The response of spinal motoneurons to synaptic input greatly depends on the activation of persistent inward currents (PICs), the contribution of which can be estimated through the paired motor unit technique. Yet, the intra-session test–retest reliability of this measurement remains to be fully established. Twenty males performed isometric triangular dorsiflexion contractions to 20 and 50 % of maximal torque at baseline and after a 15-min resting period. High-density electromyographic signals (HD-EMG) of the tibialis anterior were recorded with a 64-electrode matrix. HD-EMG signals were decomposed, and motor units tracked across time points to estimate the contribution of PICs to motoneuron firing through quantification of motor unit recruitment-derecruitment hysteresis (ΔF). A good intraclass correlation coefficient (ICC = 0.75 [0.63, 0.83]) and a large repeated measures correlation coefficient (rrm = 0.65 [0.49, 0.77]; p < 0.001) were found between ΔF values obtained at both time points for 20 % MVC ramps. For 50 % MVC ramps, a good ICC (0.77 [0.65, 0.85]) and a very large repeated measures correlation coefficient (rrm = 0.73 [0.63, 0.80]; p < 0.001) were observed. Our data suggest that ΔF scores can be reliably investigated in tibialis anterior motor units during both low- and moderate-intensity contractions within a single experimental session.
A prior study reported that the concentric strength imbalance between hamstrings and quadriceps is associated with falls in older adults. Given that the concentric strength may not be measured as conveniently as the isometric strength, it is meaningful to test whether the isometric hamstring-quadricep strength imbalance is related to falls among older adults. This study sought to explore whether the hamstrings-quadriceps ratio could differentiate fallers from non-fallers in community-dwelling older adults. One hundred and eleven older adults were included in this cross-sectional study. Their isometric knee joint strength capacity (extensors and flexors) was measured. Based on their fall history in the past year, they were classified as fallers (at least one fall) or non-fallers (no fall). The hamstrings-quadriceps ratio was compared between the faller and non-faller groups. The receiver operating characteristic analysis was used to determine the cutoff value of the hamstrings-quadriceps ratio able to best classify fallers and non-fallers. Fallers showed a significantly lower hamstrings-quadriceps ratio than non-fallers (p = 0.008). The receiver operating characteristic analysis identified 0.733 as the best ratio to differentiate fallers from non-fallers with an accuracy of 64.0 %. A 0.1-unit reduction in the hamstrings-quadriceps ratio increases the probability of falling by a factor of 1.30. The hamstrings-quadriceps ratio could be used as an additional fall risk factor when assessing the risk of falls among older adults. A smaller than 0.733 hamstring-quadriceps ratio may indicate a high risk of falls.
The role of scapular dyskinesis as a risk factor of shoulder injury has been largely discussed. However, most studies have focused on symptomatic patients and less is known on the asymptomatic dyskinetic scapula. Removing the confounding effects of the pathologies could contribute to better characterize the scapula dyskinesis. As muscle properties (strength, fatigue, nerve injury …) have been identified as causative factors of scapular dyskinesis, this study focuses specifically on characterizing the protractor and retractor muscles of the dyskinetic scapula. Thirteen asymptomatic dyskinetic volunteers were compared to eleven asymptomatic non-dyskinetic control volunteers. Muscle characteristics were evaluated in terms of maximal strength, fatigue resistance and electromyographic activity during a functional closed-chained task. The results did not identify kinematic or muscle activity significant differences between the dyskinetic and the control group even in fatigue conditions. However, the results demonstrated that protractors vs. retractors fatigue resistance ratios were imbalanced (<0.8) in the dyskinetic group and significantly lower than in the non-dyskinetic one. Our study suggests that that strength imbalances are not necessarily related to the presence of pain at the shoulder joint. These results demonstrated the importance to complete the clinical assessments of the scapula with strength evaluations even for asymptomatic sport practitioners.
This study examined the effects of acute normoxic and hypoxic exposure on neuromuscular and hemodynamic physiological responses performed during dynamic step muscle actions.
Thirteen recreationally active men (mean ± SD age: 21.2 ± 2.9 yrs) performed dynamic leg extensions unilaterally under Normoxic (FiO2 = 21 %) and Hypoxic (FiO2 = 13 %) conditions in a randomized order at 20 %, 40 %, 60 %, 80 %, and 100 % of their maximal strength. Electromyographic (EMG) amplitude, EMG frequency, (Oxygenated and Deoxygenated hemoglobin; OxyHb, DeoxyHb), Total hemoglobin (TotalHb), and skeletal muscle tissue oxygenation status (StO2) were measured from the vastus lateralis during all contractions.
There were no detectable differences in the neuromuscular responses between normoxia and hypoxia for EMG amplitude (p = 0.37–0.74) and frequency (p = 0.17–0.83). For EMG amplitude there were general increases with intensity (p < 0.01–0.03). EMG frequency remained similar from 20% to 80% and then increased at 100 % effort (p = 0.02). There was no significant difference in patterns of responses for OxyHb (p = 0.870) and TotalHb (p = 0.200) between normoxia and hypoxia. StO2 (p = 0.028) decreased and DeoxyHb (p = 0.006) increased under hypoxia compared to normoxia during dynamic step muscle actions performed in a randomized order.
Unlike fatigue, acute hypoxemia in an unfatigued state does not impact the localized neuromuscular responses, but minimally impacts the hemodynamic responses.
