Needleless electrospinning, an electrohydrodynamic process, is an emerging approach to producing nanofiber mats from an open liquid surface. Importantly, the approach offers 3–250 times higher production rates than needle-based electrospinning systems and has the potential to develop biocompatible and biodegradable nanofibers that have numerous applications in the food industry. The electrospinning potential of various biomaterials (from plant and animal sources) in needleless configurations is highlighted in this review. Also, the factors influencing the production rate and quality of needleless electrospun nanofibers are emphasized. Further, the reported uses of needleless electrospun nanofiber mats in food applications like packaging, filtration, bioactive encapsulation, enzyme immobilization, and food quality sensing are presented. Finally, challenges and areas to be explored further are summarized, considering prospects. Electrospun nanofibers are valued for their characteristics and unique capabilities. However, often, scale-up production is challenging, limiting its usage in multiple commercial applications. Overcoming this concern, needleless electrospinning is a viable approach for scaling up the production of nanofibers. Offering properties on par with conventional electrospinning, the needleless approach is finding expanding avenues in different sectors.