Pub Date : 2023-11-28DOI: 10.1134/S1069351323060150
O. V. Pilipenko, I. E. Nachasova, E. S. Azarov
Abstract—The paper reports petromagnetic and archeomagnetic studies of ceramic fragments of the Late Bronze and Early Iron ages from archeological sites of the Grishinskii Istok III, Tyukov gorodok, and Shishkino hillfort, which are located in the Oka River basin, Ryazan district, Russian Federation. In total, 43 determinations of geomagnetic field intensity were obtained for the time interval of 1500–400 B.C., including 10 determinations for ceramics of the Grishinskii Istok III, 11 determinations for ceramics of the Tyukov gorodok, and 22 determinations for ceramics of the Shishkino hillfort. The investigated time interval is characterized by the elevated values of the geomagnetic field intensity of 55–59 μT, which are much higher than the average field intensity for the Russian Plain in the IV–first half of III millennium B.C. Obtained VADM values for the central Russian Plain fall in a wide range of values obtained on the Georgian archeological sites located in the same longitudinal sector. A large scatter of data can be related both to the large error in 14C determination, which is comparable with the duration of the time intervals under investigation, and with the high velocity of magnetic field variations within this time interval.
{"title":"Geomagnetic Field Paleointensity Variations Recorded in the Archeological Ceramics of the Late Bronze and Early Iron Ages in the Central Russian Plain","authors":"O. V. Pilipenko, I. E. Nachasova, E. S. Azarov","doi":"10.1134/S1069351323060150","DOIUrl":"10.1134/S1069351323060150","url":null,"abstract":"<div><div><p><b>Abstract</b>—The paper reports petromagnetic and archeomagnetic studies of ceramic fragments of the Late Bronze and Early Iron ages from archeological sites of the Grishinskii Istok III, Tyukov gorodok, and Shishkino hillfort, which are located in the Oka River basin, Ryazan district, Russian Federation. In total, 43 determinations of geomagnetic field intensity were obtained for the time interval of 1500–400 B.C., including 10 determinations for ceramics of the Grishinskii Istok III, 11 determinations for ceramics of the Tyukov gorodok, and 22 determinations for ceramics of the Shishkino hillfort. The investigated time interval is characterized by the elevated values of the geomagnetic field intensity of 55–59 μT, which are much higher than the average field intensity for the Russian Plain in the IV–first half of III millennium B.C. Obtained <i>VADM</i> values for the central Russian Plain fall in a wide range of values obtained on the Georgian archeological sites located in the same longitudinal sector. A large scatter of data can be related both to the large error in <sup>14</sup>C determination, which is comparable with the duration of the time intervals under investigation, and with the high velocity of magnetic field variations within this time interval.</p></div></div>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"1025 - 1043"},"PeriodicalIF":1.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1134/S1069351323060046
S. V. Baranov, P. N. Shebalin, I. A. Vorobieva, O. V. Selyutskaya
Abstract—This paper analyzes the use of the automated aftershock hazards assessment system (AFCAST) through the example of a series of aftershocks of the Mw 7.8 earthquake in Turkey of February 6, 2023 (the Pazarcik earthquake). The paper presents automated estimates of the aftershock activity area, the magnitude of the strongest aftershock, and the duration of the hazardous period, yielded using data on the main shock and on the first aftershocks.
{"title":"Automated Assessment of Hazards of Aftershocks of the Mw 7.8 Earthquake in Turkey of February 6, 2023*","authors":"S. V. Baranov, P. N. Shebalin, I. A. Vorobieva, O. V. Selyutskaya","doi":"10.1134/S1069351323060046","DOIUrl":"10.1134/S1069351323060046","url":null,"abstract":"<div><div><p><b>Abstract—</b>This paper analyzes the use of the automated aftershock hazards assessment system (AFCAST) through the example of a series of aftershocks of the <i>M</i><sub><i>w</i></sub> 7.8 earthquake in Turkey of February 6, 2023 (the Pazarcik earthquake). The paper presents automated estimates of the aftershock activity area, the magnitude of the strongest aftershock, and the duration of the hazardous period, yielded using data on the main shock and on the first aftershocks.</p></div></div>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"939 - 946"},"PeriodicalIF":1.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1069351323060046.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1134/S1069351323060186
S. A. Riabova, E. V. Olshanskaya, S. L. Shalimov
Abstract—Ground-based magnetometers and ionospheric radio probing by means of GPS were used to analyze and interpret specific variations of the geomagnetic field and the total electron content of the ionosphere during strong catastrophic earthquakes in Turkey on February 6, 2023. It is shown that the ionospheric responses to these earthquakes recorded at distances of 1200–1600 km from the epicenter in the lower ionosphere and at distances of up to 500 km from the epicenter in the upper ionosphere can be interpreted in terms of the propagation of the Rayleigh seismic wave and atmospheric waves—shock, acoustic and internal, that is, those waves that are generated by the earthquake itself. The energy of seismic events was estimated from the ionospheric response.
