Pub Date : 2024-09-05DOI: 10.1021/acs.organomet.4c0026410.1021/acs.organomet.4c00264
Magdalena Jawiczuk*, and , Bartosz Trzaskowski*,
In this work, we computationally studied the influence of the change in the substrate structure on the course of the heterofunctional cross-metathesis reaction between azo compounds and olefins catalyzed by the first-generation Grubbs catalyst. The highest reaction rates were predicted for symmetric, bulky diazenes and sterically uncrowded olefins. Other studied azo compounds have much higher energy barriers in the crucial steps in the catalyst initiation phase, while larger olefins are characterized by high energy barriers in the second part of the catalytic cycle. Our analysis suggests that Grubbs-like catalysts can be efficiently used in heterofunctional azo metathesis only for a limited number of olefin-azo compound combinations, such as 1,2-diphenyldiazene and ethylene to produce N-phenylmethanimine.
{"title":"Impact of the Olefin and Diazene Structure on the Heterofunctional Azo Metathesis Catalyzed by the First-Generation Grubbs Catalyst","authors":"Magdalena Jawiczuk*, and , Bartosz Trzaskowski*, ","doi":"10.1021/acs.organomet.4c0026410.1021/acs.organomet.4c00264","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00264https://doi.org/10.1021/acs.organomet.4c00264","url":null,"abstract":"<p >In this work, we computationally studied the influence of the change in the substrate structure on the course of the heterofunctional cross-metathesis reaction between azo compounds and olefins catalyzed by the first-generation Grubbs catalyst. The highest reaction rates were predicted for symmetric, bulky diazenes and sterically uncrowded olefins. Other studied azo compounds have much higher energy barriers in the crucial steps in the catalyst initiation phase, while larger olefins are characterized by high energy barriers in the second part of the catalytic cycle. Our analysis suggests that Grubbs-like catalysts can be efficiently used in heterofunctional azo metathesis only for a limited number of olefin-azo compound combinations, such as 1,2-diphenyldiazene and ethylene to produce N-phenylmethanimine.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"43 18","pages":"2044–2051 2044–2051"},"PeriodicalIF":2.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.organomet.4c00264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We computationally explored the influence of two Lewis bases (N-heterocyclic carbene (NHC) and trimethylphosphine (PMe3) and four metal cations (Li+, Na+, K+, and Mg2+) used in experiments on the isomerizations of disilyne Si2Ph2 (Ph = C6H5) and Si2Tip2 (Tip = 2,4,6-iPr3C6H2) in this work. Computations demonstrated that kinetically, both NHC and PMe3 increase the energy barriers and thus stabilize disilavinylidene. Thermodynamically, however, NHC can reduce the energy gap between disilyne and disilavinylidene, while PMe3 stabilizes disilavinylidene or slightly influences the relative stability. Further analyses showed that it is polarization that governs the energy barriers and gaps. When metal cations are further introduced, they tend to adopt the end-on bonding mode and cooperate with Lewis bases via a push–pull effect. The electrostatic interaction between Mg2+ and NHC-stabilized disilyne can even improve the relative stability of disilyne. Therefore, the synergy between NHC and Mg2+ can help the preparation of disilyne if the energy barrier from Lewis base-stabilized disilavinylidene to disilyne is overcome, but to obtain disilavinylidene, it might be better to use phosphine alone without metal cations.
