首页 > 最新文献

International Journal of Self-Propagating High-Temperature Synthesis最新文献

英文 中文
Patterns of Synthesis of TiC–NiCr Cermets from Powder Mixtures: Influence of Nichrome Content and Titanium Particles Size 从粉末混合物合成 TiC-NiCr 金属陶瓷的模式:镍铬含量和钛颗粒尺寸的影响
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-14 DOI: 10.3103/S1061386224010060
B. S. Seplyarskii, R. A. Kochetkov, T. G. Lisina, N. I. Abzalov

The combustion patterns of powder mixtures (100 – X)(Ti + C) + XNiCr, X = 0–20%, and phase composition of synthesis products were studied. The different nature of the dependence of the burning velocity on the nichrome content for blends containing titanium powders with particles of characteristic sizes of 60 and 120 μm was explained within the framework of the convective–conductive model by the retarding influence of impurity gases released ahead of the combustion front. The conditions for warming up Ti particles before the front were not met for mixtures of fine and coarse titanium powders. XRD spectra of combustion products showed the necessity of using fine titanium powder to obtain cermets without side phases of intermetallic compounds.

摘要 研究了粉末混合物 (100 - X)(Ti + C) + XNiCr(X = 0-20%)的燃烧模式以及合成产物的相组成。在对流-传导模型的框架内,对含有特征尺寸为 60 和 120 μm 的钛粉的混合物来说,燃烧速度与镍铬含量的关系具有不同的性质,这是因为在燃烧前沿释放的杂质气体具有阻滞作用。对于细钛粉和粗钛粉的混合物,在燃烧前沿前加热钛颗粒的条件并不满足。燃烧产物的 XRD 光谱显示,必须使用细钛粉才能获得无金属间化合物副相的金属陶瓷。
{"title":"Patterns of Synthesis of TiC–NiCr Cermets from Powder Mixtures: Influence of Nichrome Content and Titanium Particles Size","authors":"B. S. Seplyarskii,&nbsp;R. A. Kochetkov,&nbsp;T. G. Lisina,&nbsp;N. I. Abzalov","doi":"10.3103/S1061386224010060","DOIUrl":"10.3103/S1061386224010060","url":null,"abstract":"<p>The combustion patterns of powder mixtures (100 – <i>X</i>)(Ti + C) + <i>X</i>NiCr, <i>X</i> = 0–20%, and phase composition of synthesis products were studied. The different nature of the dependence of the burning velocity on the nichrome content for blends containing titanium powders with particles of characteristic sizes of 60 and 120 μm was explained within the framework of the convective–conductive model by the retarding influence of impurity gases released ahead of the combustion front. The conditions for warming up Ti particles before the front were not met for mixtures of fine and coarse titanium powders. XRD spectra of combustion products showed the necessity of using fine titanium powder to obtain cermets without side phases of intermetallic compounds.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 1","pages":"75 - 79"},"PeriodicalIF":0.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Propagating High-Temperature Synthesis of Complex Phases: The Example of TiC-Based Composites 复杂相态的自蔓延高温合成:以 TiC 基复合材料为例
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-14 DOI: 10.3103/S1061386224010059
W. Ramdane

TiC-based composites with various initial compositions can be successfully synthesized by self-propagating high-temperature synthesis (SHS) from either mixtures containing thermite reactions or from pure elements. The effect of various experimental parameters on the combustion reaction kinetics and the relationship between structure, microstructure and mechanical behavior of products was identified. It was found that the matrix’s strengthening is one of the most important variables in boosting the composite’s strength, and adding alloy elements reduces the rate and size of cracks and pores in the cermet microstructure. The presence of TiC particles inhibits dislocation motion and has a significant effect on the composite’s mechanical behavior.

