Gut microbiota (GM), the "second genome," exerts influence on human health by impacting brain function through the gut-brain axis. This interaction involves various mechanisms, including immune regulation, metabolites, and neuronal pathways. The application of the next-generation sequencing technology provides a revolutionary tool for the study of GM, which contributes to a deeper comprehension of the GM-host relationship. Children with cerebral palsy (CP), a common neurological disorder in children, are more likely to develop epilepsy, which can exacerbate CP symptoms, particularly those related to cognitive impairment and gastrointestinal tract, such as constipation. The current study identified specific changes in the GM of children with CP accompanied by epilepsy. Furthermore, both diet and oral microbiota have the potential to influence the composition of the GM. Interventions with probiotics and dietary fiber based on GM can improve constipation and cognition, and this approach may be a potential therapeutic strategy.
Background: Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) develops along with status epilepticus and widespread subcortical white matter edema. We aimed to evaluate the epileptic foci and networks in two patients with epilepsy after AESD using simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI). Methods: Statistically significant blood oxygen level-dependent (BOLD) responses related to interictal epileptiform discharges (IEDs) were analyzed using an event-related design of hemodynamic response functions with multiple peaks. Results: Patient 1 developed focal seizures at age 10 years, one year after AESD onset. Positive BOLD changes were observed in the bilateral frontotemporal lobes, left parietal lobe, and left insula. BOLD changes were also observed in the subcortical structures. Patient 2 developed epileptic spasms at age two years, one month after AESD onset. Following total corpus callosotomy (CC) at age three years, the epileptic spasms resolved, and neurodevelopmental improvement was observed. Before CC, positive BOLD changes were observed bilaterally in the frontotemporal lobes. BOLD changes were also observed in the subcortical structures. After CC, the positive BOLD changes were localized in the temporal lobe ipsilateral to the IEDs, and the negative BOLD changes were mainly in the cortex and subcortical structures of the hemisphere ipsilateral to IEDs. Conclusion: EEG-fMRI revealed multiple epileptic foci and extensive epileptic networks, including subcortical structures in two cases with post-AESD epilepsy. CC may be effective in disconnecting the bilaterally synchronous epileptic networks of epileptic spasms after AESD, and pre-and post-operative changes in EEG-fMRI may reflect improvements in epileptic symptoms.
Malonyl-CoA decarboxylase (MLYCD) deficiency, also known as malonic aciduria (MAD), is a rare autosomal recessive inherited metabolic defect. In this study, we aimed to investigate the clinical and molecular features of five patients with MAD in order to increase clinicians’ awareness of the disease.
Sanger sequencing was used to detect and genetically analyze the MLYCD variations in the preexisting patients and their parents.
Five patients with MAD (5 months to 9.6 years old; two males and three females) rarely exhibited metabolic decompensation episodes or seizures. All patients exhibited varying degrees of developmental delay and hypotonia. Our study expands the spectrum of variants of the MLYCD gene. MLYCD gene variations were detected in all five patients, and five new variants were identified: c.60delG (p.Arg21Glyfs*52), c.928C > T (p.Arg310*), c.1293G > T (p.Trp431Cys), c.721T > C (p.Ser241Pro), and Exons 4–5 deletion. Additionally, there is no correlation between various genotypes and phenotypes.
A high-medium-chain triglyceride and low-long-chain triglyceride diet supplemented with L-carnitine was effective in most patients and may improve cardiomyopathy and muscle weakness. Newborn screening may aid in the early diagnosis, treatment, and prognosis of this rare disorder.
This study aims to investigate the neuroprotective effects of cannabidiol (CBD) on neurodevelopmental impairments in rats subjected to neonatal hypoxia, specifically examining its potential to mitigate motor and sensory deficits without the confounding effects of ischemia.
Neonatal Sprague-Dawley rats were allocated to one of four groups: Control, Control-CBD, Hypoxia, and Hypoxia-CBD. Hypoxia was induced on postnatal days 0 and 1. CBD (50 mg/kg) was administered orally for 14 days starting at postnatal day 0. Neurodevelopmental outcomes were assessed using the Neurodevelopmental Reflex Testing in Neonatal Rat Pups scale and the Revised Neurobehavioral Severity Scale for rodents. Statistical analyses were conducted using two-way and one-way ANOVA, with Tukey’s post-hoc tests for group comparisons.
Pup weights were recorded on specified postnatal days, with no significant differences observed across the groups (p = 0.1834). Significant neurological impairments due to hypoxia were noted in the Control group compared to the Hypoxia group, particularly in hindlimb grasping on postnatal day 3 (p = 0.0025), posture on postnatal day 12 (p = 0.0073), and in general balance and sound reflex on postnatal day 20 (p = 0.0016 and p = 0.0068, respectively). Additionally, a statistically significant improvement in posture was observed in the Hypoxia-CBD group compared to the Hypoxia group alone (p = 0.0024).
Our findings indicate that CBD possesses neuroprotective properties that significantly counteract the neurodevelopmental impairments induced by neonatal hypoxia in rats. This study not only supports the therapeutic potential of CBD in managing conditions characterized by neurodevelopmental challenges due to hypoxia but also underscores the necessity for further investigation into the specific molecular mechanisms driving CBD’s neuroprotective effects. Further research is essential to explore CBD’s clinical applications and its potential role in treating human neurodevelopmental disorders.