{"title":"Response of the Lower and Upper Ionosphere to Earthquakes in Turkey on February 6, 2023","authors":"S. A. Riabova, E. V. Olshanskaya, S. L. Shalimov","doi":"10.1134/S1069351323060186","DOIUrl":"10.1134/S1069351323060186","url":null,"abstract":"<div><div><p><b>Abstract</b>—Ground-based magnetometers and ionospheric radio probing by means of GPS were used to analyze and interpret specific variations of the geomagnetic field and the total electron content of the ionosphere during strong catastrophic earthquakes in Turkey on February 6, 2023. It is shown that the ionospheric responses to these earthquakes recorded at distances of 1200–1600 km from the epicenter in the lower ionosphere and at distances of up to 500 km from the epicenter in the upper ionosphere can be interpreted in terms of the propagation of the Rayleigh seismic wave and atmospheric waves—shock, acoustic and internal, that is, those waves that are generated by the earthquake itself. The energy of seismic events was estimated from the ionospheric response.</p></div></div>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"957 - 966"},"PeriodicalIF":1.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The central Indian Ocean displays one of the most perplexing intra-plate deformations in an oceanic realm. Despite several studies attempting to explore this intriguing phenomenon, understanding about its structural style and spatiotemporal genesis is still debated. Earlier geophysical and deep-sea drilling studies proposed the late Miocene onset of extensive crustal deformation. Subsequent geophysical studies, however, speculated that parts of the deformation may have begun significantly earlier (c.a. 15.4–13.9 Ma) consequent upon contemporaneous dynamics of the India-Eurasia convergence. Alternative hypotheses argue about the crucial role played by temporal variations in the rotational motion of the India-Somalia-Capricorn plates. Here we examine new deep penetrating multi-channel seismic reflection data from the central Indian Ocean region to gather the style and extent of structural deformation in this region. We explore plausible mechanisms and estimate the onset of extensive intra-plate deformation. Based on seismic-stratigraphic interpretation and cumulative fault-throw analyses of new regional seismic profiles, our study confirms that extensive faulting occurred during the early Miocene period across the CIDZ. We document that an average of 40% of faults were activated around or before early Miocene time, showing maximum throw at a regional unconformity dating to 17–18 Ma. We also identify distinct categories of deformation manifested in these faults. While our findings endorse significantly prior to the late Miocene time of onset of deformation, new subsurface images offer much-improved constraints on prominent stratigraphic and structural variations.
{"title":"Quantifying Structural Deformation History in the Central Indian Ocean","authors":"Rahul Yadav, Dhananjai K. Pandey, Lachit Singh Ningthoujam, Sanjay Singh Negi","doi":"10.1134/S106935132306023X","DOIUrl":"10.1134/S106935132306023X","url":null,"abstract":"<p>The central Indian Ocean displays one of the most perplexing intra-plate deformations in an oceanic realm. Despite several studies attempting to explore this intriguing phenomenon, understanding about its structural style and spatiotemporal genesis is still debated. Earlier geophysical and deep-sea drilling studies proposed the late Miocene onset of extensive crustal deformation. Subsequent geophysical studies, however, speculated that parts of the deformation may have begun significantly earlier (c.a. 15.4–13.9 Ma) consequent upon contemporaneous dynamics of the India-Eurasia convergence. Alternative hypotheses argue about the crucial role played by temporal variations in the rotational motion of the India-Somalia-Capricorn plates. Here we examine new deep penetrating multi-channel seismic reflection data from the central Indian Ocean region to gather the style and extent of structural deformation in this region. We explore plausible mechanisms and estimate the onset of extensive intra-plate deformation. Based on seismic-stratigraphic interpretation and cumulative fault-throw analyses of new regional seismic profiles, our study confirms that extensive faulting occurred during the early Miocene period across the CIDZ. We document that an average of 40% of faults were activated around or before early Miocene time, showing maximum throw at a regional unconformity dating to 17–18 Ma. We also identify distinct categories of deformation manifested in these faults. While our findings endorse significantly prior to the late Miocene time of onset of deformation, new subsurface images offer much-improved constraints on prominent stratigraphic and structural variations.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"1094 - 1112"},"PeriodicalIF":1.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1134/S1069351323060101
V. N. Krizskii, P. N. Aleksandrov
This work is a continuation of the authors’ research on solving inverse problems of mathematical geophysics in a linear formulation. Unlike previous works, where the solution was built on the basis of volumetric integral equations, boundary integral representations and emerging boundary integral equations are used here to solve the inverse coefficient problem of geoelectrics to find the constant electrical conductivity of a local isotropic inclusion, located in a piecewise-constant electrical conductivity isotropic enclosing medium.