摘要 通过自蔓延高温合成法(SHS),可以成功地从含有热释电反应的混合物或纯元素合成出具有各种初始成分的钛碳基复合材料。研究确定了各种实验参数对燃烧反应动力学的影响,以及产品结构、微观结构和力学行为之间的关系。研究发现,基体的强化是提高复合材料强度的最重要变量之一,添加合金元素可降低金属陶瓷微观结构中裂纹和孔隙的速率和尺寸。TiC 颗粒的存在抑制了位错运动,并对复合材料的机械行为产生了显著影响。
{"title":"Self-Propagating High-Temperature Synthesis of Complex Phases: The Example of TiC-Based Composites","authors":"W. Ramdane","doi":"10.3103/S1061386224010059","DOIUrl":"10.3103/S1061386224010059","url":null,"abstract":"<p>TiC-based composites with various initial compositions can be successfully synthesized by self-propagating high-temperature synthesis (SHS) from either mixtures containing thermite reactions or from pure elements. The effect of various experimental parameters on the combustion reaction kinetics and the relationship between structure, microstructure and mechanical behavior of products was identified. It was found that the matrix’s strengthening is one of the most important variables in boosting the composite’s strength, and adding alloy elements reduces the rate and size of cracks and pores in the cermet microstructure. The presence of TiC particles inhibits dislocation motion and has a significant effect on the composite’s mechanical behavior.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 1","pages":"1 - 25"},"PeriodicalIF":0.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalyst Based on Mesoporous Silica Gel Doped with Terbium and Modified with Nickel Obtained by High-Temperature Template Method for Aromatic Hydrocarbons Hydrogenation 用高温模板法制备的掺杂铽和改性镍的介孔硅胶催化剂用于芳香烃加氢反应
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-03-14 DOI: 10.3103/S1061386224010096
A. A. Tokranov, E. O. Tokranova, R. V. Shafigulin, A. V. Bulanova, M. V. Kuznetsov, A. V. Safonov, Yu. G. Morozov

The catalytic properties of materials based on terbium-doped and nickel-modified mesoporous silica gels prepared by the high-temperature template method were studied. The surface morphology and textural characteristics of the obtained samples were studied by scanning electron microscopy, X-ray phase analysis, and inductively coupled plasma mass spectrometry. The catalytic activity of the obtained catalysts was studied in the hydrogenation reaction of benzene, m-, p-, and o-xylene in the temperature range of 80–170°C and at a hydrogen pressure of 3 atm. It was established that doping with terbium leads to an increase in the catalytic activity of the catalyst modified with nickel in the hydrogenation reaction of benzene derivatives. Therefore, it was shown that mesoporous silica gel doped with terbium and modified with nickel is an effective catalyst for the hydrogenation of benzene and xylenes.

