{"title":"Mechanism and Aerodynamic Countermeasures of Vortex-Induced Vibration of a Cable-Stayed Bridge with Narrow Π-Shaped Girder Sections","authors":"Zhiwen Liu, Fawei He, Aiguo Yan, Zhenbiao Liu, Tao Yin, Zhengqing Chen","doi":"10.1061/jbenf2.beeng-6285","DOIUrl":"https://doi.org/10.1061/jbenf2.beeng-6285","url":null,"abstract":"","PeriodicalId":56125,"journal":{"name":"Journal of Bridge Engineering","volume":"803 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136372446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jbenf2.beeng-6108
Hongfan Wang, Qian Chen, Anil Kumar Agrawal, Sherif El-Tawil, B. Bhattacharya, Waider Wong
{"title":"Performance of a Long-Span Suspension Bridge Subjected to Sudden Single Suspender Loss","authors":"Hongfan Wang, Qian Chen, Anil Kumar Agrawal, Sherif El-Tawil, B. Bhattacharya, Waider Wong","doi":"10.1061/jbenf2.beeng-6108","DOIUrl":"https://doi.org/10.1061/jbenf2.beeng-6108","url":null,"abstract":"","PeriodicalId":56125,"journal":{"name":"Journal of Bridge Engineering","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49002869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jbenf2.beeng-6495
Xiushi Cui, Dongsheng Li, Jiahe Liu, Jinping Ou
{"title":"An NCFA-Based Notch Frequency Feature Extraction Method for Guided Waves and Its Application in Steel Strand Tension Detection","authors":"Xiushi Cui, Dongsheng Li, Jiahe Liu, Jinping Ou","doi":"10.1061/jbenf2.beeng-6495","DOIUrl":"https://doi.org/10.1061/jbenf2.beeng-6495","url":null,"abstract":"","PeriodicalId":56125,"journal":{"name":"Journal of Bridge Engineering","volume":"789 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135011995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jbenf2.beeng-6300
Carlos A. Tamayo, Bahram M. Shahrooz, Kent A. Harries, Richard A. Miller, Reid W. Castrodale
There has been a growing interest in using large-diameter strands to alleviate congestion by using fewer strands, reduce the total number of girders by increasing girder spacing, increase the span length, and allow shallower girders. While the 2020 AASHTO LRFD Bridge Design Specifications included 17.8-mm (0.7-in.) strands by reference to AASHTO M203, these larger-diameter strands were not used in bridge construction primarily because AASHTO LRFD was silent about the design aspects of members reinforced with 17.8-mm (0.7-in.) strands. The presented multifaceted, multiyear research involved an extensive parametric design case study, nonlinear finite-element analyses, material characterization, component tests, and full-scale girder experiments. This paper focuses on the full-scale girder tests, which were used to examine development length, detailing requirements, and flexural and shear behavior and strength. Experimentally determined development lengths were found to be shorter than those prescribed by the AASHTO LRFD Specification. Flexural and shear strength could be determined using established procedures. The current minimum required amount of confinement reinforcement was found to be sufficient to confine 17.8-mm (0.7-in.) strands. The extension of bottom flange confinement reinforcement was found to be inadequate for cases with partially debonded 17.8-mm (0.7-in.) strands, but extension of bottom flange confinement reinforcement to 1.5d beyond the end of the girder was adequate for cases with no debonded strands. The minimum bottom flange confinement reinforcement required by the AASHTO LRFD Specification must be extended to at least 1.5d beyond the termination of the longest debonded length of 17.8-mm (0.7-in.) strands.
