The paper shows that the second law of thermodynamics and Pauli principle are implications of the Bell inequality.
证明了热力学第二定律和泡利原理是贝尔不等式的蕴涵。
{"title":"Quantum Correlations: Entropy, Wave/Corpuscle Dualism, Bell Inequality","authors":"S. Tosto","doi":"10.4236/OJPC.2019.92005","DOIUrl":"https://doi.org/10.4236/OJPC.2019.92005","url":null,"abstract":"The paper shows that the second law of thermodynamics and Pauli principle are implications of the Bell inequality.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49559107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Tepech-Carrillo, R. Licona-Ibarra, J. F. Rivas-Silva, A. Flores-Riveros
In this study, Density Functional Theory including a dispersion correction is employed to model and analyze the structural, electronic and local reactivity of the (100) surface of felodipine. The surface energy calculated at the Generalized Gradient Approximation (GGA) level, along with plane waves as basis set and ultrasoft pseudopotentials, shows that the (100) surface is the most stable as compared to the (010) and (110) ones. In particular, we have focused on performing a quantitative study of the reactivity of the surface by means of the Fukui function and through the HOMO and LUMO populations. Our results can be related to some applications in the pharmaceutical chemistry of this compound.
{"title":"Study of the Reactivity of (100) Felodipine Surface Model Based on DFT Concepts","authors":"Carlos Tepech-Carrillo, R. Licona-Ibarra, J. F. Rivas-Silva, A. Flores-Riveros","doi":"10.4236/OJPC.2019.91001","DOIUrl":"https://doi.org/10.4236/OJPC.2019.91001","url":null,"abstract":"In this study, Density Functional Theory including a dispersion correction is employed to model and analyze the structural, electronic and local reactivity of the (100) surface of felodipine. The surface energy calculated at the Generalized Gradient Approximation (GGA) level, along with plane waves as basis set and ultrasoft pseudopotentials, shows that the (100) surface is the most stable as compared to the (010) and (110) ones. In particular, we have focused on performing a quantitative study of the reactivity of the surface by means of the Fukui function and through the HOMO and LUMO populations. Our results can be related to some applications in the pharmaceutical chemistry of this compound.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46807438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Poroelastic Modelling of Gravitational Compaction","authors":"P. B. van der Weg","doi":"10.4236/ojpc.2019.93008","DOIUrl":"https://doi.org/10.4236/ojpc.2019.93008","url":null,"abstract":"","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70504233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Panagis G. Papadopoulos, Panos D. Kiousis, Christos G. Karayannis
{"title":"Numerical Experiment for Dipole-Dipole Interaction in Electro-Magnetism with Help of a Regular Tetrahedron","authors":"Panagis G. Papadopoulos, Panos D. Kiousis, Christos G. Karayannis","doi":"10.4236/ojpc.2019.91002","DOIUrl":"https://doi.org/10.4236/ojpc.2019.91002","url":null,"abstract":"","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70504414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anion exchange membranesusing brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) as starting material were prepared from one-step functionalization by 4-methylthiazole (MTz). The obtain membranes with high thermal stability and mechanical strength showed satisfied diffusion dialysis performance for acid recovery. Specifically, when the optimal membrane was evaluated to recover acid from the simulated iron polishing waste solution (1.0 mol·L-1 FeCl2 + 0.2 mol·L-1 HCl), its acid diffusion coefficient (UH+) was 0.019 m h-1 and separation factor was 40.1 at 25°C, both of these two parameters are much higher than the corresponding values of the commercial DF-120 membrane, suggesting the great potential in the practical application for acid recovery.
