients were examined by sequencing. Deletion was detected in 60% (132/220) of the cases in the mPCR group only and in 58.3% (347/595) of the cases with MLPA analysis. The rates of deletion and duplication were 87.7% and 12.3%, respectively, in the MLPA analysis. Single exon deletions were the most common mutation type. The introns 43-55 (81.8%) and exons 2-21 (13.1%) regions were detected as hot spots in deletions. It was determined that 89% of the mutations were suitable for exon skipping therapy. The reading frame rule did not hold in 7.6% of D/BMD cases (17/224). We detected twenty-five pathogenic/likely pathogenic variants in sequencing, five of which were novel variants. Nonsense mutation was the most common small mutation (44%). 21% of DMD patients were familial. We detected germline mosaicism in four families (4.3%) in the large rearrangement group and one gonosomal mosaicism in a family with a nonsense mutation. This is the largest study examining genotype and phenotype data in Turkish D/BMD families investigated by MLPA analysis. The reading frame hypothesis is not valid in all cases. Sharing the genotype and phenotype characteristics of these cases in the literature will shed light on the molecular structure of DMD and guide gene therapy research. In genetic counseling, carrier screening in the family and possible gonadal mosaicism should be emphasized.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"201-213"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency of C9orf72, GRN, and MAPT pathogenic variants in patients recruited at the Belgrade Memory Center. 贝尔格莱德记忆中心招募的患者中 C9orf72、GRN 和 MAPT 致病变体的频率。
IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Pub Date : 2024-07-01 Epub Date: 2024-06-07 DOI: 10.1007/s10048-024-00766-8
Elka Stefanova, Ana Marjanović, Valerija Dobričić, Gorana Mandić-Stojmenović, Tanja Stojković, Marija Branković, Maksim Šarčević, Ivana Novaković, Vladimir S Kostić

Most of the heritability in frontotemporal dementia (FTD) is accounted for by autosomal dominant hexanucleotide expansion in the chromosome 9 open reading frame 72 (C9orf72), pathogenic/likely pathogenic variants in progranulin (GRN), and microtubule-associated protein tau (MAPT) genes. Until now, there has been no systematic analysis of these genes in the Serbian population. Herein, we assessed the frequency of the C9orf72 expansion, pathogenic/likely pathogenic variants in GRN and MAPT in a well-characterized group of 472 subjects (FTD, Alzheimer's disease - AD, mild cognitive impairment - MCI, and unspecified dementia - UnD), recruited in the Memory Center, Neurology Clinic, University Clinical Center of Serbia. The C9orf72 repeat expansion was detected in 6.98% of FTD cases (13.46% familial; 2.6% sporadic). In the UnD subgroup, C9orf72 repeat expansions were detected in 4.08% (8% familial) individuals. Pathogenic variants in the GRN were found in 2.85% of familial FTD cases. Interestingly, no MAPT pathogenic/likely pathogenic variants were detected, suggesting possible geographical specificity. Our findings highlight the importance of wider implementation of genetic testing in neurological and psychiatric practice managing patients with cognitive-behavioral and motor symptoms.