{"title":"On Determination of the Electrical Conductivity of a Local Inclusion of a Piecewise-Сonstant Isotropic Medium","authors":"V. N. Krizskii, P. N. Aleksandrov","doi":"10.1134/S1069351323060101","DOIUrl":"10.1134/S1069351323060101","url":null,"abstract":"<p>This work is a continuation of the authors’ research on solving inverse problems of mathematical geophysics in a linear formulation. Unlike previous works, where the solution was built on the basis of volumetric integral equations, boundary integral representations and emerging boundary integral equations are used here to solve the inverse coefficient problem of geoelectrics to find the constant electrical conductivity of a local isotropic inclusion, located in a piecewise-constant electrical conductivity isotropic enclosing medium.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"1056 - 1065"},"PeriodicalIF":1.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1134/S1069351323060095
V. N. Koneshov, N. V. Drobyshev, R. A. Sermyagin, E. P. Razin’kova
This work is aimed at estimating the long-term continuing measurements of the acceleration of gravity at the Ledovo fundamental gravity station and first order stations of the gravimetric network of the Russian Federation. The observations are carried out by absolute gravimeters beginning from the mid-1970s to the present time. It is shown that the observed value of the acceleration of gravity at the Ledovo station has a tendency to decrease during last 45 years; according to our estimates, the value decreased by 32 µGal. The measurements carried out at first order gravity stations in Russia after renewal of network maintenance are compared with measurements carried out in the 1980s.
{"title":"Results of Estimating the Absolute Gravimetric Measurements at the Ledovo Fundamental Gravity Station and on the First Order Gravimetric Network of Russia","authors":"V. N. Koneshov, N. V. Drobyshev, R. A. Sermyagin, E. P. Razin’kova","doi":"10.1134/S1069351323060095","DOIUrl":"10.1134/S1069351323060095","url":null,"abstract":"<p>This work is aimed at estimating the long-term continuing measurements of the acceleration of gravity at the Ledovo fundamental gravity station and first order stations of the gravimetric network of the Russian Federation. The observations are carried out by absolute gravimeters beginning from the mid-1970s to the present time. It is shown that the observed value of the acceleration of gravity at the Ledovo station has a tendency to decrease during last 45 years; according to our estimates, the value decreased by 32 µGal. The measurements carried out at first order gravity stations in Russia after renewal of network maintenance are compared with measurements carried out in the 1980s.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"1002 - 1008"},"PeriodicalIF":1.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1134/S1069351323060228
R. E. Tatevossian, N. G. Mokrushina, A. N. Ovsyuchenko, A. S. Larkov
In this paper, we determine the location of the hypocenter and the magnitude of the earthquake of September 11/23, 1888 based on macroseismic data published in the Russian periodic in Russian, Armenian, and Georgian languages. Calculations showed that the magnitude of the earthquake was previously significantly underestimated, due to which it was not included in the catalog of strong earthquakes in the Caucasus test region (Shebalin and Tatevossian, 1997). The accuracy of the location of the hypocenter makes it possible to identify the active fault, with which the source of the 1888 earthquake is associated. The earthquake with Mw = 6.6 that occurred almost 100 years later confirms the long-term activity of the Western branch of the East Anatolian fault zone.