人们越来越感兴趣的是使用大直径钢绞线,通过使用更少的钢绞线来缓解拥堵,通过增加梁间距来减少梁的总数,增加跨度长度,并允许较浅的梁。虽然2020 AASHTO LRFD桥梁设计规范参考了AASHTO M203,包括17.8毫米(0.7英寸)的钢绞线,但这些更大直径的钢绞线没有用于桥梁建设,主要是因为AASHTO LRFD对用17.8毫米(0.7英寸)钢绞线加固的构件的设计方面保持沉默。所呈现的多方面,多年的研究包括广泛的参数化设计案例研究,非线性有限元分析,材料表征,组件测试和全尺寸梁实验。本文侧重于全尺寸梁试验,用于检查开发长度,详细要求,弯曲和剪切行为和强度。实验确定的开发长度比AASHTO LRFD规范规定的要短。弯曲和剪切强度可以用既定的程序来确定。目前所要求的最小约束钢筋量足以约束17.8毫米(0.7英寸)的钢绞线。对于有17.8毫米(0.7英寸)部分脱粘的钢绞线,底部法兰约束钢筋的延伸是不够的,但是对于没有脱粘的钢绞线,底部法兰约束钢筋延伸到超过梁端1.5d是足够的。AASHTO LRFD规范要求的最小底部法兰约束加强必须延长至至少1.5d,超过最长脱粘长度17.8 mm (0.7 in.)链的终止。
{"title":"Performance Evaluation of Prestressed Girders with 17.8-mm (0.7-in.) Strands","authors":"Carlos A. Tamayo, Bahram M. Shahrooz, Kent A. Harries, Richard A. Miller, Reid W. Castrodale","doi":"10.1061/jbenf2.beeng-6300","DOIUrl":"https://doi.org/10.1061/jbenf2.beeng-6300","url":null,"abstract":"There has been a growing interest in using large-diameter strands to alleviate congestion by using fewer strands, reduce the total number of girders by increasing girder spacing, increase the span length, and allow shallower girders. While the 2020 AASHTO LRFD Bridge Design Specifications included 17.8-mm (0.7-in.) strands by reference to AASHTO M203, these larger-diameter strands were not used in bridge construction primarily because AASHTO LRFD was silent about the design aspects of members reinforced with 17.8-mm (0.7-in.) strands. The presented multifaceted, multiyear research involved an extensive parametric design case study, nonlinear finite-element analyses, material characterization, component tests, and full-scale girder experiments. This paper focuses on the full-scale girder tests, which were used to examine development length, detailing requirements, and flexural and shear behavior and strength. Experimentally determined development lengths were found to be shorter than those prescribed by the AASHTO LRFD Specification. Flexural and shear strength could be determined using established procedures. The current minimum required amount of confinement reinforcement was found to be sufficient to confine 17.8-mm (0.7-in.) strands. The extension of bottom flange confinement reinforcement was found to be inadequate for cases with partially debonded 17.8-mm (0.7-in.) strands, but extension of bottom flange confinement reinforcement to 1.5d beyond the end of the girder was adequate for cases with no debonded strands. The minimum bottom flange confinement reinforcement required by the AASHTO LRFD Specification must be extended to at least 1.5d beyond the termination of the longest debonded length of 17.8-mm (0.7-in.) strands.","PeriodicalId":56125,"journal":{"name":"Journal of Bridge Engineering","volume":"788 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135011996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jbenf2.beeng-6103
Mirela D. Tumbeva, Sherryen C. Mutoka, Ashley P. Thrall, Theodore P. Zoli, Stephanie Wagner, Prince Baah
{"title":"Built-Up Press Brake-Formed Tub Girders","authors":"Mirela D. Tumbeva, Sherryen C. Mutoka, Ashley P. Thrall, Theodore P. Zoli, Stephanie Wagner, Prince Baah","doi":"10.1061/jbenf2.beeng-6103","DOIUrl":"https://doi.org/10.1061/jbenf2.beeng-6103","url":null,"abstract":"","PeriodicalId":56125,"journal":{"name":"Journal of Bridge Engineering","volume":"805 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136372444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jbenf2.beeng-6063
Marco di Prisco, Matteo Colombo, Paolo Martinelli
{"title":"Structural Aspects of the Collapse of a RC Half-Joint Bridge: Case of the Annone Overpass","authors":"Marco di Prisco, Matteo Colombo, Paolo Martinelli","doi":"10.1061/jbenf2.beeng-6063","DOIUrl":"https://doi.org/10.1061/jbenf2.beeng-6063","url":null,"abstract":"","PeriodicalId":56125,"journal":{"name":"Journal of Bridge Engineering","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136102555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jbenf2.beeng-6350
Wenmin Zhang, Xing-hang Shen, Jia-qi Chang
{"title":"Main Cable Shape-Finding and Live Load Response of the Suspension Bridge with Central Buckles: An Analytical Algorithm","authors":"Wenmin Zhang, Xing-hang Shen, Jia-qi Chang","doi":"10.1061/jbenf2.beeng-6350","DOIUrl":"https://doi.org/10.1061/jbenf2.beeng-6350","url":null,"abstract":"","PeriodicalId":56125,"journal":{"name":"Journal of Bridge Engineering","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45655087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jbenf2.beeng-6198
Weilin Li, L. Patruno, H. Niu, Y. An, Xugang Hua