{"title":"Lewis Base and Metal Cation-Assisted Isomerization of Disilyne","authors":"Huaiyu Zhang, Xinyu Li, Qingrui Lu, Jinshuai Song, Yandong Duan, Yanli Zeng, Yirong Mo","doi":"10.1021/acs.organomet.4c00323","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00323","url":null,"abstract":"We computationally explored the influence of two Lewis bases (<i>N</i>-heterocyclic carbene (NHC) and trimethylphosphine (PMe<sub>3</sub>) and four metal cations (Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, and Mg<sup>2+</sup>) used in experiments on the isomerizations of disilyne Si<sub>2</sub>Ph<sub>2</sub> (Ph = C<sub>6</sub>H<sub>5</sub>) and Si<sub>2</sub>Tip<sub>2</sub> (Tip = 2,4,6-<i>i</i>Pr<sub>3</sub>C<sub>6</sub>H<sub>2</sub>) in this work. Computations demonstrated that kinetically, both NHC and PMe<sub>3</sub> increase the energy barriers and thus stabilize disilavinylidene. Thermodynamically, however, NHC can reduce the energy gap between disilyne and disilavinylidene, while PMe<sub>3</sub> stabilizes disilavinylidene or slightly influences the relative stability. Further analyses showed that it is polarization that governs the energy barriers and gaps. When metal cations are further introduced, they tend to adopt the end-on bonding mode and cooperate with Lewis bases via a push–pull effect. The electrostatic interaction between Mg<sup>2+</sup> and NHC-stabilized disilyne can even improve the relative stability of disilyne. Therefore, the synergy between NHC and Mg<sup>2+</sup> can help the preparation of disilyne if the energy barrier from Lewis base-stabilized disilavinylidene to disilyne is overcome, but to obtain disilavinylidene, it might be better to use phosphine alone without metal cations.","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"9 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We computationally explored the influence of two Lewis bases (N-heterocyclic carbene (NHC) and trimethylphosphine (PMe3) and four metal cations (Li+, Na+, K+, and Mg2+) used in experiments on the isomerizations of disilyne Si2Ph2 (Ph = C6H5) and Si2Tip2 (Tip = 2,4,6-iPr3C6H2) in this work. Computations demonstrated that kinetically, both NHC and PMe3 increase the energy barriers and thus stabilize disilavinylidene. Thermodynamically, however, NHC can reduce the energy gap between disilyne and disilavinylidene, while PMe3 stabilizes disilavinylidene or slightly influences the relative stability. Further analyses showed that it is polarization that governs the energy barriers and gaps. When metal cations are further introduced, they tend to adopt the end-on bonding mode and cooperate with Lewis bases via a push–pull effect. The electrostatic interaction between Mg2+ and NHC-stabilized disilyne can even improve the relative stability of disilyne. Therefore, the synergy between NHC and Mg2+ can help the preparation of disilyne if the energy barrier from Lewis base-stabilized disilavinylidene to disilyne is overcome, but to obtain disilavinylidene, it might be better to use phosphine alone without metal cations.
{"title":"Lewis Base and Metal Cation-Assisted Isomerization of Disilyne","authors":"Huaiyu Zhang*, Xinyu Li, Qingrui Lu, Jinshuai Song, Yandong Duan, Yanli Zeng* and Yirong Mo*, ","doi":"10.1021/acs.organomet.4c0032310.1021/acs.organomet.4c00323","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00323https://doi.org/10.1021/acs.organomet.4c00323","url":null,"abstract":"<p >We computationally explored the influence of two Lewis bases (<i>N</i>-heterocyclic carbene (NHC) and trimethylphosphine (PMe<sub>3</sub>) and four metal cations (Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, and Mg<sup>2+</sup>) used in experiments on the isomerizations of disilyne Si<sub>2</sub>Ph<sub>2</sub> (Ph = C<sub>6</sub>H<sub>5</sub>) and Si<sub>2</sub>Tip<sub>2</sub> (Tip = 2,4,6-<i>i</i>Pr<sub>3</sub>C<sub>6</sub>H<sub>2</sub>) in this work. Computations demonstrated that kinetically, both NHC and PMe<sub>3</sub> increase the energy barriers and thus stabilize disilavinylidene. Thermodynamically, however, NHC can reduce the energy gap between disilyne and disilavinylidene, while PMe<sub>3</sub> stabilizes disilavinylidene or slightly influences the relative stability. Further analyses showed that it is polarization that governs the energy barriers and gaps. When metal cations are further introduced, they tend to adopt the end-on bonding mode and cooperate with Lewis bases via a push–pull effect. The electrostatic interaction between Mg<sup>2+</sup> and NHC-stabilized disilyne can even improve the relative stability of disilyne. Therefore, the synergy between NHC and Mg<sup>2+</sup> can help the preparation of disilyne if the energy barrier from Lewis base-stabilized disilavinylidene to disilyne is overcome, but to obtain disilavinylidene, it might be better to use phosphine alone without metal cations.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"43 18","pages":"2104–2112 2104–2112"},"PeriodicalIF":2.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.organomet.4c00323","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1021/acs.organomet.4c00264
Magdalena Jawiczuk, Bartosz Trzaskowski
In this work, we computationally studied the influence of the change in the substrate structure on the course of the heterofunctional cross-metathesis reaction between azo compounds and olefins catalyzed by the first-generation Grubbs catalyst. The highest reaction rates were predicted for symmetric, bulky diazenes and sterically uncrowded olefins. Other studied azo compounds have much higher energy barriers in the crucial steps in the catalyst initiation phase, while larger olefins are characterized by high energy barriers in the second part of the catalytic cycle. Our analysis suggests that Grubbs-like catalysts can be efficiently used in heterofunctional azo metathesis only for a limited number of olefin-azo compound combinations, such as 1,2-diphenyldiazene and ethylene to produce N-phenylmethanimine.
