首页 > 最新文献

Gold Bulletin最新文献

英文 中文
Fabrication of nanofibrous vinyl brushes of clay minerals as an active support for gold nanoparticles for catalytic reduction 粘土矿物纳米纤维乙烯基刷的制备作为催化还原金纳米颗粒的活性载体
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-06-23 DOI: 10.1007/s13404-023-00328-0
Talha Baig, Shaista Taimur, Afza Shahid

This study encompasses the synthesis of gold nanoparticles (GNPs) captured on nanofibrous vinyl brushes (NVBs) using sepiolite nanoclay as a matrix. The diameter of GNPs was found to be 2–8 nm investigated by a particle-size analyzer. Due to the high surface reactivity, GNPs are more susceptible to agglomeration which reduces their efficacy as catalyst. A suitable support could be employed to arrest the discrete gold particles on its surface. The distinct textural morphology of sepiolite allows it to be a promising choice as support. Silanol groups on the surface of sepiolite nanofibers were consumed to graft vinyl brushes using hydrolyzed vinyl triethoxy silane. This grafting was characterized by FT-IR spectroscopy. Morphological studies of developed nanocomposites (AuNVBs) were conducted by TEM and FESEM revealing evidently the incorporation of well-distributed GNPs. XRD diffractograms have validated the connectivity of GNPs on NVBs surface. GNPs immobilized on the surface of NVBs are commendable candidates as catalyst to enhance the reaction rate for the conversion of 4- nitrophenol to 4- aminophenol.

Graphical abstract

这项研究包括使用海泡石纳米粘土作为基质合成在纳米纤维乙烯基刷(NVBs)上捕获的金纳米颗粒(GNPs)。粒度分析仪研究发现GNP的直径为2–8 nm。由于高表面反应性,GNP更容易结块,这降低了它们作为催化剂的功效。可以使用合适的载体来将离散的金颗粒捕获在其表面上。海泡石独特的结构形态使其成为一种很有前途的载体选择。利用水解乙烯基三乙氧基硅烷,消耗海泡石纳米纤维表面的硅烷醇基团接枝乙烯基刷。通过FT-IR光谱对该接枝进行了表征。通过TEM和FESEM对所开发的纳米复合材料(AuNVBs)进行了形态研究,明显揭示了分布良好的GNPs的掺入。XRD衍射图验证了GNP在NVBs表面的连接性。固定在NVBs表面的GNPs是值得称赞的候选催化剂,可以提高4-硝基苯酚转化为4-氨基苯酚的反应速率。图形摘要
{"title":"Fabrication of nanofibrous vinyl brushes of clay minerals as an active support for gold nanoparticles for catalytic reduction","authors":"Talha Baig,&nbsp;Shaista Taimur,&nbsp;Afza Shahid","doi":"10.1007/s13404-023-00328-0","DOIUrl":"10.1007/s13404-023-00328-0","url":null,"abstract":"<div><p>This study encompasses the synthesis of gold nanoparticles (GNPs) captured on nanofibrous vinyl brushes (NVBs) using sepiolite nanoclay as a matrix. The diameter of GNPs was found to be 2–8 nm investigated by a particle-size analyzer. Due to the high surface reactivity, GNPs are more susceptible to agglomeration which reduces their efficacy as catalyst. A suitable support could be employed to arrest the discrete gold particles on its surface. The distinct textural morphology of sepiolite allows it to be a promising choice as support. Silanol groups on the surface of sepiolite nanofibers were consumed to graft vinyl brushes using hydrolyzed vinyl triethoxy silane. This grafting was characterized by FT-IR spectroscopy. Morphological studies of developed nanocomposites (AuNVBs) were conducted by TEM and FESEM revealing evidently the incorporation of well-distributed GNPs. XRD diffractograms have validated the connectivity of GNPs on NVBs surface. GNPs immobilized on the surface of NVBs are commendable candidates as catalyst to enhance the reaction rate for the conversion of 4- nitrophenol to 4- aminophenol.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41181106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Pseudomonas aeruginosa and Acinetobacter baumannii genomic DNA using gold nanoprobes 金纳米探针检测铜绿假单胞菌和鲍曼不动杆菌基因组DNA
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-04-24 DOI: 10.1007/s13404-023-00326-2
Marjan Bagherinajafabad, Hassan Bardania, Elham Moazamian, Seyed Sajjad Khoramrooz

Conventional techniques for microbial detection are time-consuming, expensive, and unsuitable. The use of nanoparticles is a valuable technique for the detection of bacterial as well as viral DNA. Gold nanoparticles (gold NPs) have been used as a promising detector for rapid and low-cost identification of microbes with high sensitivity. In this study, gold nanoparticles-probes were used to identify Pseudomonas aeruginosa and Acinetobacter baumannii genomic DNA. Thiol-functionalized probes were attached to gold NPs. Hybridization of the probe with the amplified product of Oprl and glta genes resulted in accumulation of gold nanoparticles in a cross-linked manner, caused a color change of the reaction mixture, which indicated the presence of Pseudomonas aeruginosa and Acinetobacter baumannii in the sample. To study the sensitivity, the polymerase chain reaction product with different bacteria was used, and results were compared. The gold nanoparticle-based colorimetric assay can be used as a direct and rapid method with high sensitivity for specific identification of these pathogens in clinical and food samples.