摘要 研究了高温模板法制备的掺铽和镍改性介孔二氧化硅凝胶材料的催化性能。通过扫描电子显微镜、X 射线相分析和电感耦合等离子体质谱法研究了所得样品的表面形貌和纹理特征。在温度为 80-170°C 和氢气压力为 3 atm 的条件下,研究了所得催化剂在苯、间二甲苯、对二甲苯和邻二甲苯加氢反应中的催化活性。结果表明,在苯衍生物的加氢反应中,掺入铽元素可提高用镍修饰的催化剂的催化活性。因此,研究表明,掺杂铽元素并用镍修饰的介孔硅胶是苯和二甲苯加氢反应的有效催化剂。
{"title":"Catalyst Based on Mesoporous Silica Gel Doped with Terbium and Modified with Nickel Obtained by High-Temperature Template Method for Aromatic Hydrocarbons Hydrogenation","authors":"A. A. Tokranov,&nbsp;E. O. Tokranova,&nbsp;R. V. Shafigulin,&nbsp;A. V. Bulanova,&nbsp;M. V. Kuznetsov,&nbsp;A. V. Safonov,&nbsp;Yu. G. Morozov","doi":"10.3103/S1061386224010096","DOIUrl":"10.3103/S1061386224010096","url":null,"abstract":"<p>The catalytic properties of materials based on terbium-doped and nickel-modified mesoporous silica gels prepared by the high-temperature template method were studied. The surface morphology and textural characteristics of the obtained samples were studied by scanning electron microscopy, X-ray phase analysis, and inductively coupled plasma mass spectrometry. The catalytic activity of the obtained catalysts was studied in the hydrogenation reaction of benzene, <i>m-</i>, <i>p-</i>, and <i>o-</i>xylene in the temperature range of 80–170°C and at a hydrogen pressure of 3 atm. It was established that doping with terbium leads to an increase in the catalytic activity of the catalyst modified with nickel in the hydrogenation reaction of benzene derivatives. Therefore, it was shown that mesoporous silica gel doped with terbium and modified with nickel is an effective catalyst for the hydrogenation of benzene and xylenes.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 1","pages":"49 - 57"},"PeriodicalIF":0.5,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure-Assisted Electrothermal Explosion of Titanium Nickelide 压力辅助下的镍化钛电热爆炸
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-18 DOI: 10.3103/S1061386223040039
Yu. V. Bogatov, A. V. Shcherbakov, V. A. Shcherbakov
{"title":"Pressure-Assisted Electrothermal Explosion of Titanium Nickelide","authors":"Yu. V. Bogatov,&nbsp;A. V. Shcherbakov,&nbsp;V. A. Shcherbakov","doi":"10.3103/S1061386223040039","DOIUrl":"10.3103/S1061386223040039","url":null,"abstract":"","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"335 - 337"},"PeriodicalIF":0.5,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled Oxidant-to-Fuel Ratios for Synthesis of Inorganic Hematite Pigment (α-Fe2O3) Using Solution Combustion Method with 6-Aminohexanoic Acid as Fuel 以 6-Aminohexanoic Acid 为燃料,采用溶液燃烧法合成无机赤铁矿颜料 (α-Fe2O3) 的氧化剂与燃料比率控制研究
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-18 DOI: 10.3103/S1061386223040040
E. A. Chavarriaga, A. A. Lopera, J. Alarcón

In this study, α-Fe2O3 was synthesized by solution combustion method using 6-aminohexanoic acid (AH) as a fuel and with different oxidizer-to-fuel ratios (Φ) of 0.6, 0.8, 1.0, 1.2, and 1.4. The as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), and UV–Vis spectroscopy. The results showed that the Φ ratio played a crucial role in determining the crystallinity and purity of the powders of α-Fe2O3. The α-Fe2O3 powder synthesized at an Φ ratio of 0.6 exhibited phase purity of hematite. This study demonstrates the importance of controlling the Φ ratio in the synthesis of α-Fe2O3 which could be used as an inorganic pigment in paints.

摘要 本研究以 6-氨基己酸(AH)为燃料,在 0.6、0.8、1.0、1.2 和 1.4 的不同氧化剂与燃料比(Φ)条件下,采用溶液燃烧法合成了 α-Fe2O3。利用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、红外光谱 (IR) 和紫外可见光谱对制备的粉末进行了表征。结果表明,Φ比对α-Fe2O3粉末的结晶度和纯度起着至关重要的作用。在 Φ 比为 0.6 时合成的 α-Fe2O3 粉末显示出赤铁矿的相纯度。这项研究证明了控制 α-Fe2O3 的 Φ 比例在合成中的重要性,α-Fe2O3 可用作涂料中的无机颜料。
{"title":"Controlled Oxidant-to-Fuel Ratios for Synthesis of Inorganic Hematite Pigment (α-Fe2O3) Using Solution Combustion Method with 6-Aminohexanoic Acid as Fuel","authors":"E. A. Chavarriaga,&nbsp;A. A. Lopera,&nbsp;J. Alarcón","doi":"10.3103/S1061386223040040","DOIUrl":"10.3103/S1061386223040040","url":null,"abstract":"<p>In this study, α-Fe<sub>2</sub>O<sub>3</sub> was synthesized by solution combustion method using 6-aminohexanoic acid (AH) as a fuel and with different oxidizer-to-fuel ratios (Φ) of 0.6, 0.8, 1.0, 1.2, and 1.4. The as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), and UV–Vis spectroscopy. The results showed that the Φ ratio played a crucial role in determining the crystallinity and purity of the powders of α-Fe<sub>2</sub>O<sub>3</sub>. The α-Fe<sub>2</sub>O<sub>3</sub> powder synthesized at an Φ ratio of 0.6 exhibited phase purity of hematite. This study demonstrates the importance of controlling the Φ ratio in the synthesis of α-Fe<sub>2</sub>O<sub>3</sub> which could be used as an inorganic pigment in paints.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"271 - 277"},"PeriodicalIF":0.5,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of Ti–5Al–2.5Fe Alloy and Its Hydride by HC and SHS Methods 用 HC 和 SHS 方法合成 Ti-5Al-2.5Fe 合金及其氢化物
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-18 DOI: 10.3103/S1061386223040088
D. Mayilyan, A. Aleksanyan