{"title":"Impact of the Olefin and Diazene Structure on the Heterofunctional Azo Metathesis Catalyzed by the First-Generation Grubbs Catalyst","authors":"Magdalena Jawiczuk, Bartosz Trzaskowski","doi":"10.1021/acs.organomet.4c00264","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00264","url":null,"abstract":"In this work, we computationally studied the influence of the change in the substrate structure on the course of the heterofunctional cross-metathesis reaction between azo compounds and olefins catalyzed by the first-generation Grubbs catalyst. The highest reaction rates were predicted for symmetric, bulky diazenes and sterically uncrowded olefins. Other studied azo compounds have much higher energy barriers in the crucial steps in the catalyst initiation phase, while larger olefins are characterized by high energy barriers in the second part of the catalytic cycle. Our analysis suggests that Grubbs-like catalysts can be efficiently used in heterofunctional azo metathesis only for a limited number of olefin-azo compound combinations, such as 1,2-diphenyldiazene and ethylene to produce N-phenylmethanimine.","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"29 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1021/acs.organomet.4c00282
Weerachai Silprakob, Jannatul Ferdous, Sanjit Das, Jonah W. Jurss, Elizabeth T. Papish
Ruthenium CNC pincer complexes, comprised of N-heterocyclic carbenes (NHCs) and a pyridyl ring, are highly active catalysts for carbon dioxide reduction. We hypothesized that the addition of long chain aliphatic groups with an olefin terminus as wingtips on these CNC pincers could be used to form macrocyclic catalysts by ring closing metathesis (RCM). We have synthesized three new ruthenium pincer catalysts, [(CNC)Ru(CH3CN)2Cl]OTf, containing a long chain olefin wingtip (where the substituent para to N on the pyridine ring is H, Me, or OMe) and performed RCM on one compound with R = Me, followed by hydrogenation, to form a novel macrocyclic ruthenium catalyst. These four catalysts were tested for the photocatalytic reduction of carbon dioxide (CO2) in the presence (sensitized) and absence (self-sensitized) of an external photosensitizer. With a photosensitizer, these catalysts produced mostly CO (775 to 1210 TON) with smaller amounts of H2 also formed. The methyl substituted macrocyclic catalyst showed a TON of 1185 for CO over 72 h compared to a TON of 775 for CO for the analogous nonmacrocyclic catalyst. The remote substituents at the para-position of the central pyridine ring significantly influence catalyst activity with R = OMe > H ≈ Me.