传统的微生物检测技术耗时、昂贵且不适用。纳米颗粒的使用是检测细菌和病毒DNA的一种有价值的技术。金纳米粒子(金纳米粒子)已被用作一种有前途的检测器,用于快速、低成本、高灵敏度的微生物识别。在本研究中,金纳米粒子探针被用于鉴定铜绿假单胞菌和鲍曼不动杆菌的基因组DNA。硫醇功能化的探针连接到金纳米粒子上。探针与Oprl和glta基因的扩增产物的杂交导致金纳米颗粒以交联的方式积累,导致反应混合物的颜色变化,这表明样品中存在铜绿假单胞菌和鲍曼不动杆菌。为了研究敏感性,使用不同细菌的聚合酶链式反应产物,并对结果进行比较。基于金纳米粒子的比色测定法可作为一种直接、快速、高灵敏度的方法,用于临床和食品样品中这些病原体的特异性鉴定。
{"title":"Detection of Pseudomonas aeruginosa and Acinetobacter baumannii genomic DNA using gold nanoprobes","authors":"Marjan Bagherinajafabad,&nbsp;Hassan Bardania,&nbsp;Elham Moazamian,&nbsp;Seyed Sajjad Khoramrooz","doi":"10.1007/s13404-023-00326-2","DOIUrl":"10.1007/s13404-023-00326-2","url":null,"abstract":"<div><p>Conventional techniques for microbial detection are time-consuming, expensive, and unsuitable. The use of nanoparticles is a valuable technique for the detection of bacterial as well as viral DNA. Gold nanoparticles (gold NPs) have been used as a promising detector for rapid and low-cost identification of microbes with high sensitivity. In this study, gold nanoparticles-probes were used to identify <i>Pseudomonas aeruginosa</i> and <i>Acinetobacter baumannii</i> genomic DNA. Thiol-functionalized probes were attached to gold NPs. Hybridization of the probe with the amplified product of Oprl and glta genes resulted in accumulation of gold nanoparticles in a cross-linked manner, caused a color change of the reaction mixture, which indicated the presence of <i>Pseudomonas aeruginosa</i> and <i>Acinetobacter baumannii</i> in the sample. To study the sensitivity, the polymerase chain reaction product with different bacteria was used, and results were compared. The gold nanoparticle-based colorimetric assay can be used as a direct and rapid method with high sensitivity for specific identification of these pathogens in clinical and food samples.</p></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13404-023-00326-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41229332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control of protein density on nanoparticles for SERS-based immunoassays 基于sers的免疫分析中纳米颗粒蛋白密度的控制
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-01-30 DOI: 10.1007/s13404-023-00325-3
Francis Nsiah, Mark T. McDermott

Abstract

The paper presented herein provides a novel Raman mapping procedure developed to pattern-modified gold nanoparticles on planar gold substrates. This work began with the development of a simple approach to the fabrication and reading of protein microarrays based on the use of microfluidic channels in PDMS and SERS detection. The assay consisted of anti-bovine IgG which was tethered to the nanoparticle via a bifunctional coupling agent and surface-bound bovine IgG. The Raman spectral intensity of the symmetric nitro stretch of the DSNB-modified nanoparticle was used as a diagnostic tool for biomolecular interactions. The work described herein seeks to probe the binding event and also addresses the possible causes of the higher signals observed in such binding events. It is also a contribution to an ongoing investigation into the effect of Raman reporter labels on the observed signals in immunoassays which use SERS as the readout technique.