额颞叶痴呆症(FTD)的大部分遗传性是由常染色体显性六核苷酸扩增、9号染色体开放阅读框72(C9orf72)、原花青素(GRN)和微管相关蛋白tau(MAPT)基因的致病/可能致病变异造成的。迄今为止,还没有对塞尔维亚人群中的这些基因进行过系统分析。在此,我们评估了塞尔维亚大学临床中心神经病学诊所记忆中心招募的 472 名受试者(FTD、阿尔茨海默病(AD)、轻度认知障碍(MCI)和不明原因痴呆(UnD))中 C9orf72 扩增、GRN 和 MAPT 的致病性/可能致病性变异的频率。在6.98%的FTD病例(13.46%家族性;2.6%散发性)中检测到C9orf72重复扩增。在UnD亚组中,4.08%的患者(8%为家族性)检测到C9orf72重复扩增。在2.85%的家族性FTD病例中发现了GRN的致病变异。有趣的是,没有发现MAPT致病/可能致病变异,这表明可能存在地域特异性。我们的研究结果凸显了在神经科和精神科管理认知行为和运动症状患者的实践中更广泛地实施基因检测的重要性。
{"title":"Frequency of C9orf72, GRN, and MAPT pathogenic variants in patients recruited at the Belgrade Memory Center.","authors":"Elka Stefanova, Ana Marjanović, Valerija Dobričić, Gorana Mandić-Stojmenović, Tanja Stojković, Marija Branković, Maksim Šarčević, Ivana Novaković, Vladimir S Kostić","doi":"10.1007/s10048-024-00766-8","DOIUrl":"10.1007/s10048-024-00766-8","url":null,"abstract":"<p><p>Most of the heritability in frontotemporal dementia (FTD) is accounted for by autosomal dominant hexanucleotide expansion in the chromosome 9 open reading frame 72 (C9orf72), pathogenic/likely pathogenic variants in progranulin (GRN), and microtubule-associated protein tau (MAPT) genes. Until now, there has been no systematic analysis of these genes in the Serbian population. Herein, we assessed the frequency of the C9orf72 expansion, pathogenic/likely pathogenic variants in GRN and MAPT in a well-characterized group of 472 subjects (FTD, Alzheimer's disease - AD, mild cognitive impairment - MCI, and unspecified dementia - UnD), recruited in the Memory Center, Neurology Clinic, University Clinical Center of Serbia. The C9orf72 repeat expansion was detected in 6.98% of FTD cases (13.46% familial; 2.6% sporadic). In the UnD subgroup, C9orf72 repeat expansions were detected in 4.08% (8% familial) individuals. Pathogenic variants in the GRN were found in 2.85% of familial FTD cases. Interestingly, no MAPT pathogenic/likely pathogenic variants were detected, suggesting possible geographical specificity. Our findings highlight the importance of wider implementation of genetic testing in neurological and psychiatric practice managing patients with cognitive-behavioral and motor symptoms.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"193-200"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole exome sequencing in Serbian patients with hereditary spastic paraplegia. 塞尔维亚遗传性痉挛性截瘫患者的全外显子组测序。
IF 1.6 4区 医学 Q3 CLINICAL NEUROLOGY Pub Date : 2024-07-01 Epub Date: 2024-03-19 DOI: 10.1007/s10048-024-00755-x
Marija Brankovic, Vukan Ivanovic, Ivana Basta, Rin Khang, Eugene Lee, Zorica Stevic, Branislav Ralic, Radoje Tubic, GoHun Seo, Vladana Markovic, Ivo Bozovic, Marina Svetel, Ana Marjanovic, Nikola Veselinovic, Sarlota Mesaros, Milena Jankovic, Dusanka Savic-Pavicevic, Zita Jovin, Ivana Novakovic, Hane Lee, Stojan Peric

Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with a high genetic and clinical heterogeneity. Numerous HSP patients remain genetically undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel variants and genes is needed. Our previous study analyzed 74 adult Serbian HSP patients from 65 families using panel of the 13 most common HSP genes in combination with a copy number variation analysis. Conclusive genetic findings were established in 23 patients from 19 families (29%). In the present study, nine patients from nine families previously negative on the HSP gene panel were selected for the whole exome sequencing (WES). Further, 44 newly diagnosed adult HSP patients from 44 families were sent to WES directly, since many studies showed WES may be used as the first step in HSP diagnosis. WES analysis of cohort 1 revealed a likely genetic cause in five (56%) of nine HSP families, including variants in the ETHE1, ZFYVE26, RNF170, CAPN1, and WASHC5 genes. In cohort 2, possible causative variants were found in seven (16%) of 44 patients (later updated to 27% when other diagnosis were excluded), comprising six different genes: SPAST, SPG11, WASCH5, KIF1A, KIF5A, and ABCD1. These results expand the genetic spectrum of HSP patients in Serbia and the region with implications for molecular genetic diagnosis and future causative therapies. Wide HSP panel can be the first step in diagnosis, alongside with the copy number variation (CNV) analysis, while WES should be performed after.