由 N-杂环碳化物 (NHC) 和吡啶环组成的 CNC 钌钳形复合物是高活性的二氧化碳还原催化剂。我们假设,在这些 CNC 钳子上添加具有烯烃末端的长链脂肪族基团作为翼尖,可以通过闭环偏聚反应(RCM)形成大环催化剂。我们合成了三种含有长链烯烃翼尖(吡啶环上 N 的对位取代基为 H、Me 或 OMe)的新型钌钳形催化剂 [(CNC)Ru(CH3CN)2Cl]OTf,并对一种 R = Me 的化合物进行了 RCM 反应,随后进行了氢化反应,形成了一种新型大环钌催化剂。在有外部光敏剂(敏化)和无外部光敏剂(自敏化)的情况下,对这四种催化剂进行了光催化还原二氧化碳(CO2)的测试。在有光敏剂的情况下,这些催化剂主要产生 CO(775 至 1210 吨),也会产生少量 H2。甲基取代的大环催化剂在 72 小时内产生的一氧化碳吨数为 1185 吨,而类似的非大环催化剂产生的一氧化碳吨数为 775 吨。在 R = OMe > H ≈ Me 的情况下,吡啶中心环的对位上的远位取代基对催化剂活性有显著影响。
{"title":"Synthesis, Characterization, and Catalytic CO2 Reduction Reactivity of Ruthenium CNC Pincer Complexes Containing Macrocyclic or Long Chain Wingtips","authors":"Weerachai Silprakob, Jannatul Ferdous, Sanjit Das, Jonah W. Jurss, Elizabeth T. Papish","doi":"10.1021/acs.organomet.4c00282","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00282","url":null,"abstract":"Ruthenium CNC pincer complexes, comprised of <i>N</i>-heterocyclic carbenes (NHCs) and a pyridyl ring, are highly active catalysts for carbon dioxide reduction. We hypothesized that the addition of long chain aliphatic groups with an olefin terminus as wingtips on these CNC pincers could be used to form macrocyclic catalysts by ring closing metathesis (RCM). We have synthesized three new ruthenium pincer catalysts, [(CNC)Ru(CH<sub>3</sub>CN)<sub>2</sub>Cl]OTf, containing a long chain olefin wingtip (where the substituent <i>para</i> to N on the pyridine ring is H, Me, or OMe) and performed RCM on one compound with R = Me, followed by hydrogenation, to form a novel macrocyclic ruthenium catalyst. These four catalysts were tested for the photocatalytic reduction of carbon dioxide (CO<sub>2</sub>) in the presence (sensitized) and absence (self-sensitized) of an external photosensitizer. With a photosensitizer, these catalysts produced mostly CO (775 to 1210 TON) with smaller amounts of H<sub>2</sub> also formed. The methyl substituted macrocyclic catalyst showed a TON of 1185 for CO over 72 h compared to a TON of 775 for CO for the analogous nonmacrocyclic catalyst. The remote substituents at the <i>para</i>-position of the central pyridine ring significantly influence catalyst activity with R = OMe > H ≈ Me.","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"106 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1021/acs.organomet.4c0028210.1021/acs.organomet.4c00282
Weerachai Silprakob, Jannatul Ferdous, Sanjit Das, Jonah W. Jurss* and Elizabeth T. Papish*,
Ruthenium CNC pincer complexes, comprised of N-heterocyclic carbenes (NHCs) and a pyridyl ring, are highly active catalysts for carbon dioxide reduction. We hypothesized that the addition of long chain aliphatic groups with an olefin terminus as wingtips on these CNC pincers could be used to form macrocyclic catalysts by ring closing metathesis (RCM). We have synthesized three new ruthenium pincer catalysts, [(CNC)Ru(CH3CN)2Cl]OTf, containing a long chain olefin wingtip (where the substituent para to N on the pyridine ring is H, Me, or OMe) and performed RCM on one compound with R = Me, followed by hydrogenation, to form a novel macrocyclic ruthenium catalyst. These four catalysts were tested for the photocatalytic reduction of carbon dioxide (CO2) in the presence (sensitized) and absence (self-sensitized) of an external photosensitizer. With a photosensitizer, these catalysts produced mostly CO (775 to 1210 TON) with smaller amounts of H2 also formed. The methyl substituted macrocyclic catalyst showed a TON of 1185 for CO over 72 h compared to a TON of 775 for CO for the analogous nonmacrocyclic catalyst. The remote substituents at the para-position of the central pyridine ring significantly influence catalyst activity with R = OMe > H ≈ Me.