摘要本文提出了一种新的拉曼映射方法,用于在平面金衬底上修饰金纳米粒子。这项工作开始于开发一种基于PDMS和SERS检测中使用微流控通道的简单方法来制造和读取蛋白质微阵列。该检测包括通过双功能偶联剂和表面结合的牛IgG结合到纳米颗粒上的抗牛IgG。dsnb修饰纳米颗粒对称硝基拉伸的拉曼光谱强度被用作生物分子相互作用的诊断工具。本文所描述的工作旨在探索结合事件,并解决在此类结合事件中观察到的更高信号的可能原因。这也有助于正在进行的研究拉曼报告标记对使用SERS作为读出技术的免疫测定中观察到的信号的影响。
{"title":"Control of protein density on nanoparticles for SERS-based immunoassays","authors":"Francis Nsiah,&nbsp;Mark T. McDermott","doi":"10.1007/s13404-023-00325-3","DOIUrl":"10.1007/s13404-023-00325-3","url":null,"abstract":"<div><h2>Abstract\u0000</h2><div><p>The paper presented herein provides a novel Raman mapping procedure developed to pattern-modified gold nanoparticles on planar gold substrates. This work began with the development of a simple approach to the fabrication and reading of protein microarrays based on the use of microfluidic channels in PDMS and SERS detection. The assay consisted of anti-bovine IgG which was tethered to the nanoparticle via a bifunctional coupling agent and surface-bound bovine IgG. The Raman spectral intensity of the symmetric nitro stretch of the DSNB-modified nanoparticle was used as a diagnostic tool for biomolecular interactions. The work described herein seeks to probe the binding event and also addresses the possible causes of the higher signals observed in such binding events. It is also a contribution to an ongoing investigation into the effect of Raman reporter labels on the observed signals in immunoassays which use SERS as the readout technique.</p></div></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5146630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gold nanoparticles prepared with the aid of deep eutectic solvent and used as substrates for surface-enhanced Raman scattering 用深共晶溶剂制备了金纳米颗粒,并将其用作表面增强拉曼散射的衬底
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2023-01-17 DOI: 10.1007/s13404-022-00324-w
Tao Wang, Qian Liu, Minshan Shi, Rong Chang, Jun Tang, Yalan He, Dongling Wu

Abstract

The high enhancement activity of litchi-like gold nanoparticles (Au NPs) is prepared in deep eutectic solvent (DES), and the prepared Au NPs as SERS active substrate exhibits excellent sensitivity when rhodamine 6G (R6G) is used as a probe molecule for detection. The enhancement factor (EF) is calculated to be about 1.8 × 1012, and the minimum detected concentration is outstanding in R6G aqueous solution at 10−12 M. In addition, the microtrace determination of penicillin G sodium (PG) in camel milk powder produced in Xinjiang was successfully achieved by using the prepared Au NPs. This work provides an environmentally friendly, simple, and rapid method to prepare efficient and sensitive surface-enhanced Raman scattering (SERS) materials. Meanwhile, it also uncovers a new possibility for the development of various nanoparticles with SERS prepared using DES as reactive solutions.

Graphical abstract

摘要在深度共晶溶剂(DES)中制备了具有高增强活性的荔枝状金纳米粒子(Au NPs),并以罗丹明6G (R6G)为探针分子进行检测,所制备的金纳米粒子作为SERS活性底物表现出优异的灵敏度。计算得到增强因子(EF)约为1.8 × 1012,在10 ~ 12 m的R6G水溶液中最低检测浓度突出。此外,利用所制备的Au NPs成功地测定了新疆产骆驼奶粉中青霉素G钠(PG)的微量含量。本研究为制备高效、灵敏的表面增强拉曼散射(SERS)材料提供了一种环保、简单、快速的方法。同时,也为以DES为反应溶液制备SERS提供了一种新的可能性。图形抽象
{"title":"Gold nanoparticles prepared with the aid of deep eutectic solvent and used as substrates for surface-enhanced Raman scattering","authors":"Tao Wang,&nbsp;Qian Liu,&nbsp;Minshan Shi,&nbsp;Rong Chang,&nbsp;Jun Tang,&nbsp;Yalan He,&nbsp;Dongling Wu","doi":"10.1007/s13404-022-00324-w","DOIUrl":"10.1007/s13404-022-00324-w","url":null,"abstract":"<div><h2>Abstract\u0000</h2><div><p>The high enhancement activity of litchi-like gold nanoparticles (Au NPs) is prepared in deep eutectic solvent (DES), and the prepared Au NPs as SERS active substrate exhibits excellent sensitivity when rhodamine 6G (R6G) is used as a probe molecule for detection. The enhancement factor (EF) is calculated to be about 1.8 × 10<sup>12</sup>, and the minimum detected concentration is outstanding in R6G aqueous solution at 10<sup>−12</sup> M. In addition, the microtrace determination of penicillin G sodium (PG) in camel milk powder produced in Xinjiang was successfully achieved by using the prepared Au NPs. This work provides an environmentally friendly, simple, and rapid method to prepare efficient and sensitive surface-enhanced Raman scattering (SERS) materials. Meanwhile, it also uncovers a new possibility for the development of various nanoparticles with SERS prepared using DES as reactive solutions.</p><h3>Graphical abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4682603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of ionic strength on the interaction of AuNPs with calf spleen DNA 离子强度对AuNPs与小牛脾脏DNA相互作用的影响
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2022-12-22 DOI: 10.1007/s13404-022-00322-y
Monira M. Rageh, M. H. Gaber, Samar M. Mostafa