The aim of this investigation was to synthesis Ti–5Al–2.5Fe alloy by “hydride cycle” (HC) method. The crystal structure of obtained alloy was studied by powder X-ray diffraction. It was found that the alloy was a near α-alloy containing main α phase (hexagonal close-packed structure, space group 194: P63/mmc) and small amount of β phase (body-centered cubic structure, space group 229: Im-3m). The microstructure of obtained materials was studied using scanning electron microscope (SEM) in a back-scattered electron (BSE) mode. On the SEM image of the synthesized compacted alloy no cracks and pores were observed. The SEM measurements showed that the particles synthesized hydride have size distribution in the range of 1–10 μm. Energy dispersive X-ray spectrometry (EDS) analysis showed that the chemical compositions of observed main grey phase were close to the nominal composition of Ti–5Al–2.5Fe α-phase. The hydride of Ti–5Al–2.5Fe alloy was synthesized by self-propagating high temperature synthesis (SHS) method. It was shown that Ti–5Al–2.5Fe tablets reacted with hydrogen without preliminary crushing in SHS mode at range of hydrogen pressure P(H2) = 1–2.5 MPa. Hydrogen capacity of synthesized (Ti–5Al–2.5Fe)H1.45 hydride was equal to 3.04 wt %. The density of synthesized alloy before (ρ1 = 4.0487 g/cm3) and after (ρ2 = 4.2511 g/cm3) the repeating of hydrogenation–dehydrogenation cycle was measured. It was found that as a result of cycle the density of sample was increased by 5%.

摘要 本研究旨在通过 "氢化物循环"(HC)法合成 Ti-5Al-2.5Fe 合金。通过粉末 X 射线衍射研究了所获得合金的晶体结构。研究发现,合金是一种近似 α 的合金,含有主要的 α 相(六方紧密堆积结构,空间群 194:P63/mmc)和少量的 β 相(体心立方结构,空间群 229:Im-3m)。利用扫描电子显微镜(SEM)在背散射电子(BSE)模式下研究了所得材料的微观结构。在合成的致密合金的扫描电镜图像上,没有观察到裂缝和气孔。扫描电镜测量结果表明,合成氢化物的颗粒大小分布在 1-10 μm 之间。能量色散 X 射线光谱(EDS)分析表明,观察到的灰色主相的化学成分接近于 Ti-5Al-2.5Fe α 相的标称成分。Ti-5Al-2.5Fe 合金的氢化物是通过自蔓延高温合成(SHS)法合成的。结果表明,在氢压 P(H2) = 1-2.5 MPa 的范围内,Ti-5Al-2.5Fe 片在 SHS 模式下无需初步破碎即可与氢发生反应。合成的(Ti-5Al-2.5Fe)H1.45 氢化物的氢容量为 3.04 wt %。在重复氢化-氢化循环之前(ρ1 = 4.0487 g/cm3)和之后(ρ2 = 4.2511 g/cm3),测量了合成合金的密度。结果发现,循环后样品的密度增加了 5%。
{"title":"Synthesis of Ti–5Al–2.5Fe Alloy and Its Hydride by HC and SHS Methods","authors":"D. Mayilyan,&nbsp;A. Aleksanyan","doi":"10.3103/S1061386223040088","DOIUrl":"10.3103/S1061386223040088","url":null,"abstract":"<p>The aim of this investigation was to synthesis Ti–5Al–2.5Fe alloy by “hydride cycle” (HC) method. The crystal structure of obtained alloy was studied by powder X-ray diffraction. It was found that the alloy was a near α-alloy containing main α phase (hexagonal close-packed structure, space group 194: <i>P</i>6<sub>3</sub>/<i>mmc</i>) and small amount of β phase (body-centered cubic structure, space group 229: <i>Im</i>-3<i>m</i><b>)</b><i>.</i> The microstructure of obtained materials was studied using scanning electron microscope (SEM) in a back-scattered electron (BSE) mode. On the SEM image of the synthesized compacted alloy no cracks and pores were observed. The SEM measurements showed that the particles synthesized hydride have size distribution in the range of 1–10 μm. Energy dispersive X-ray spectrometry (EDS) analysis showed that the chemical compositions of observed main grey phase were close to the nominal composition of Ti–5Al–2.5Fe α-phase. The hydride of Ti–5Al–2.5Fe alloy was synthesized by self-propagating high temperature synthesis (SHS) method. It was shown that Ti–5Al–2.5Fe tablets reacted with hydrogen without preliminary crushing in SHS mode at range of hydrogen pressure <i>P</i>(H<sub>2</sub>) = 1–2.5 MPa. Hydrogen capacity of synthesized (Ti–5Al–2.5Fe)H<sub>1.45</sub> hydride was equal to 3.04 wt %. The density of synthesized alloy before (ρ<sub>1</sub> = 4.0487 g/cm<sup>3</sup>) and after (ρ<sub>2</sub> = 4.2511 g/cm<sup>3</sup>) the repeating of hydrogenation–dehydrogenation cycle was measured. It was found that as a result of cycle the density of sample was increased by 5%.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"264 - 270"},"PeriodicalIF":0.5,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combustion of Inhomogeneous Titanium + Carbon Black Powder Mixture 非均质钛+炭黑粉末混合物的燃烧
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-18 DOI: 10.3103/S1061386223040064
S. V. Kostin, P. M. Krishenik