以溴化聚(2,6-二甲基-1,4-苯基氧化物)(BPPO)为原料,采用4-甲基噻唑(MTz)一步官能化法制备了阴离子交换膜。所得膜具有较高的热稳定性和机械强度,具有良好的酸回收扩散透析性能。其中,对模拟抛光废液中酸的最佳回收膜(1.0 mol·L-1 FeCl2 + 0.2 mol·L-1 HCl)进行评价时,在25℃条件下,其酸扩散系数(UH+)为0.019 m h-1,分离因子为40.1,这两个参数均远高于工业DF-120膜的相应值,表明在酸回收的实际应用中具有很大的潜力。
{"title":"One-Step Fabrication of Methylthiazole-Functionalized Anion Exchange Membranes for Diffusion Dialysis","authors":"Hong Hu, Wei Song","doi":"10.4236/ojpc.2018.84007","DOIUrl":"https://doi.org/10.4236/ojpc.2018.84007","url":null,"abstract":"Anion exchange membranesusing brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) as starting material were prepared from one-step functionalization by 4-methylthiazole (MTz). The obtain membranes with high thermal stability and mechanical strength showed satisfied diffusion dialysis performance for acid recovery. Specifically, when the optimal membrane was evaluated to recover acid from the simulated iron polishing waste solution (1.0 mol·L-1 FeCl2 + 0.2 mol·L-1 HCl), its acid diffusion coefficient (UH+) was 0.019 m h-1 and separation factor was 40.1 at 25°C, both of these two parameters are much higher than the corresponding values of the commercial DF-120 membrane, suggesting the great potential in the practical application for acid recovery.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"08 1","pages":"100-109"},"PeriodicalIF":0.0,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45480723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The law of mass action, based on maxwellian statistics, cannot explain recent epicatalysis experiments but does when generalized to non-maxwellian statistics. Challenges to the second law are traced to statistical heterogeneity that falls outside assumptions of homogeneity and indistinguishability made by Boltzmann, Gibbs, Tolman and Von Neumann in their H-Theorems. Epicatalysis operates outside these assumptions. Hence, H-Theorems do not apply to it and the second law is bypassed, not broken. There is no contradiction with correctly understood established physics. Other phenomena also based on heterogeneous statistics include non-maxwellian adsorption, the field-induced thermoelectric effect and the reciprocal Hall effect. Elementary particles have well known distributions such as Fermi-Dirac and Bose Einstein, but composite particles such as those involved in chemical reactions, have complex intractable statistics not necessarily maxwellian and best determined by quantum modeling methods. A step by step solution for finding the quantum thermodynamic properties of a quantum composite gas, that avoids the computational requirement of modeling a large number of composite particles includes 1) quantum molecular modeling of a few particles, 2) determining their available microstates, 3) producing their partition function, 4) generating their statistics, and 5) producing the epicatalytic parameter for the generalized law of mass action.
{"title":"Quantum Statistics in Physical Chemistry, the Law of Mass Action and Epicatalysis","authors":"George S. Levy","doi":"10.4236/OJPC.2018.84006","DOIUrl":"https://doi.org/10.4236/OJPC.2018.84006","url":null,"abstract":"The law of mass action, based on maxwellian statistics, cannot explain recent epicatalysis experiments but does when generalized to non-maxwellian statistics. Challenges to the second law are traced to statistical heterogeneity that falls outside assumptions of homogeneity and indistinguishability made by Boltzmann, Gibbs, Tolman and Von Neumann in their H-Theorems. Epicatalysis operates outside these assumptions. Hence, H-Theorems do not apply to it and the second law is bypassed, not broken. There is no contradiction with correctly understood established physics. Other phenomena also based on heterogeneous statistics include non-maxwellian adsorption, the field-induced thermoelectric effect and the reciprocal Hall effect. Elementary particles have well known distributions such as Fermi-Dirac and Bose Einstein, but composite particles such as those involved in chemical reactions, have complex intractable statistics not necessarily maxwellian and best determined by quantum modeling methods. A step by step solution for finding the quantum thermodynamic properties of a quantum composite gas, that avoids the computational requirement of modeling a large number of composite particles includes 1) quantum molecular modeling of a few particles, 2) determining their available microstates, 3) producing their partition function, 4) generating their statistics, and 5) producing the epicatalytic parameter for the generalized law of mass action.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"08 1","pages":"81-99"},"PeriodicalIF":0.0,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48983434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The kinetics of reaction between cyclic monoimides (succinimide, phtalimide, and glutarimide) with ethylene and propylene oxides in presence of sodium hydroxide was studied. The effect of substrate and catalyst concentrations on the course of the reaction was investigated. Kinetics of reaction was studied by dilatometry, i.e. by measuring volume contraction of reaction mixture. The kinetic law describing the reaction of imides with oxiranes is: . where ccat, cAH and cB are concentrations of catalyst, imide, and oxirane, respectively. The relative reactivity of imides and oxiranes was: GI > PI ≥ SI and EO > PO. The reaction mechanism was proposed based upon experimentally determined rate law for the reaction of cyclic monoimides and oxiranes as well as analytical and instrumental analysis of products. The elementary reaction between oxirane and imide anion is rate determining step. The imide anion is formed by hydrogen cation transfer into catalytic hydroxide anion from dissociated NaOH. In the consecutive elemental reaction an imidate anion attack on the oxirane molecule occurs. It is the slowest stage of the reaction, limiting the entire process. All the studied reactions obey the same mechanism as can be concluded from isokinetic relationship of studied systems)