由 N-杂环碳化物 (NHC) 和吡啶环组成的 CNC 钌钳形复合物是高活性的二氧化碳还原催化剂。我们假设,在这些 CNC 钳子上添加具有烯烃末端的长链脂肪族基团作为翼尖,可以通过闭环偏聚反应(RCM)形成大环催化剂。我们合成了三种含有长链烯烃翼尖(吡啶环上 N 的对位取代基为 H、Me 或 OMe)的新型钌钳形催化剂 [(CNC)Ru(CH3CN)2Cl]OTf,并对一种 R = Me 的化合物进行了 RCM 反应,随后进行了氢化反应,形成了一种新型大环钌催化剂。在有外部光敏剂(敏化)和无外部光敏剂(自敏化)的情况下,对这四种催化剂进行了光催化还原二氧化碳(CO2)的测试。在有光敏剂的情况下,这些催化剂主要产生 CO(775 至 1210 吨),也会产生少量 H2。甲基取代的大环催化剂在 72 小时内产生的一氧化碳吨数为 1185 吨,而类似的非大环催化剂产生的一氧化碳吨数为 775 吨。在 R = OMe > H ≈ Me 的情况下,吡啶中心环的对位上的远位取代基对催化剂活性有显著影响。
{"title":"Synthesis, Characterization, and Catalytic CO2 Reduction Reactivity of Ruthenium CNC Pincer Complexes Containing Macrocyclic or Long Chain Wingtips","authors":"Weerachai Silprakob, Jannatul Ferdous, Sanjit Das, Jonah W. Jurss* and Elizabeth T. Papish*, ","doi":"10.1021/acs.organomet.4c0028210.1021/acs.organomet.4c00282","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00282https://doi.org/10.1021/acs.organomet.4c00282","url":null,"abstract":"<p >Ruthenium CNC pincer complexes, comprised of <i>N</i>-heterocyclic carbenes (NHCs) and a pyridyl ring, are highly active catalysts for carbon dioxide reduction. We hypothesized that the addition of long chain aliphatic groups with an olefin terminus as wingtips on these CNC pincers could be used to form macrocyclic catalysts by ring closing metathesis (RCM). We have synthesized three new ruthenium pincer catalysts, [(CNC)Ru(CH<sub>3</sub>CN)<sub>2</sub>Cl]OTf, containing a long chain olefin wingtip (where the substituent <i>para</i> to N on the pyridine ring is H, Me, or OMe) and performed RCM on one compound with R = Me, followed by hydrogenation, to form a novel macrocyclic ruthenium catalyst. These four catalysts were tested for the photocatalytic reduction of carbon dioxide (CO<sub>2</sub>) in the presence (sensitized) and absence (self-sensitized) of an external photosensitizer. With a photosensitizer, these catalysts produced mostly CO (775 to 1210 TON) with smaller amounts of H<sub>2</sub> also formed. The methyl substituted macrocyclic catalyst showed a TON of 1185 for CO over 72 h compared to a TON of 775 for CO for the analogous nonmacrocyclic catalyst. The remote substituents at the <i>para</i>-position of the central pyridine ring significantly influence catalyst activity with R = OMe > H ≈ Me.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"43 18","pages":"2077–2085 2077–2085"},"PeriodicalIF":2.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1021/acs.organomet.4c0029310.1021/acs.organomet.4c00293
Renshi Luo, Sen Wang, Yuqiu Liang, Jinghui Tong, Jianhua Liao and Lu Ouyang*,
Selective functionalization has numerous potential applications in the modification of bioactive compounds and pharmaceuticals. Herein, we advance a new approach for the selective reductive N-formylation of N-heteroarenes and transfer hydrogenation using IrIII complexes as catalysts. The combination of solvent, equivalent of formic acid (FA), reaction temperature, and iridium catalyst exerts high product selectivity, delivering divergent selective formations of reductive N-formylation and transfer hydrogenation products in excellent yields. In this process, FA can be employed as not only the hydrogen source but also the reductive N-formylation reagent under different reaction conditions.