The stability of combustion of titanium + carbon black powder mixture to a local excess of the component was experimentally studied. The influence of the spreading of titanium melt or liquid reaction product on the stability of the combustion transition through transverse carbon powder barrier was considered. The direction of melt movement with respect to the front propagation direction was determined. It was shown that the stability of the combustion transition through the barrier is determined by thermal interaction between the combustion wave and the barrier and is not directly related to the convective heat transfer by the melt.

摘要 实验研究了钛+炭黑粉末混合物在成分局部过量时的燃烧稳定性。考虑了钛熔体或液态反应产物的扩散对穿过横向碳粉屏障的燃烧过渡稳定性的影响。确定了熔体相对于前沿传播方向的运动方向。结果表明,穿过阻挡层的燃烧过渡的稳定性是由燃烧波和阻挡层之间的热相互作用决定的,与熔体的对流传热没有直接关系。
{"title":"Combustion of Inhomogeneous Titanium + Carbon Black Powder Mixture","authors":"S. V. Kostin,&nbsp;P. M. Krishenik","doi":"10.3103/S1061386223040064","DOIUrl":"10.3103/S1061386223040064","url":null,"abstract":"<p>The stability of combustion of titanium + carbon black powder mixture to a local excess of the component was experimentally studied. The influence of the spreading of titanium melt or liquid reaction product on the stability of the combustion transition through transverse carbon powder barrier was considered. The direction of melt movement with respect to the front propagation direction was determined. It was shown that the stability of the combustion transition through the barrier is determined by thermal interaction between the combustion wave and the barrier and is not directly related to the convective heat transfer by the melt.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"254 - 257"},"PeriodicalIF":0.5,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combustion Synthesis and Characterization of Ultra-High-Temperature NbB2–HfB2 Solid Solutions 超高温 NbB2-HfB2 固溶体的燃烧合成与表征
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-18 DOI: 10.3103/S1061386223040143
V. V. Kurbatkina, E. I. Patsera, T. A. Sviridova, N. A. Kochetov, E. A. Levashov