Abstract

Gold nanoparticles (AuNPs) are well-known biomedical and biotechnological applications because of their interesting properties. They easily cross the cell membranes and interact with intracellular materials. This study was designed to investigate the interaction of calf spleen DNA with AuNPs at a molar ratio of 2:1 in an aqueous solution with different ionic strengths (10, 50, and 100%). AuNPs and AuNPs/DNA complex were characterized by different techniques such as UV/Vis spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform IR spectrophotometry. The results revealed that the maximum absorption (λmax) of AuNPs synthesis was observed at 520 nm, and the average particle size was about 13 nm. In addition to a negative zeta potential (− 37 mV), the interaction of AuNPs with DNA was confirmed by melting point and TEM. The melting point that reflects the DNA became unstable in the presence of AuNPs, and the melting temperature decreased by about 3–5 °C with different ionic strength. Additionally, the TEM image of AuNPs/DNA complex obviously illustrated the location of AuNPs on the DNA groove. Finally, these results clearly indicate the attachment of AuNPs with DNA.

摘要纳米金因其独特的性质在生物医学和生物技术领域有着广泛的应用。它们很容易穿过细胞膜并与细胞内物质相互作用。本研究旨在研究小牛脾脏DNA与AuNPs在不同离子强度(10%、50%和100%)水溶液中摩尔比为2:1的相互作用。采用紫外/可见分光光度法、透射电镜(TEM)、动态光散射(DLS)和傅立叶变换红外分光光度法等技术对AuNPs和AuNPs/DNA复合物进行了表征。结果表明,合成AuNPs的最大吸收峰(λmax)为520 nm,平均粒径约为13 nm;除了负zeta电位(- 37 mV)外,通过熔点和透射电镜证实了AuNPs与DNA的相互作用。反映DNA的熔点在AuNPs存在下变得不稳定,不同离子强度下的熔点温度降低约3-5℃。此外,AuNPs/DNA复合物的TEM图像清楚地显示了AuNPs在DNA凹槽上的位置。最后,这些结果清楚地表明AuNPs与DNA的附着。
{"title":"Effect of ionic strength on the interaction of AuNPs with calf spleen DNA","authors":"Monira M. Rageh,&nbsp;M. H. Gaber,&nbsp;Samar M. Mostafa","doi":"10.1007/s13404-022-00322-y","DOIUrl":"10.1007/s13404-022-00322-y","url":null,"abstract":"<div><h2>Abstract\u0000</h2><div><p>Gold nanoparticles (AuNPs) are well-known biomedical and biotechnological applications because of their interesting properties. They easily cross the cell membranes and interact with intracellular materials. This study was designed to investigate the interaction of calf spleen DNA with AuNPs at a molar ratio of 2:1 in an aqueous solution with different ionic strengths (10, 50, and 100%). AuNPs and AuNPs/DNA complex were characterized by different techniques such as UV/Vis spectrophotometry, transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform IR spectrophotometry. The results revealed that the maximum absorption (<i>λ</i><sub>max</sub>) of AuNPs synthesis was observed at 520 nm, and the average particle size was about 13 nm. In addition to a negative zeta potential (− 37 mV), the interaction of AuNPs with DNA was confirmed by melting point and TEM. The melting point that reflects the DNA became unstable in the presence of AuNPs, and the melting temperature decreased by about 3–5 °C with different ionic strength. Additionally, the TEM image of AuNPs/DNA complex obviously illustrated the location of AuNPs on the DNA groove. Finally, these results clearly indicate the attachment of AuNPs with DNA.</p></div></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13404-022-00322-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4849783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pesticide detection optimization of plasmonics gold nanoparticles/silicon nano-columns structures by controlling the coupling lasers power density 控制耦合激光功率密度的等离子体金纳米粒子/硅纳米柱结构农药检测优化
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2022-12-20 DOI: 10.1007/s13404-022-00323-x
Doaa Sulaiman, Alwan M. Alwan, Walid K. Hamoudi

Abstract

Fixed laser pulse duty cycle at 20% using short laser wavelength (405 nm) at different values of laser power density (300–600 mW/cm2) were used to form Si nano-columns as based SERS layer. The idea was to synthesize SERS devices with excellent reproducibility and high enhancement factor to detect ultra-low residence of chlorpyrifos pesticide. The results indicated that the morphological aspects of silicon nano-columns layer and; hence, the performance of SERS devices could be well-regulated through the adjustment of laser power density. The SERS detection of ultra-low chlorpyrifos concentrations displayed an excellent reproducibility with less than 5% error. The highest chlorpyrifos enhancement factor (EF = 1.1 × 106) and minimum detection limit (LOD = 22 × 10−8 M) were obtained from high altitude Si nano-columns; partly populated with three dimensions AuNPs layer, and the use of 500mW/cm2 laser power density.