{"title":"Ir-Catalyzed Selective Reductive N-Formylation and Transfer Hydrogenation of N-Heteroarenes","authors":"Renshi Luo, Sen Wang, Yuqiu Liang, Jinghui Tong, Jianhua Liao and Lu Ouyang*, ","doi":"10.1021/acs.organomet.4c0029310.1021/acs.organomet.4c00293","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00293https://doi.org/10.1021/acs.organomet.4c00293","url":null,"abstract":"<p >Selective functionalization has numerous potential applications in the modification of bioactive compounds and pharmaceuticals. Herein, we advance a new approach for the selective reductive N-formylation of N-heteroarenes and transfer hydrogenation using Ir<sup>III</sup> complexes as catalysts. The combination of solvent, equivalent of formic acid (FA), reaction temperature, and iridium catalyst exerts high product selectivity, delivering divergent selective formations of reductive N-formylation and transfer hydrogenation products in excellent yields. In this process, FA can be employed as not only the hydrogen source but also the reductive N-formylation reagent under different reaction conditions.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"43 18","pages":"2097–2103 2097–2103"},"PeriodicalIF":2.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1021/acs.organomet.4c0033110.1021/acs.organomet.4c00331
Anibal R. Davalos-Morinigo, Srini Vemulapalli, Travis Dudding* and Steven T. Diver*,
The design of a rigidified macrocyclic N-heterocyclic carbene (NHC) ligand led to the formation and structural characterization of in- and out-Ru carbene complexes. In this study, the introduction of a conformational lock was used to rigidify heteroaryl–aryl bonds and thereby enforce a more perpendicular dihedral angle. A forcing metalation step was needed to form the isomeric Ru carbene complexes (Grubbs complexes). The major isomer had the Ru carbene fragment located outside the macrocyclic ring, whereas the minor isomer had the Ru carbene inside the macrocyclic ring. The two new Ru carbene complexes are the first examples of in- and out-isomers of a Grubbs-type complex. The solid-state structures of each isomeric ruthenium carbene complex were determined by X-ray diffraction (XRD) studies. The two Ru complexes showed significantly different catalytic reactivities in the ring-closing metathesis (RCM) of the benchmark substrate, diethyl diallylmalonate. We performed computational studies to determine rotational barriers; scalable energetic barriers were found in the unmetalated NHC ligand, favoring the in-isomer by 2.4 kcal/mol. These calculations, coupled with the attempted interconversion of isomers, support a mechanism featuring rotational isomerization of the NHC nucleophile in a pre-equilibrium step before metalation.
{"title":"A Rigidified Macrocyclic Grubbs Complex: A Rare Example of In- and Out-Isomers that Show a Dramatic Difference in Catalytic Reactivity","authors":"Anibal R. Davalos-Morinigo, Srini Vemulapalli, Travis Dudding* and Steven T. Diver*, ","doi":"10.1021/acs.organomet.4c0033110.1021/acs.organomet.4c00331","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00331https://doi.org/10.1021/acs.organomet.4c00331","url":null,"abstract":"<p >The design of a rigidified macrocyclic N-heterocyclic carbene (NHC) ligand led to the formation and structural characterization of <i>in</i>- and <i>out</i>-Ru carbene complexes. In this study, the introduction of a conformational lock was used to rigidify heteroaryl–aryl bonds and thereby enforce a more perpendicular dihedral angle. A forcing metalation step was needed to form the isomeric Ru carbene complexes (Grubbs complexes). The major isomer had the Ru carbene fragment located outside the macrocyclic ring, whereas the minor isomer had the Ru carbene inside the macrocyclic ring. The two new Ru carbene complexes are the first examples of <i>in</i>- and <i>out</i>-isomers of a Grubbs-type complex. The solid-state structures of each isomeric ruthenium carbene complex were determined by X-ray diffraction (XRD) studies. The two Ru complexes showed significantly different catalytic reactivities in the ring-closing metathesis (RCM) of the benchmark substrate, diethyl diallylmalonate. We performed computational studies to determine rotational barriers; scalable energetic barriers were found in the unmetalated NHC ligand, favoring the <i>in</i>-isomer by 2.4 kcal/mol. These calculations, coupled with the attempted interconversion of isomers, support a mechanism featuring rotational isomerization of the NHC nucleophile in a pre-equilibrium step before metalation.</p>","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"43 18","pages":"2132–2146 2132–2146"},"PeriodicalIF":2.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1021/acs.organomet.4c00293
Renshi Luo, Sen Wang, Yuqiu Liang, Jinghui Tong, Jianhua Liao, Lu Ouyang
Selective functionalization has numerous potential applications in the modification of bioactive compounds and pharmaceuticals. Herein, we advance a new approach for the selective reductive N-formylation of N-heteroarenes and transfer hydrogenation using IrIII complexes as catalysts. The combination of solvent, equivalent of formic acid (FA), reaction temperature, and iridium catalyst exerts high product selectivity, delivering divergent selective formations of reductive N-formylation and transfer hydrogenation products in excellent yields. In this process, FA can be employed as not only the hydrogen source but also the reductive N-formylation reagent under different reaction conditions.