{"title":"Hydroxyalkylation of Cyclic Imides with Oxiranes Part III. Mechanism of the Reaction in Presence of Sodium Hydroxide Catalyst","authors":"J. Lubczak, Renata Lubczak, Dorota Naróg","doi":"10.4236/ojpc.2018.83005","DOIUrl":"https://doi.org/10.4236/ojpc.2018.83005","url":null,"abstract":"The kinetics of reaction between cyclic monoimides (succinimide, phtalimide, and glutarimide) with ethylene and propylene oxides in presence of sodium hydroxide was studied. The effect of substrate and catalyst concentrations on the course of the reaction was investigated. Kinetics of reaction was studied by dilatometry, i.e. by measuring volume contraction of reaction mixture. The kinetic law describing the reaction of imides with oxiranes is: . where ccat, cAH and cB are concentrations of catalyst, imide, and oxirane, respectively. The relative reactivity of imides and oxiranes was: GI > PI ≥ SI and EO > PO. The reaction mechanism was proposed based upon experimentally determined rate law for the reaction of cyclic monoimides and oxiranes as well as analytical and instrumental analysis of products. The elementary reaction between oxirane and imide anion is rate determining step. The imide anion is formed by hydrogen cation transfer into catalytic hydroxide anion from dissociated NaOH. In the consecutive elemental reaction an imidate anion attack on the oxirane molecule occurs. It is the slowest stage of the reaction, limiting the entire process. All the studied reactions obey the same mechanism as can be concluded from isokinetic relationship of studied systems)","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"08 1","pages":"67-79"},"PeriodicalIF":0.0,"publicationDate":"2018-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47349356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. G. Papadopoulos, C. Koutitas, Yannis N. Dimitropoulos, E. Aifantis
For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arranged on the outer surface of nucleus. Then, by taking into account the nucleus-electron interaction (attractive and repulsive) and the mutual electron-electron repulsions, and by a simple step-by-step nonlinear static analysis program, all the electrons are found to equilibrate on the outer surface of the same sphere, which is concentric and larger than nucleus. In a second stage, starting from an equilibrium sphere of electrons, one of the electrons is subjected to gradual forced removal, radially and outwards with respect to nucleus. Within each removal step, the produced work increment is determined and the increments are summed. When no more significant attraction is exerted by nucleus to removed electron, the total work gives the Ionization Energy. After removing of single electron, the remaining electrons fall on a lower shell, that is, they equilibrate on the outer surface of a smaller concentric sphere. For nucleus-electron interaction, an L-J (Lennard-Jones) type curve, attractive and repulsive, is adopted. When the parameter of this curve is n > 1.0, the Ionization Energy exhibits an upper bound. As parameter n increases from 1.0 up to 2.0, the attractive potential of L-J curve is gradually weakened. The proposed model is applied on Argon. It is observed that, as the number of electrons increases, the radius of equilibrium sphere increases, too, whereas the attractive nucleus-electron potential is reduced; thus the Ionization Energy is reduced, too. Particularly, as the number of electrons and the radius of equilibrium sphere exceed some critical values, the above two last quantities exhibit abrupt falls. A regular polyhedron is revealed, which can accommodate Elements up to atomic number Z = 146, that is 28 more than Z = 118 of existing last Element, as guide for initial locations of electrons in the above first program.
{"title":"Simplified Step-by-Step Nonlinear Static Program Investigating Equilibrium Conditions of Electrons in Atom and Ionization Energies: Case Study on Argon","authors":"P. G. Papadopoulos, C. Koutitas, Yannis N. Dimitropoulos, E. Aifantis","doi":"10.4236/OJPC.2018.82003","DOIUrl":"https://doi.org/10.4236/OJPC.2018.82003","url":null,"abstract":"For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arranged on the outer surface of nucleus. Then, by taking into account the nucleus-electron interaction (attractive and repulsive) and the mutual electron-electron repulsions, and by a simple step-by-step nonlinear static analysis program, all the electrons are found to equilibrate on the outer surface of the same sphere, which is concentric and larger than nucleus. In a second stage, starting from an equilibrium sphere of electrons, one of the electrons is subjected to gradual forced removal, radially and outwards with respect to nucleus. Within each removal step, the produced work increment is determined and the increments are summed. When no more significant attraction is exerted by nucleus to removed electron, the total work gives the Ionization Energy. After removing of single electron, the remaining electrons fall on a lower shell, that is, they equilibrate on the outer surface of a smaller concentric sphere. For nucleus-electron interaction, an L-J (Lennard-Jones) type curve, attractive and repulsive, is adopted. When the parameter of this curve is n > 1.0, the Ionization Energy exhibits an upper bound. As parameter n increases from 1.0 up to 2.0, the attractive potential of L-J curve is gradually weakened. The proposed model is applied on Argon. It is observed that, as the number of electrons increases, the radius of equilibrium sphere increases, too, whereas the attractive nucleus-electron potential is reduced; thus the Ionization Energy is reduced, too. Particularly, as the number of electrons and the radius of equilibrium sphere exceed some critical values, the above two last quantities exhibit abrupt falls. A regular polyhedron is revealed, which can accommodate Elements up to atomic number Z = 146, that is 28 more than Z = 118 of existing last Element, as guide for initial locations of electrons in the above first program.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"8 1","pages":"33-56"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45020797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Following the introduction of the new even-odd and isoelectronic rules and definitions affecting the understanding of electronic structure and bonds, the author has thought necessary to summarize understandings in the form of a table. The classical periodic table, a simple tool used by generations of physicists, is here extended to become a useful tool aimed specifically at chemists. In chemistry, position and number of covalent bonds of each atom are needed, as well as the exact location of charges. The table gives the number of possible bonds for each element and reveals how it is affected by charges. Additionally, the specific table indicates for each atom its isoelectronic elements and highlights the distinction between organic and inorganic elements. Discussion is led on the first two rows of the table by successfully comparing its statement with more than 50 well-known liquid and gaseous compounds.