{"title":"Historical Earthquake on the North-Eastern Extension of the East Anatolian Fault","authors":"R. E. Tatevossian, N. G. Mokrushina, A. N. Ovsyuchenko, A. S. Larkov","doi":"10.1134/S1069351323060228","DOIUrl":"10.1134/S1069351323060228","url":null,"abstract":"<p>In this paper, we determine the location of the hypocenter and the magnitude of the earthquake of September 11/23, 1888 based on macroseismic data published in the Russian periodic in Russian, Armenian, and Georgian languages. Calculations showed that the magnitude of the earthquake was previously significantly underestimated, due to which it was not included in the catalog of strong earthquakes in the Caucasus test region (Shebalin and Tatevossian, 1997). The accuracy of the location of the hypocenter makes it possible to identify the active fault, with which the source of the 1888 earthquake is associated. The earthquake with <i>M</i><sub>w</sub> = 6.6 that occurred almost 100 years later confirms the long-term activity of the Western branch of the East Anatolian fault zone.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"878 - 887"},"PeriodicalIF":1.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1134/S1069351323060162
V. F. Pisarenko, A. A. Skorkina, T. A. Rukavishnikova
This study is devoted to application of some new statistical methods to analysis of the spatial structure of the seismic field in a seismically active region in the neighborhood of Japan bounded by the following coordinates: 28°–50° north latitude, 130°–150° east longitude. The estimates of the seismic flux were obtained by using the k-nearest neighbors method for the magnitude interval m ≥ 5.2. The highest values of seismic flux intensity of about 10–4(frac{1}{{{text{year}}{kern 1pt} - {kern 1pt} {text{k}}{{{text{m}}}^{{text{2}}}}}}) are located at depths of down to 100 km and manifest themselves in the neighborhood of the Tohoku megathrust earthquake. The spatial resolution of the intensity estimates is ranging from 33–50 km in the regions with a high intensity to 100 km and larger in the zones with a weak intensity. It has been shown that the seismic filed parameters—intensity λ, slope of the magnitude–frequency graph β, maximum possible magnitude m1—have different scales of their spatial variability and, thus, it is necessary to apply different scales of spatial averaging to them. Based on the Gutenberg—Richter truncated distribution model, the estimates are obtained for the slope of the magnitude–frequency graph (b‑value) and the upper boundary of the distribution m1. An original method is proposed for determining the optimal averaging radius for an arbitrary cell of the space grid. The method is based on the use of the statistical coefficient of variation of the corresponding parameter. For the considered region, the estimate of the maximum possible magnitude Мmax= 9.60 ( pm ) 0.41 was obtained with consideration of the correction for bias.
{"title":"Application of New Statistical Methods to Estimation of the Seismicity Field Parameters by an Example of the Japan Region","authors":"V. F. Pisarenko, A. A. Skorkina, T. A. Rukavishnikova","doi":"10.1134/S1069351323060162","DOIUrl":"10.1134/S1069351323060162","url":null,"abstract":"<p>This study is devoted to application of some new statistical methods to analysis of the spatial structure of the seismic field in a seismically active region in the neighborhood of Japan bounded by the following coordinates: 28°–50° north latitude, 130°–150° east longitude. The estimates of the seismic flux were obtained by using the <i>k-</i>nearest neighbors method for the magnitude interval <i>m</i> ≥ 5.2. The highest values of seismic flux intensity of about 10<sup>–4</sup> <span>(frac{1}{{{text{year}}{kern 1pt} - {kern 1pt} {text{k}}{{{text{m}}}^{{text{2}}}}}})</span> are located at depths of down to 100 km and manifest themselves in the neighborhood of the Tohoku megathrust earthquake. The spatial resolution of the intensity estimates is ranging from 33–50 km in the regions with a high intensity to 100 km and larger in the zones with a weak intensity. It has been shown that the seismic filed parameters—intensity λ, slope of the magnitude–frequency graph β, maximum possible magnitude <i>m</i><sub>1</sub>—have different scales of their spatial variability and, thus, it is necessary to apply different scales of spatial averaging to them. Based on the Gutenberg—Richter truncated distribution model, the estimates are obtained for the slope of the magnitude–frequency graph (<i>b</i>‑value) and the upper boundary of the distribution <i>m</i><sub>1</sub>. An original method is proposed for determining the optimal averaging radius for an arbitrary cell of the space grid. The method is based on the use of the statistical coefficient of variation of the corresponding parameter. For the considered region, the estimate of the maximum possible magnitude <i>М</i><sub>max</sub> <i>=</i> 9.60 <span>( pm )</span> 0.41 was obtained with consideration of the correction for bias.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"967 - 978"},"PeriodicalIF":1.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1134/S1069351323060198
D. A. Simonov, V. S. Zakharov
In this paper, we kinematically analyze the movements of plates and blocks of the region of southeastern Turkey, where strong earthquakes occurred on February 6, 2023, based on a homogeneous database of displacement velocities of GNSS permanent monitoring stations. Along the East Anatolian fault zone from 2008 to 2018, the Arabian Plate was established to shift relative to the Anatolian Plate, which corresponds to a left shift (without a normal component) at a rate from 1 cm/yr in the eastern part to 0.8 cm/yr in the western part. Along the Chardak fault, displacements corresponding to the left shift occurred at a rate of less than 0.7 cm/year. The revealed kinematics is confirmed by focal mechanisms and cosesismic displacements of the studied earthquakes. The M7.5 earthquake that occurred directly on the Chardak fault is not an aftershock of the M7.8 earthquake, but is a relatively independent event. An analysis of the seismic regime shows that the stresses on the East Anatolian fault after the main M7.8 event are relieved by the first large latitudinal fault zone (the Chardak fault). The results of our study suggest that the counterclockwise rotation of the Anatolian and Arabian plates associated with the opening of the Red Sea Rift is most likely decisive for the general kinematics of the plates in the region.