This paper presents an in-depth study on the combustion synthesis, solid-solution formation, processing, and characterization of NbB2–HfB2 ceramics, aiming to explore their potential applications, particularly in industries requiring high-performance materials. We conducted macrokinetic measurements and fitted regression models to predict combustion temperature and velocity for compositions ranging from 50 to 100% HfB2. A combined method of ball milling and hot pressing was developed for processing the combustion products into dense ceramics. These methods resulted in samples with relative densities reaching 97%, hardness of up to 34 GPa, and Young’s modulus of up to 530 GPa, with NbB2–50% HfB2 solid solution exhibiting the best mechanical properties. The study revealed a linear increase in thermal properties and density with the rise in HfB2 content. The thermal conductivity of the solid solutions in the Nb–Hf–B system ranged from 34 to 40 W/mK and was found to increase with temperature, making these ceramics suitable for ultra-high-temperature applications. The findings have significant implications for aerospace and high-performance engineering sectors and provide a solid foundation for further investigation of Nb–Hf–B ceramics under real-world operational conditions.

摘要 本文对 NbB2-HfB2 陶瓷的燃烧合成、固溶形成、加工和表征进行了深入研究,旨在探索其潜在应用,特别是在需要高性能材料的行业中。我们进行了宏观动力学测量,并拟合了回归模型,以预测 50% 到 100% HfB2 成分的燃烧温度和速度。我们开发了一种球磨和热压相结合的方法,用于将燃烧产物加工成致密陶瓷。这些方法使样品的相对密度达到 97%,硬度高达 34 GPa,杨氏模量高达 530 GPa,其中 NbB2-50% HfB2 固溶体表现出最佳的机械性能。研究表明,随着 HfB2 含量的增加,热性能和密度也呈线性增长。Nb-Hf-B 系统中固溶体的热导率在 34 到 40 W/mK 之间,并且随着温度的升高而增加,这使得这些陶瓷适用于超高温应用。这些发现对航空航天和高性能工程领域具有重要意义,并为在实际操作条件下进一步研究 Nb-Hf-B 陶瓷奠定了坚实的基础。
{"title":"Combustion Synthesis and Characterization of Ultra-High-Temperature NbB2–HfB2 Solid Solutions","authors":"V. V. Kurbatkina,&nbsp;E. I. Patsera,&nbsp;T. A. Sviridova,&nbsp;N. A. Kochetov,&nbsp;E. A. Levashov","doi":"10.3103/S1061386223040143","DOIUrl":"10.3103/S1061386223040143","url":null,"abstract":"<p>This paper presents an in-depth study on the combustion synthesis, solid-solution formation, processing, and characterization of NbB<sub>2</sub>–HfB<sub>2</sub> ceramics, aiming to explore their potential applications, particularly in industries requiring high-performance materials. We conducted macrokinetic measurements and fitted regression models to predict combustion temperature and velocity for compositions ranging from 50 to 100% HfB<sub>2</sub>. A combined method of ball milling and hot pressing was developed for processing the combustion products into dense ceramics. These methods resulted in samples with relative densities reaching 97%, hardness of up to 34 GPa, and Young’s modulus of up to 530 GPa, with NbB<sub>2</sub>–50% HfB<sub>2</sub> solid solution exhibiting the best mechanical properties. The study revealed a linear increase in thermal properties and density with the rise in HfB<sub>2</sub> content. The thermal conductivity of the solid solutions in the Nb–Hf–B system ranged from 34 to 40 W/mK and was found to increase with temperature, making these ceramics suitable for ultra-high-temperature applications. The findings have significant implications for aerospace and high-performance engineering sectors and provide a solid foundation for further investigation of Nb–Hf–B ceramics under real-world operational conditions.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"313 - 325"},"PeriodicalIF":0.5,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Molybdenum–Copper Pseudoalloy 制备钼铜伪合金
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-18 DOI: 10.3103/S106138622304012X
V. Yu. Barinov, A. V. Shcherbakov
{"title":"Preparation of Molybdenum–Copper Pseudoalloy","authors":"V. Yu. Barinov,&nbsp;A. V. Shcherbakov","doi":"10.3103/S106138622304012X","DOIUrl":"10.3103/S106138622304012X","url":null,"abstract":"","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"344 - 346"},"PeriodicalIF":0.5,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogenation of CO2 on Co–Ni Catalysts Produced by Low-Temperature Combustion Using Modified Silica Fabric 使用改性二氧化硅织物低温燃烧制备的 Co-Ni 催化剂上的 CO2 加氢反应
IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-18 DOI: 10.3103/S1061386223040131
V. N. Borshch, I. M. Bystrova, E. V. Pugacheva, N. Yu. Khomenko