摘要采用短激光波长(405 nm),在不同的激光功率密度(300 ~ 600 mW/cm2)下,固定脉冲占空比为20%,形成硅纳米柱作为SERS层。本课题旨在合成重现性好、增强系数高的SERS装置,用于毒死蜱农药超低残留检测。结果表明:硅纳米柱的形貌方面;因此,可以通过调节激光功率密度来调节SERS器件的性能。超低毒死蜱浓度的SERS检测结果重复性好,误差小于5%。高海拔硅纳米柱的毒死蜱增强系数最高(EF = 1.1 × 106),检出限最低(LOD = 22 × 10−8 M);部分填充三维AuNPs层,并采用500mW/cm2激光功率密度。
{"title":"Pesticide detection optimization of plasmonics gold nanoparticles/silicon nano-columns structures by controlling the coupling lasers power density","authors":"Doaa Sulaiman,&nbsp;Alwan M. Alwan,&nbsp;Walid K. Hamoudi","doi":"10.1007/s13404-022-00323-x","DOIUrl":"10.1007/s13404-022-00323-x","url":null,"abstract":"<div><h2>Abstract\u0000</h2><div><p>Fixed laser pulse duty cycle at 20% using short laser wavelength (405 nm) at different values of laser power density (300–600 mW/cm<sup>2</sup>) were used to form Si nano-columns as based SERS layer. The idea was to synthesize SERS devices with excellent reproducibility and high enhancement factor to detect ultra-low residence of chlorpyrifos pesticide. The results indicated that the morphological aspects of silicon nano-columns layer and; hence, the performance of SERS devices could be well-regulated through the adjustment of laser power density. The SERS detection of ultra-low chlorpyrifos concentrations displayed an excellent reproducibility with less than 5% error. The highest chlorpyrifos enhancement factor (EF = 1.1 × 10<sup>6</sup>) and minimum detection limit (LOD = 22 × 10<sup>−8</sup> M) were obtained from high altitude Si nano-columns; partly populated with three dimensions AuNPs layer, and the use of 500mW/cm<sup>2</sup> laser power density.</p></div></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13404-022-00323-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4783629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evaluation of penicillin residues in milk by ELISA using aptamer bonded to gold nanoparticles 纳米金适配体结合酶联免疫吸附法测定牛奶中青霉素残留
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2022-08-09 DOI: 10.1007/s13404-022-00319-7
Hossein Toghyani Dolatabadi, Mahdieh Izadi, Ali Mohammad Tamaddon

Healthy dairy products should be free of any substances that threaten human health. However, the use of antibiotics for the treatment of lactating animals can be a risk to human health, as their residues and metabolites can be transferred into milk. Various methods are used to ensure the purity of milk. In this study, a kit based on a specific penicillin aptamer bonded to gold nanoparticles was designed to measure penicillin in milk, and its measurement was performed using ELISA colorimetric method. After synthesis of gold nanoparticles, the molarity of gold nanoparticles was calculated by UV spectrophotometer, and its synthesis was confirmed by FTIR. Salt concentrations were also optimized to bind aptamer to gold nanoparticles. The gold nanoparticles were then bonded to the specific aptamer of penicillin, and the concentration of penicillin G in the milk sample was measured by a biosensor designed by ELISA. The choice of biosensor was also examined in the presence of similar antibiotics.

健康的乳制品应该不含任何威胁人体健康的物质。然而,使用抗生素治疗哺乳期动物可能对人类健康构成风险,因为它们的残留物和代谢物可能会转移到牛奶中。用了各种方法来保证牛奶的纯度。本研究设计了一种基于特定青霉素适配体与金纳米颗粒结合的检测试剂盒,并采用ELISA比色法测定牛奶中青霉素的含量。合成金纳米粒子后,用紫外分光光度计计算了金纳米粒子的摩尔浓度,并用FTIR对其合成进行了验证。盐浓度也被优化,以结合适配体与金纳米颗粒。然后将金纳米颗粒与青霉素的特异性适配体结合,用ELISA设计的生物传感器测量牛奶样品中青霉素G的浓度。在存在类似抗生素的情况下,生物传感器的选择也进行了检查。
{"title":"Evaluation of penicillin residues in milk by ELISA using aptamer bonded to gold nanoparticles","authors":"Hossein Toghyani Dolatabadi,&nbsp;Mahdieh Izadi,&nbsp;Ali Mohammad Tamaddon","doi":"10.1007/s13404-022-00319-7","DOIUrl":"10.1007/s13404-022-00319-7","url":null,"abstract":"<div><p>Healthy dairy products should be free of any substances that threaten human health. However, the use of antibiotics for the treatment of lactating animals can be a risk to human health, as their residues and metabolites can be transferred into milk. Various methods are used to ensure the purity of milk. In this study, a kit based on a specific penicillin aptamer bonded to gold nanoparticles was designed to measure penicillin in milk, and its measurement was performed using ELISA colorimetric method. After synthesis of gold nanoparticles, the molarity of gold nanoparticles was calculated by UV spectrophotometer, and its synthesis was confirmed by FTIR. Salt concentrations were also optimized to bind aptamer to gold nanoparticles. The gold nanoparticles were then bonded to the specific aptamer of penicillin, and the concentration of penicillin G in the milk sample was measured by a biosensor designed by ELISA. The choice of biosensor was also examined in the presence of similar antibiotics.</p></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13404-022-00319-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4376057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of breast cancer antibody (anti-HER-II) conjugated on PEGylated gold nanourchin for active targeting 聚乙二醇化金纳米蛋白偶联的乳腺癌抗体(抗her - ii)的活性靶向鉴定
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2022-06-02 DOI: 10.1007/s13404-022-00316-w
Mohammad E. Khosroshahi, Yesha Patel, Roxana Chabok