{"title":"Ir-Catalyzed Selective Reductive N-Formylation and Transfer Hydrogenation of N-Heteroarenes","authors":"Renshi Luo, Sen Wang, Yuqiu Liang, Jinghui Tong, Jianhua Liao, Lu Ouyang","doi":"10.1021/acs.organomet.4c00293","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00293","url":null,"abstract":"Selective functionalization has numerous potential applications in the modification of bioactive compounds and pharmaceuticals. Herein, we advance a new approach for the selective reductive N-formylation of N-heteroarenes and transfer hydrogenation using Ir<sup>III</sup> complexes as catalysts. The combination of solvent, equivalent of formic acid (FA), reaction temperature, and iridium catalyst exerts high product selectivity, delivering divergent selective formations of reductive N-formylation and transfer hydrogenation products in excellent yields. In this process, FA can be employed as not only the hydrogen source but also the reductive N-formylation reagent under different reaction conditions.","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"9 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1021/acs.organomet.4c00331
Anibal R. Davalos-Morinigo, Srini Vemulapalli, Travis Dudding, Steven T. Diver
The design of a rigidified macrocyclic N-heterocyclic carbene (NHC) ligand led to the formation and structural characterization of in- and out-Ru carbene complexes. In this study, the introduction of a conformational lock was used to rigidify heteroaryl–aryl bonds and thereby enforce a more perpendicular dihedral angle. A forcing metalation step was needed to form the isomeric Ru carbene complexes (Grubbs complexes). The major isomer had the Ru carbene fragment located outside the macrocyclic ring, whereas the minor isomer had the Ru carbene inside the macrocyclic ring. The two new Ru carbene complexes are the first examples of in- and out-isomers of a Grubbs-type complex. The solid-state structures of each isomeric ruthenium carbene complex were determined by X-ray diffraction (XRD) studies. The two Ru complexes showed significantly different catalytic reactivities in the ring-closing metathesis (RCM) of the benchmark substrate, diethyl diallylmalonate. We performed computational studies to determine rotational barriers; scalable energetic barriers were found in the unmetalated NHC ligand, favoring the in-isomer by 2.4 kcal/mol. These calculations, coupled with the attempted interconversion of isomers, support a mechanism featuring rotational isomerization of the NHC nucleophile in a pre-equilibrium step before metalation.
{"title":"A Rigidified Macrocyclic Grubbs Complex: A Rare Example of In- and Out-Isomers that Show a Dramatic Difference in Catalytic Reactivity","authors":"Anibal R. Davalos-Morinigo, Srini Vemulapalli, Travis Dudding, Steven T. Diver","doi":"10.1021/acs.organomet.4c00331","DOIUrl":"https://doi.org/10.1021/acs.organomet.4c00331","url":null,"abstract":"The design of a rigidified macrocyclic N-heterocyclic carbene (NHC) ligand led to the formation and structural characterization of <i>in</i>- and <i>out</i>-Ru carbene complexes. In this study, the introduction of a conformational lock was used to rigidify heteroaryl–aryl bonds and thereby enforce a more perpendicular dihedral angle. A forcing metalation step was needed to form the isomeric Ru carbene complexes (Grubbs complexes). The major isomer had the Ru carbene fragment located outside the macrocyclic ring, whereas the minor isomer had the Ru carbene inside the macrocyclic ring. The two new Ru carbene complexes are the first examples of <i>in</i>- and <i>out</i>-isomers of a Grubbs-type complex. The solid-state structures of each isomeric ruthenium carbene complex were determined by X-ray diffraction (XRD) studies. The two Ru complexes showed significantly different catalytic reactivities in the ring-closing metathesis (RCM) of the benchmark substrate, diethyl diallylmalonate. We performed computational studies to determine rotational barriers; scalable energetic barriers were found in the unmetalated NHC ligand, favoring the <i>in</i>-isomer by 2.4 kcal/mol. These calculations, coupled with the attempted interconversion of isomers, support a mechanism featuring rotational isomerization of the NHC nucleophile in a pre-equilibrium step before metalation.","PeriodicalId":56,"journal":{"name":"Organometallics","volume":"8 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}