Pub Date : 2024-03-06DOI: 10.1186/s42252-024-00052-8
Ayele Negussie, Robert Morhard, Jocelyne Rivera, Jose F. Delgado, Sheng Xu, Bradford J. Wood
{"title":"Correction to: Thermochromic phantoms and paint to characterize and model image-guided thermal ablation and ablation devices: a review","authors":"Ayele Negussie, Robert Morhard, Jocelyne Rivera, Jose F. Delgado, Sheng Xu, Bradford J. Wood","doi":"10.1186/s42252-024-00052-8","DOIUrl":"10.1186/s42252-024-00052-8","url":null,"abstract":"","PeriodicalId":576,"journal":{"name":"Functional Composite Materials","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://functionalcompositematerials.springeropen.com/counter/pdf/10.1186/s42252-024-00052-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.1186/s42252-023-00046-y
Muhammad Mustapha Ibrahim, N.S.M. El-Tayeb, Mostafa Shazly, M.M. El-Sayed Seleman
This article comprehensively discusses the mechanical and tribological properties of epoxy matrix composites filled with 100μm graphite particulates, at loadings ranging from 0 to 1wt%. The investigation also focuses on the effects of the graphite filler on the wear surface of the specimens, utilizing an optical microscope for analysis. The results revealed a significant decrease in the tensile strength of the composite, with a reduction of more than 50% observed at 1wt% graphite loading. However, the flexural strength exhibited an initial sharp increase at 0.1wt% graphite loading, followed by a decline at higher graphite contents. Moreover, both impact and hardness values demonstrated improvement as the graphite content increased. The addition of graphite particles led to a reduction in the friction coefficient, attributed to the solid lubrication capabilities of graphite. Furthermore, the wear rate exhibited a sharp decrease with an increase in graphite content due to the formation of a lubrication layer at the contact surface, effectively reducing the break-off of the specimen.
{"title":"An experimental study on the effect of graphite microparticles on the mechanical and tribological properties of epoxy matrix composites","authors":"Muhammad Mustapha Ibrahim, N.S.M. El-Tayeb, Mostafa Shazly, M.M. El-Sayed Seleman","doi":"10.1186/s42252-023-00046-y","DOIUrl":"10.1186/s42252-023-00046-y","url":null,"abstract":"<div><p>This article comprehensively discusses the mechanical and tribological properties of epoxy matrix composites filled with 100μm graphite particulates, at loadings ranging from 0 to 1wt%. The investigation also focuses on the effects of the graphite filler on the wear surface of the specimens, utilizing an optical microscope for analysis. The results revealed a significant decrease in the tensile strength of the composite, with a reduction of more than 50% observed at 1wt% graphite loading. However, the flexural strength exhibited an initial sharp increase at 0.1wt% graphite loading, followed by a decline at higher graphite contents. Moreover, both impact and hardness values demonstrated improvement as the graphite content increased. The addition of graphite particles led to a reduction in the friction coefficient, attributed to the solid lubrication capabilities of graphite. Furthermore, the wear rate exhibited a sharp decrease with an increase in graphite content due to the formation of a lubrication layer at the contact surface, effectively reducing the break-off of the specimen.</p></div>","PeriodicalId":576,"journal":{"name":"Functional Composite Materials","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://functionalcompositematerials.springeropen.com/counter/pdf/10.1186/s42252-023-00046-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139704624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-31DOI: 10.1186/s42252-023-00050-2
Ayele H. Negussie, Robert Morhard, Jocelyne Rivera, Jose F. Delgado, Sheng Xu, Bradford J. Wood
Heat-based local ablation techniques are effective treatments for specific oligometastatic and localized cancers and are being studied for their potential to induce immunogenic cell death and augment systemic immune responses to immunotherapies. The diverse technologies associated with thermal therapy have an unmet need for method development to enable device-specific experimentation, optimization, calibration and refinement of the parameter space to optimize therapeutic intent while minimizing side effects or risk to the patient. Quality assurance, training, or comparing thermal dose among different modalities or techniques using animal models is time and resource intensive. Therefore, the application and use of tissue mimicking thermosensitive, thermochromic liquid crystal and thermochromic paint phantom models may reduce costs and hurdles associated with animal use. Further, their homogenous composition may enable more precise assessment of ablative techniques. This review utilized SciFinder, Web of Science, PubMed and EMBASE to systematically evaluate the literature describing the background and applications of thermochromic liquid crystal, thermochromic paint and tissue-mimicking thermochromic phantoms used to characterize the thermal effects of ablation devices with a focus on facilitating their use across the medical device development life cycle.