Shoulder strength is reduced in older adults but has only been assessed in planar motions that do not reflect the diverse requirements of daily tasks. We quantified the impact of age on strength spanning the three degrees of freedom relevant to shoulder function, referred to as the feasible torque space. We hypothesized that the feasible torque space would differ with age and expected this age-effect to reflect direction-specific deficits. We measured strength in 32 directions to characterize the feasible torque space of the shoulder in participants without shoulder pain or tendinous pathology (n = 39, 19–86 years). We modeled the feasible torque space for each participant as an ellipsoid, computed the ellipsoid size and direction-specific metrics (ellipsoid position, orientation, and shape), and then tested the effect of age on each metric. Age was negatively associated with ellipsoid size (a measure of overall strength magnitude; −0.0033 ± 0.0007 (Nm/kg)/year, p < 0.0001). Contrary to our expectation, the effect of age on the direction-specific metrics did not reach statistical significance. The effect of age did not differ significantly between male and female participants. Three-dimensional strength measurements allowed us to constrain the direction of participants’ maximum torque production and characterize the entire feasible torque space. Our findings support a generalized shoulder strengthening program to address age-related shoulder weakness in those without pain or pathology. Clinical exam findings of imbalanced weakness may suggest underlying pathology beyond an effect of age. Longitudinal studies are needed to determine the positive or negative impact of our results.
Whole-body vibration (WBV) training has been employed alongside conventional exercise like resistance training to enhance skeletal muscle strength and performance. This systematic review examines the evidence regarding the effect of WBV on muscle activity, strength, and performance in healthy individuals. The Academic Search Ultimate, CINAHL, Cochrane CENTRAL, PubMed, ProQuest One Academic and SCOPUS databases were searched from 1990 to April 2023 to retrieve relevant studies. Methodological quality was assessed using the Modified Downs and Black checklist, while the level of evidence was evaluated through the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) tool. Even though the quality of the included studies was moderate to high, the level of evidence was very low owing to serious concerns with three or more GRADE domains (risk of bias, inconsistency, indirectness, imprecision, and publication bias) for each outcome of interest across studies. The review suggests that in WBV training, using moderate to high vibration frequencies (25–40 Hz) and high magnitudes (3–6 mm) can enhance muscle activation and strength in pelvis and lower limb muscles. However, findings regarding WBV effect on muscle performance measures were inconsistent. Future research with robust methodology is necessary in this area to validate and support these findings.
We introduce the open-source software MUedit and we describe its use for identifying the discharge timing of motor units from all types of electromyographic (EMG) signals recorded with multi-channel systems. MUedit performs EMG decomposition using a blind-source separation approach. Following this, users can display the estimated motor unit pulse trains and inspect the accuracy of the automatic detection of discharge times. When necessary, users can correct the automatic detection of discharge times and recalculate the motor unit pulse train with an updated separation vector. Here, we provide an open-source software and a tutorial that guides the user through (i) the parameters and steps of the decomposition algorithm, and (ii) the manual editing of motor unit pulse trains. Further, we provide simulated and experimental EMG signals recorded with grids of surface electrodes and intramuscular electrode arrays to benchmark the performance of MUedit. Finally, we discuss advantages and limitations of the blind-source separation approach for the study of motor unit behaviour during tonic muscle contractions.
Spinal cord injury (SCI) resulting in complex neuromuscular pathology is not sufficiently well understood. To better quantify neuromuscular changes after SCI, this study uses a clustering index (CI) method for surface electromyography (sEMG) clustering representation to investigate the relation between sEMG and torque in SCI survivors. The sEMG signals were recorded from 13 subjects with SCI and 13 gender-age matched able-bodied subjects during isometric contraction of the biceps brachii muscle at different torque levels using a linear electrode array. Two torque representations, maximum voluntary contraction (MVC%) and absolute torque, were used. CI values were calculated for sEMG. Regression analyses were performed on CI values and torque levels of elbow flexion, revealing a strong linear relationship. The slopes of regressions between SCI survivors and control subjects were compared. The findings indicated that the range of distribution of CI values and slopes was greater in subjects with SCI than in control subjects (p < 0.05). The increase or decrease in slope was also observed at the individual level. This suggests that the CI and its sEMG clustering-torque relation may serve as valuable quantitative indicators for determining neuromuscular lesions after SCI, contributing to the development of effective rehabilitation strategies for improving motor performance.
This research aimed to determine whether triceps surae delayed onset muscle soreness (DOMS) affects stability while performing different postural control tasks requiring upright and landing stabilization. Twenty-four participants who self-reported as healthy were recruited. Pre and 48 h after a protocol to induce DOMS in the triceps surae, participants were evaluated for DOMS perception, pressure pain threshold, and postural control (assessed by the center of pressure, CoP) during different standing and landing stabilization tasks. We found higher DOMS perception and lower pressure pain threshold 48 h after the exercise. Mediolateral CoP displacement was more sensitive to DOMS across different postural tasks, but no effects were found for bilateral standing. The landing time to stabilization elicited high individual variability in the presence of DOMS. Effects of DOMS in the performance of less challenging tasks, such as bipedal standing, were not found. We conclude that DOMS in the triceps surae impairs mediolateral postural control during challenging tasks such as unilateral standing and body forward lean. It highlights the need for caution and individualized approaches when incorporating movements requiring frontal plane control in training and rehabilitation sessions under the presence of DOMS.