{"title":"Experimental and Numerical Study on the Aerodynamic Admittance of Twin-Box Bridge Decks in Sinusoidal Gusts and Continuous Turbulence","authors":"Weilin Li, L. Patruno, H. Niu, Y. An, Xugang Hua","doi":"10.1061/jbenf2.beeng-6198","DOIUrl":"https://doi.org/10.1061/jbenf2.beeng-6198","url":null,"abstract":"","PeriodicalId":56125,"journal":{"name":"Journal of Bridge Engineering","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43058839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1061/jbenf2.beeng-6296
Xiaolong Ma, Wen Xiong, Rongzhao Zhang, C. S. Cai
Recently, bridge collapse accidents have become increasingly frequent during the flooding season, and foundation scour is one of the main reasons. Tracking scour evolution accurately is a key premise for preventing and controlling hydrological damage. Scour identification according to the changing dynamic characteristics during the scouring process tends to be one of the top technical methodologies in scour monitoring. Although efforts have been made to investigate the dynamic identification of foundation scour, the investigations have mainly focused on the qualification of foundation scour utilizing numerical simulations. Quantitative analysis and validation through laboratory experiments with large-scale water flumes are still lacking. To bridge the gap, this study performed physical modeling experiments with a large-scale water flume for foundation scour to investigate the relationship between structural frequency and scour evolution. The research sought to validate the feasibility of using structural frequency in dynamic identification. First, scour experiments with a large-scale water flume for three piers were performed to collect the time history of acceleration signals. Then, the acceleration signals were processed to recognize the temporal evolution of structural frequency during the scouring process. Finally, the relationship between the temporal scour depth and frequency was assumed to be linear and nonlinear to fit the time history of structural frequency. The results indicated that the frequency and the square of frequency can be taken as the dynamic fingerprint in scour identification according to the frequency range. Based on the validation of large-scale flume experiments, the proposed nonlinear temporal models of frequency in the study demonstrated a good indicator for predicting scour depth. The methodology can greatly enhance the practicality and convenience of bridge scour dynamic identification.
{"title":"Validating Dynamic Identification of Foundation Scour Based on Large-Scale Water Flumes","authors":"Xiaolong Ma, Wen Xiong, Rongzhao Zhang, C. S. Cai","doi":"10.1061/jbenf2.beeng-6296","DOIUrl":"https://doi.org/10.1061/jbenf2.beeng-6296","url":null,"abstract":"Recently, bridge collapse accidents have become increasingly frequent during the flooding season, and foundation scour is one of the main reasons. Tracking scour evolution accurately is a key premise for preventing and controlling hydrological damage. Scour identification according to the changing dynamic characteristics during the scouring process tends to be one of the top technical methodologies in scour monitoring. Although efforts have been made to investigate the dynamic identification of foundation scour, the investigations have mainly focused on the qualification of foundation scour utilizing numerical simulations. Quantitative analysis and validation through laboratory experiments with large-scale water flumes are still lacking. To bridge the gap, this study performed physical modeling experiments with a large-scale water flume for foundation scour to investigate the relationship between structural frequency and scour evolution. The research sought to validate the feasibility of using structural frequency in dynamic identification. First, scour experiments with a large-scale water flume for three piers were performed to collect the time history of acceleration signals. Then, the acceleration signals were processed to recognize the temporal evolution of structural frequency during the scouring process. Finally, the relationship between the temporal scour depth and frequency was assumed to be linear and nonlinear to fit the time history of structural frequency. The results indicated that the frequency and the square of frequency can be taken as the dynamic fingerprint in scour identification according to the frequency range. Based on the validation of large-scale flume experiments, the proposed nonlinear temporal models of frequency in the study demonstrated a good indicator for predicting scour depth. The methodology can greatly enhance the practicality and convenience of bridge scour dynamic identification.","PeriodicalId":56125,"journal":{"name":"Journal of Bridge Engineering","volume":"235 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135011678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}