Conjugation and characterization of poly-ethylene–glycol (PEG)-functionalized gold nanourchin (GNU) with breast cancer biomarker HER-II monoclonal antibody (mAb) (i.e., anti-HER-II) for selective targeting are described. After the functionalization of GNU with PEG, the surface plasmon resonance (SPR) peak was red-shifted, indicating the increase in the hydrodynamic size of the GNU. The Fourier-transform near-infrared spectroscopy (FT-NIR) second derivative result of GNU-PEG provided overtone and combination bands of fundamental vibrational modes of protein molecular structures between 4000 and 7500 cm−1. This mainly included C–H combination and CH2 bonds, O–H first stretch overtones, the C–H first stretch overtone, and the CH2 combination first overtone. The UV–Vis absorbance showed a strong absorption of light at 227 and 275 nm corresponding to tyrosine peaks. The fluorescence emission peak at 315 nm corresponds to Stokes shift when excited by 280 nm corresponding to tyrosine in the mAb, and the peak at 497 nm likely corresponds to alanine. After conjugation of GNU-PEG with mAb, the FT-NIR indicated the bands corresponding to NH2 combination and amino acids, first overtone symmetric and antisymmetric OH stretching, C–H combination, and the second overtones and combination modes. Surface-enhanced Raman scattering (SERS) provided useful information on the molecular structure and composition of the sample within 300–3500 cm−1. The intensity behavior of SERS signals exhibited a statistical nature due to Brownian fluctuating movement. In addition, the intensity and number of SERS lines varied with the laser power. The dominant peaks were corresponding to histidine, tyrosine, tryptophan, phenylalanine, and C–H, N–H, C–N, and O–H bonds.