Co–Ni supported catalysts were prepared by low-temperature combustion of dried mixture of solutions of cobalt and nickel nitrates and urea after impregnation of silica fabric (>97% SiO2) premodified with 5, 10, and 15 wt % Al2O3. Modification of support was carried out by low-temperature combustion of dried mixture of solutions of aluminum nitrate and urea. Prepared supports and related catalysts were characterized by XRD, SEM, EDS, and BET method. The unreduced catalysts were found to contain oxides and complex oxides of nickel and cobalt. Reduction of catalysts with hydrogen at 400°C for 1 h was shown to contribute to forming metallic phases of Co and Ni; however, the nickel phase was detected only in reduced catalyst on unmodified fabric. The catalytic activity of catalysts was determined in the temperature range of 150–400°С. It was found that the reduced catalyst on support modified with 5 wt % Al2O3 possesses the highest CO2 conversion (61.8%) and methane yield (3.61 vol %) at 400°С.

摘要 在浸渍预先用 5、10 和 15 wt % Al2O3 改性过的二氧化硅织物(SiO2 含量为 97%)之后,通过低温燃烧硝酸钾和尿素的干燥混合物,制备了钴镍支撑催化剂。通过低温燃烧硝酸铝和尿素的干燥混合物溶液来对支撑物进行改性。用 XRD、SEM、EDS 和 BET 法对制备的支撑物和相关催化剂进行了表征。发现未还原的催化剂含有镍和钴的氧化物和复合氧化物。在 400°C 下用氢气还原催化剂 1 小时,结果表明这有助于形成钴和镍的金属相;然而,只有在未改性织物上的还原催化剂中才检测到镍相。在 150-400°С 的温度范围内测定了催化剂的催化活性。结果发现,在 400°С 时,用 5 wt % Al2O3 改性的载体上的还原催化剂具有最高的二氧化碳转化率(61.8%)和甲烷产率(3.61 vol %)。
{"title":"Hydrogenation of CO2 on Co–Ni Catalysts Produced by Low-Temperature Combustion Using Modified Silica Fabric","authors":"V. N. Borshch,&nbsp;I. M. Bystrova,&nbsp;E. V. Pugacheva,&nbsp;N. Yu. Khomenko","doi":"10.3103/S1061386223040131","DOIUrl":"10.3103/S1061386223040131","url":null,"abstract":"<p>Co–Ni supported catalysts were prepared by low-temperature combustion of dried mixture of solutions of cobalt and nickel nitrates and urea after impregnation of silica fabric (&gt;97% SiO<sub>2</sub>) premodified with 5, 10, and 15 wt % Al<sub>2</sub>O<sub>3</sub>. Modification of support was carried out by low-temperature combustion of dried mixture of solutions of aluminum nitrate and urea. Prepared supports and related catalysts were characterized by XRD, SEM, EDS, and BET method. The unreduced catalysts were found to contain oxides and complex oxides of nickel and cobalt. Reduction of catalysts with hydrogen at 400°C for 1 h was shown to contribute to forming metallic phases of Co and Ni; however, the nickel phase was detected only in reduced catalyst on unmodified fabric. The catalytic activity of catalysts was determined in the temperature range of 150–400°С. It was found that the reduced catalyst on support modified with 5 wt % Al<sub>2</sub>O<sub>3</sub> possesses the highest CO<sub>2</sub> conversion (61.8%) and methane yield (3.61 vol %) at 400°С.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 4","pages":"302 - 312"},"PeriodicalIF":0.5,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Self-Propagating High-Temperature Synthesis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1