{"title":"Preliminary Seismo-Tectonic Analysis of the Catastrophic Earthquake in South-Eastern Turkey on February 6, 2023","authors":"D. A. Simonov, V. S. Zakharov","doi":"10.1134/S1069351323060198","DOIUrl":"10.1134/S1069351323060198","url":null,"abstract":"<p>In this paper, we kinematically analyze the movements of plates and blocks of the region of southeastern Turkey, where strong earthquakes occurred on February 6, 2023, based on a homogeneous database of displacement velocities of GNSS permanent monitoring stations. Along the East Anatolian fault zone from 2008 to 2018, the Arabian Plate was established to shift relative to the Anatolian Plate, which corresponds to a left shift (without a normal component) at a rate from 1 cm/yr in the eastern part to 0.8 cm/yr in the western part. Along the Chardak fault, displacements corresponding to the left shift occurred at a rate of less than 0.7 cm/year. The revealed kinematics is confirmed by focal mechanisms and cosesismic displacements of the studied earthquakes. The <i>M</i>7.5 earthquake that occurred directly on the Chardak fault is not an aftershock of the <i>M</i>7.8 earthquake, but is a relatively independent event. An analysis of the seismic regime shows that the stresses on the East Anatolian fault after the main <i>M</i>7.8 event are relieved by the first large latitudinal fault zone (the Chardak fault). The results of our study suggest that the counterclockwise rotation of the Anatolian and Arabian plates associated with the opening of the Red Sea Rift is most likely decisive for the general kinematics of the plates in the region.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"839 - 850"},"PeriodicalIF":1.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1134/S106935132306006X
F. Z. Feygin, A. V. Guglielmi
This paper is devoted to the 80th anniversary of the discovery of Alfven waves, which play an important role in physics, radiophysics, astrophysics, and Earth physics. The emphasis is on the ponderomotive redistribution of plasma in the Earth’s magnetosphere under the action of Alfven and ion-cyclotron waves. At relatively small distances from the Earth, the ponderomotive force is buoyant, i.e., is directed upwards, regardless of whether an Alfven wave propagates towards the Earth or away from it. In the near-equatorial zone of the central regions of magnetosphere, waves in the Pc 1 range push the plasma to the minimum of geomagnetic field, so that a maximum of plasma density arises on the equator at sufficiently high wave intensity. A bifurcation occurs at the magnetosphere’s periphery, and the maximum is split into two maxima, the distance between which increases while moving away from the Earth. The polar wind, acceleration of heavy ions, and fictitious nonlinearity of the surface impedance of the Earth’s crust are also briefly discussed.
{"title":"Ponderomotive Forces of Alfven Waves in the Earth’s Magnetosphere","authors":"F. Z. Feygin, A. V. Guglielmi","doi":"10.1134/S106935132306006X","DOIUrl":"10.1134/S106935132306006X","url":null,"abstract":"<p>This paper is devoted to the 80th anniversary of the discovery of Alfven waves, which play an important role in physics, radiophysics, astrophysics, and Earth physics. The emphasis is on the ponderomotive redistribution of plasma in the Earth’s magnetosphere under the action of Alfven and ion-cyclotron waves. At relatively small distances from the Earth, the ponderomotive force is buoyant, i.e., is directed upwards, regardless of whether an Alfven wave propagates towards the Earth or away from it. In the near-equatorial zone of the central regions of magnetosphere, waves in the Pc 1 range push the plasma to the minimum of geomagnetic field, so that a maximum of plasma density arises on the equator at sufficiently high wave intensity. A bifurcation occurs at the magnetosphere’s periphery, and the maximum is split into two maxima, the distance between which increases while moving away from the Earth. The polar wind, acceleration of heavy ions, and fictitious nonlinearity of the surface impedance of the Earth’s crust are also briefly discussed.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"59 6","pages":"993 - 1001"},"PeriodicalIF":1.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}