本文描述了聚乙二醇(PEG)功能化金纳米蛋白(GNU)与乳腺癌生物标志物HER-II单克隆抗体(mAb)(即抗HER-II)选择性靶向的偶联和表征。聚乙二醇功能化后,表面等离子体共振峰(SPR)发生红移,表明GNU的水动力尺寸增大。GNU-PEG的傅里叶变换近红外光谱(FT-NIR)二阶导数结果提供了4000 ~ 7500 cm−1范围内蛋白质分子结构基本振动模式的泛音和组合带。这主要包括碳氢键和CH2键、O-H第一拉伸泛音、碳氢键第一拉伸泛音和CH2组合第一泛音。紫外可见吸收光谱显示,酪氨酸峰对应的227和275 nm处有较强的吸收。315 nm处的荧光发射峰对应于单克隆抗体中280 nm激发时的Stokes位移,497nm处的荧光发射峰可能对应于丙氨酸。GNU-PEG与mAb偶联后,FT-NIR显示了NH2组合和氨基酸、第一泛音对称和反对称OH拉伸、C-H组合、第二泛音和组合模式对应的条带。表面增强拉曼散射(SERS)提供了300-3500 cm−1范围内样品分子结构和组成的有用信息。由于布朗波动运动,SERS信号的强度行为表现出统计性质。此外,SERS谱线的强度和数量随激光功率的变化而变化。优势峰对应于组氨酸、酪氨酸、色氨酸、苯丙氨酸和C-H、N-H、C-N和O-H键。
{"title":"Characterization of breast cancer antibody (anti-HER-II) conjugated on PEGylated gold nanourchin for active targeting","authors":"Mohammad E. Khosroshahi,&nbsp;Yesha Patel,&nbsp;Roxana Chabok","doi":"10.1007/s13404-022-00316-w","DOIUrl":"10.1007/s13404-022-00316-w","url":null,"abstract":"<div><p>Conjugation and characterization of poly-ethylene–glycol (PEG)-functionalized gold nanourchin (GNU) with breast cancer biomarker HER-II monoclonal antibody (mAb) (i.e., anti-HER-II) for selective targeting are described. After the functionalization of GNU with PEG, the surface plasmon resonance (SPR) peak was red-shifted, indicating the increase in the hydrodynamic size of the GNU. The Fourier-transform near-infrared spectroscopy (FT-NIR) second derivative result of GNU-PEG provided overtone and combination bands of fundamental vibrational modes of protein molecular structures between 4000 and 7500 cm<sup>−1</sup>. This mainly included C–H combination and CH<sub>2</sub> bonds, O–H first stretch overtones, the C–H first stretch overtone, and the CH<sub>2</sub> combination first overtone. The UV–Vis absorbance showed a strong absorption of light at 227 and 275 nm corresponding to tyrosine peaks. The fluorescence emission peak at 315 nm corresponds to Stokes shift when excited by 280 nm corresponding to tyrosine in the mAb, and the peak at 497 nm likely corresponds to alanine. After conjugation of GNU-PEG with mAb, the FT-NIR indicated the bands corresponding to NH<sub>2</sub> combination and amino acids, first overtone symmetric and antisymmetric OH stretching, C–H combination, and the second overtones and combination modes. Surface-enhanced Raman scattering (SERS) provided useful information on the molecular structure and composition of the sample within 300–3500 cm<sup>−1</sup>. The intensity behavior of SERS signals exhibited a statistical nature due to Brownian fluctuating movement. In addition, the intensity and number of SERS lines varied with the laser power. The dominant peaks were corresponding to histidine, tyrosine, tryptophan, phenylalanine, and C–H, N–H, C–N, and O–H bonds.</p></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4089711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of chitosan-modified gold nanoparticles in Lemna valdiviana and Daphnia pulex 壳聚糖修饰的金纳米颗粒在水蚤和水蚤中的作用
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2022-01-13 DOI: 10.1007/s13404-021-00306-4
Paulina Abrica-González, E. Zumelzu, Jorge Nimptsch, José Abraham Balderas-López, Alejandro Muñoz-Diosdado, Ignacio Moreno-Villoslada, Mario E. Flores

Abstract

Gold nanoparticles (AuNPs) are nowadays used in many areas of science, particularly in medicine as drug release and gene carriers. The extensive use of these materials makes imperative the study of their effects on the environment after their disposal, that mostly affects the aquatic media. The present work explores the bioaccumulation and toxicity of chitosan-functionalized and non-functionalized gold nanoparticles, with primary producers (Lemna valdiviana) and primary consumers (Daphnia pulex) aquatic organisms. Bioaccumulation of 27.4 nm AuNPs and 43.1 nm chitosan-gold nanoparticles (CO-AuNPs) was evaluated in both microorganisms, finding accumulation of AuNPs and inhomogeneous aggregation of CO-AuNPs in Daphnia pulex gut, and internalization of both types of nanoparticles in Lemna valdiviana cell walls. The effective concentration of nanomaterial for 50% survival (LC50) of Daphnia pulex organisms was 1.13 mg/L for AuNPs and 0.96 mg/L for CO-AuNPs in the acute test. In Lemna valdiviana 7-day test, the EC50 for area and frond number were 1.19 mg/L and 1.26 mg/L, respectively, for AuNPs, 1.53 mg/L and 1.44 mg/L, respectively, for CO-AuNPs, finding higher toxicity of CO-AuNPs to Daphnia pulex, and AuNPs to Lemna valdiviana. The obtained results suggest that the effects of nanomaterials on the growth and survival of key organisms deserve further study, as this may lead to the development of appropriate environmental regulations.