{"title":"A Specific Periodic Table for Chemistry of Organic, Semi-Organic and Inorganic Elements: Compatibility with the Even-Odd Rule,the Number of Electrons and the Isoelectronicity Rule","authors":"G. Auvert","doi":"10.4236/OJPC.2018.82004","DOIUrl":"https://doi.org/10.4236/OJPC.2018.82004","url":null,"abstract":"Following the introduction of the new even-odd and isoelectronic rules and definitions affecting the understanding of electronic structure and bonds, the author has thought necessary to summarize understandings in the form of a table. The classical periodic table, a simple tool used by generations of physicists, is here extended to become a useful tool aimed specifically at chemists. In chemistry, position and number of covalent bonds of each atom are needed, as well as the exact location of charges. The table gives the number of possible bonds for each element and reveals how it is affected by charges. Additionally, the specific table indicates for each atom its isoelectronic elements and highlights the distinction between organic and inorganic elements. Discussion is led on the first two rows of the table by successfully comparing its statement with more than 50 well-known liquid and gaseous compounds.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"08 1","pages":"57-66"},"PeriodicalIF":0.0,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45506809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. N. Njong, B. N. Ndosiri, E. Nfor, O. E. Offiong
The inhibition performance of 1-hydralazinophthalazine (HPZ) (1), and synthesized1-(2-[(5-methylfuran-2-yl)methylene)] hydrazono) phthalazine (MFHPZ) (2), 1-(phthalazin-1(2H)-one) [(pyridin-2-yl) ethylidene] hydrazone (ACPHPZ) (3) and (2-acetylthiophene hydrazono) phthalazine (ACTHPZ) (4) has been investigated for mild steel in 1 M HCl. Compound 4 shows maximum inhibition efficiency of 93% at 5.0 × 10-3 M concentration. The evaluation of thermodynamics and activation parameters indicated spontaneous adsorption of the inhibitor molecules which takes place through chemisorption. The adsorption of 3 and 2 follows Langmuir adsorption isotherm and Temkin adsorption isotherm for 4 and 1. The inhibitor efficiency was of the order 4 > 3 > 1 > 2. Impedance study for the representative inhibitor compounds 4 and 3 showed that decrease in charge transfer resistance is responsible for effective protection of mild steel surface by the tested inhibitor.
{"title":"Corrosion Inhibitory Studies of Novel Schiff Bases Derived from Hydralazine Hydrochloride on Mild Steel in Acidic Media","authors":"R. N. Njong, B. N. Ndosiri, E. Nfor, O. E. Offiong","doi":"10.4236/OJPC.2018.81002","DOIUrl":"https://doi.org/10.4236/OJPC.2018.81002","url":null,"abstract":"The inhibition performance of 1-hydralazinophthalazine (HPZ) (1), and synthesized1-(2-[(5-methylfuran-2-yl)methylene)] hydrazono) phthalazine (MFHPZ) (2), 1-(phthalazin-1(2H)-one) [(pyridin-2-yl) ethylidene] hydrazone (ACPHPZ) (3) and (2-acetylthiophene hydrazono) phthalazine (ACTHPZ) (4) has been investigated for mild steel in 1 M HCl. Compound 4 shows maximum inhibition efficiency of 93% at 5.0 × 10-3 M concentration. The evaluation of thermodynamics and activation parameters indicated spontaneous adsorption of the inhibitor molecules which takes place through chemisorption. The adsorption of 3 and 2 follows Langmuir adsorption isotherm and Temkin adsorption isotherm for 4 and 1. The inhibitor efficiency was of the order 4 > 3 > 1 > 2. Impedance study for the representative inhibitor compounds 4 and 3 showed that decrease in charge transfer resistance is responsible for effective protection of mild steel surface by the tested inhibitor.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":"08 1","pages":"15-32"},"PeriodicalIF":0.0,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46246897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}