遗传性痉挛性截瘫(HSP)是一组具有高度遗传和临床异质性的神经退行性疾病。尽管对 HSP 的已知遗传病因进行了筛查,但仍有大量 HSP 患者未被确诊。因此,需要鉴定新的变体和基因。我们之前的研究分析了来自 65 个家庭的 74 名塞尔维亚成年 HSP 患者,使用了 13 个最常见的 HSP 基因面板并结合拷贝数变异分析。19个家族的23名患者(29%)获得了确凿的遗传学结论。在本研究中,选取了 9 个家族中先前在 HSP 基因面板上呈阴性的 9 名患者进行全外显子组测序(WES)。此外,由于许多研究表明 WES 可作为 HSP 诊断的第一步,因此 44 个家族中 44 名新确诊的成年 HSP 患者被直接送去进行 WES 测序。队列 1 的 WES 分析显示,9 个 HSP 家系中有 5 个(56%)可能存在遗传病因,包括 ETHE1、ZFYVE26、RNF170、CAPN1 和 WASHC5 基因中的变异。在队列 2 中,44 名患者中有 7 人(16%)发现了可能的致病变异(后来在排除其他诊断后更新为 27%),包括 6 个不同的基因:SPAST、SPG11、WASCH5、KIF1A、KIF5A 和 ABCD1。这些结果扩大了塞尔维亚和该地区 HSP 患者的基因谱,对分子基因诊断和未来的致病疗法具有重要意义。宽泛的 HSP 面板可作为诊断的第一步,同时进行拷贝数变异 (CNV) 分析,而 WES 则应在诊断之后进行。
{"title":"Whole exome sequencing in Serbian patients with hereditary spastic paraplegia.","authors":"Marija Brankovic, Vukan Ivanovic, Ivana Basta, Rin Khang, Eugene Lee, Zorica Stevic, Branislav Ralic, Radoje Tubic, GoHun Seo, Vladana Markovic, Ivo Bozovic, Marina Svetel, Ana Marjanovic, Nikola Veselinovic, Sarlota Mesaros, Milena Jankovic, Dusanka Savic-Pavicevic, Zita Jovin, Ivana Novakovic, Hane Lee, Stojan Peric","doi":"10.1007/s10048-024-00755-x","DOIUrl":"10.1007/s10048-024-00755-x","url":null,"abstract":"<p><p>Hereditary spastic paraplegia (HSP) is a group of neurodegenerative diseases with a high genetic and clinical heterogeneity. Numerous HSP patients remain genetically undiagnosed despite screening for known genetic causes of HSP. Therefore, identification of novel variants and genes is needed. Our previous study analyzed 74 adult Serbian HSP patients from 65 families using panel of the 13 most common HSP genes in combination with a copy number variation analysis. Conclusive genetic findings were established in 23 patients from 19 families (29%). In the present study, nine patients from nine families previously negative on the HSP gene panel were selected for the whole exome sequencing (WES). Further, 44 newly diagnosed adult HSP patients from 44 families were sent to WES directly, since many studies showed WES may be used as the first step in HSP diagnosis. WES analysis of cohort 1 revealed a likely genetic cause in five (56%) of nine HSP families, including variants in the ETHE1, ZFYVE26, RNF170, CAPN1, and WASHC5 genes. In cohort 2, possible causative variants were found in seven (16%) of 44 patients (later updated to 27% when other diagnosis were excluded), comprising six different genes: SPAST, SPG11, WASCH5, KIF1A, KIF5A, and ABCD1. These results expand the genetic spectrum of HSP patients in Serbia and the region with implications for molecular genetic diagnosis and future causative therapies. Wide HSP panel can be the first step in diagnosis, alongside with the copy number variation (CNV) analysis, while WES should be performed after.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":" ","pages":"165-177"},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neurogenetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1