摘要金纳米颗粒(AuNPs)作为药物释放载体和基因载体被广泛应用于医学等领域。这些材料的广泛使用使得研究其处置后对环境的影响势在必行,这主要影响水生介质。本研究探讨了壳聚糖功能化和非功能化金纳米颗粒的生物积累和毒性,主要生产者(lena valdiviana)和主要消费者(Daphnia pulex)水生生物。在这两种微生物中,对27.4 nm的AuNPs和43.1 nm的壳聚糖金纳米颗粒(CO-AuNPs)的生物积累进行了评估,发现了AuNPs在水蚤肠道中的积累和CO-AuNPs的不均匀聚集,以及这两种纳米颗粒在缬草细胞壁中的内化。急性试验中,纳米材料对水蚤50%存活率(LC50)的有效浓度为AuNPs为1.13 mg/L, CO-AuNPs为0.96 mg/L。在小茴香7 d试验中,AuNPs对面积和叶数的EC50分别为1.19 mg/L和1.26 mg/L, CO-AuNPs分别为1.53 mg/L和1.44 mg/L, CO-AuNPs对水蚤的毒性更高,而AuNPs对小茴香的毒性更高。这些结果表明,纳米材料对关键生物生长和生存的影响值得进一步研究,因为这可能导致制定适当的环境法规。
{"title":"The effect of chitosan-modified gold nanoparticles in Lemna valdiviana and Daphnia pulex","authors":"Paulina Abrica-González,&nbsp;E. Zumelzu,&nbsp;Jorge Nimptsch,&nbsp;José Abraham Balderas-López,&nbsp;Alejandro Muñoz-Diosdado,&nbsp;Ignacio Moreno-Villoslada,&nbsp;Mario E. Flores","doi":"10.1007/s13404-021-00306-4","DOIUrl":"10.1007/s13404-021-00306-4","url":null,"abstract":"<div><h2>Abstract\u0000</h2><div><p>Gold nanoparticles (AuNPs) are nowadays used in many areas of science, particularly in medicine as drug release and gene carriers. The extensive use of these materials makes imperative the study of their effects on the environment after their disposal, that mostly affects the aquatic media. The present work explores the bioaccumulation and toxicity of chitosan-functionalized and non-functionalized gold nanoparticles, with primary producers (<i>Lemna valdiviana</i>) and primary consumers (<i>Daphnia pulex</i>) aquatic organisms. Bioaccumulation of 27.4 nm AuNPs and 43.1 nm chitosan-gold nanoparticles (CO-AuNPs) was evaluated in both microorganisms, finding accumulation of AuNPs and inhomogeneous aggregation of CO-AuNPs in <i>Daphnia pulex</i> gut, and internalization of both types of nanoparticles in <i>Lemna valdiviana</i> cell walls. The effective concentration of nanomaterial for 50% survival (LC50) of <i>Daphnia pulex</i> organisms was 1.13 mg/L for AuNPs and 0.96 mg/L for CO-AuNPs in the acute test. In <i>Lemna valdiviana</i> 7-day test, the EC50 for area and frond number were 1.19 mg/L and 1.26 mg/L, respectively, for AuNPs, 1.53 mg/L and 1.44 mg/L, respectively, for CO-AuNPs, finding higher toxicity of CO-AuNPs to <i>Daphnia pulex</i>, and AuNPs to <i>Lemna valdiviana</i>. The obtained results suggest that the effects of nanomaterials on the growth and survival of key organisms deserve further study, as this may lead to the development of appropriate environmental regulations.</p></div></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4539717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Study on the growth kinetics of Au nanorods based on local surface plasmon resonance 基于局部表面等离子体共振的金纳米棒生长动力学研究
IF 2.2 4区 工程技术 Q2 Chemistry Pub Date : 2021-10-29 DOI: 10.1007/s13404-021-00299-0
Liqing Meng, Zongxiao Li, Yousheng Deng

Gold nanorods are of great significance in biomedical and sensing applications due to their local surface plasmon resonance absorption. The silver-mediated seeding method was used to prepare gold nanorods, the longitudinal local surface plasmon resonance (LSPR) absorption of the prepared gold nanorods was monitored, and the growth kinetics of the gold nanorods were discussed. The results show that the growth process of gold nanorods is characterized by a first-order reaction, and its activation energy is about 54.4 kJ/mol. This experimental conclusion provides a good theoretical guide for the preparation of gold nanorods during application research.

金纳米棒具有局部表面等离子体共振吸收特性,在生物医学和传感领域具有重要的应用价值。采用银介导播种法制备金纳米棒,对制备的金纳米棒的纵向局部表面等离子体共振(LSPR)吸收进行了监测,并讨论了金纳米棒的生长动力学。结果表明:金纳米棒的生长过程为一级反应,其活化能约为54.4 kJ/mol;该实验结论为金纳米棒的制备及应用研究提供了良好的理论指导。
{"title":"Study on the growth kinetics of Au nanorods based on local surface plasmon resonance","authors":"Liqing Meng,&nbsp;Zongxiao Li,&nbsp;Yousheng Deng","doi":"10.1007/s13404-021-00299-0","DOIUrl":"10.1007/s13404-021-00299-0","url":null,"abstract":"<div><p>Gold nanorods are of great significance in biomedical and sensing applications due to their local surface plasmon resonance absorption. The silver-mediated seeding method was used to prepare gold nanorods, the longitudinal local surface plasmon resonance (LSPR) absorption of the prepared gold nanorods was monitored, and the growth kinetics of the gold nanorods were discussed. The results show that the growth process of gold nanorods is characterized by a first-order reaction, and its activation energy is about 54.4 kJ/mol. This experimental conclusion provides a good theoretical guide for the preparation of gold nanorods during application research.</p></div>","PeriodicalId":581,"journal":{"name":"Gold Bulletin","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13404-021-00299-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5132642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Gold Bulletin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1