Pub Date : 2024-11-14DOI: 10.1007/s10867-024-09666-2
Nevena Marić
This study presents a stochastic model of seed dispersal based on a branching random walk (BRW) framework, incorporating both homogeneous and non-homogeneous Poisson point processes (PPP). Building on the model introduced by Coletti et al. (2023), we examine the effects of habitat reduction on seed dispersal dynamics. We analyze the phase transition behavior of the BRW model under varying conditions of habitat fragmentation, focusing on how these conditions influence the critical dispersal rate. Specifically, we study a BRW on the real line with a non-homogeneous PPP driven by a log-normal density, constrained between spatial barriers. Our simulations localize the critical dispersal rate with respect to barrier positions and compare this dependence between homogeneous and non-homogeneous models.
{"title":"Stochastic model of seed dispersal with homogeneous and non-homogeneous Poisson processes under habitat reduction conditions","authors":"Nevena Marić","doi":"10.1007/s10867-024-09666-2","DOIUrl":"10.1007/s10867-024-09666-2","url":null,"abstract":"<div><p>This study presents a stochastic model of seed dispersal based on a branching random walk (BRW) framework, incorporating both homogeneous and non-homogeneous Poisson point processes (PPP). Building on the model introduced by Coletti et al. (2023), we examine the effects of habitat reduction on seed dispersal dynamics. We analyze the phase transition behavior of the BRW model under varying conditions of habitat fragmentation, focusing on how these conditions influence the critical dispersal rate. Specifically, we study a BRW on the real line with a non-homogeneous PPP driven by a log-normal density, constrained between spatial barriers. Our simulations localize the critical dispersal rate with respect to barrier positions and compare this dependence between homogeneous and non-homogeneous models.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"51 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The exploration of microgravity has garnered substantial scholarly attention due to its potential to offer unique insights into the behavior of biological systems. This study presents a preliminary investigation into the effects of simulated microgravity on esophageal cancer cells, examining various aspects such as morphology, growth behavior, adhesion, inhibition rate, and DNA damage. To achieve this, a novel microgravity simulator named “Gravity Challenge” was utilized for its effectiveness in minimizing external influences that could compromise microgravity conditions. The international cell line SK-GT-4 was utilized as the focal point of this investigation. Results revealed noticeable alterations in the growth behavior of cancer cells following exposure to simulated microgravity for 24 h, characterized by a loss of adhesion properties compared to control cells. Concurrently, cell viability exhibited a decline, as evidenced by cytotoxicity testing. Furthermore, the comet assay test demonstrated that cells subjected to microgravity simulation experienced a higher incidence of DNA damage compared to their control counterparts. In conclusion, this comprehensive examination of the impact of simulated microgravity on esophageal cancer cells extends beyond morphological changes, delving into genetic implications through observed DNA damage. The diminished vitality of cells under microgravity conditions underscores the multifaceted effects on cellular behavior in response to environmental variations. These findings represent a significant step towards understanding the dynamics of cancer cells, laying the groundwork for future research aimed at identifying potential therapeutic strategies for this disease.
由于微重力有可能为生物系统的行为提供独特的见解,因此对微重力的探索引起了学术界的极大关注。本研究对模拟微重力对食管癌细胞的影响进行了初步调查,考察了食管癌细胞的形态、生长行为、粘附性、抑制率和DNA损伤等各个方面。为此,研究人员使用了一种名为 "重力挑战"(Gravity Challenge)的新型微重力模拟器,该模拟器能有效减少可能影响微重力条件的外部影响。国际细胞系 SK-GT-4 是此次研究的重点。结果显示,与对照细胞相比,癌细胞在暴露于模拟微重力环境 24 小时后,其生长行为发生了明显的变化,其特点是失去了粘附特性。同时,细胞毒性测试显示,细胞活力有所下降。此外,彗星试验表明,与对照组相比,接受微重力模拟的细胞发生 DNA 损伤的几率更高。总之,这次对模拟微重力对食管癌细胞的影响进行的全面研究超出了形态学变化的范围,通过观察到的DNA损伤深入探讨了遗传学影响。微重力条件下细胞活力的减弱凸显了环境变化对细胞行为的多方面影响。这些发现标志着我们在了解癌细胞动态方面迈出了重要一步,为今后旨在确定该疾病潜在治疗策略的研究奠定了基础。
{"title":"Exploring the effects of simulated microgravity on esophageal cancer cells: insights into morphological, growth behavior, adhesion, and genetic damage","authors":"Saifaldeen Altaie, Amera Alrawi, Xuexin Duan, Qater Alnada","doi":"10.1007/s10867-024-09663-5","DOIUrl":"10.1007/s10867-024-09663-5","url":null,"abstract":"<div><p>The exploration of microgravity has garnered substantial scholarly attention due to its potential to offer unique insights into the behavior of biological systems. This study presents a preliminary investigation into the effects of simulated microgravity on esophageal cancer cells, examining various aspects such as morphology, growth behavior, adhesion, inhibition rate, and DNA damage. To achieve this, a novel microgravity simulator named “Gravity Challenge” was utilized for its effectiveness in minimizing external influences that could compromise microgravity conditions. The international cell line SK-GT-4 was utilized as the focal point of this investigation. Results revealed noticeable alterations in the growth behavior of cancer cells following exposure to simulated microgravity for 24 h, characterized by a loss of adhesion properties compared to control cells. Concurrently, cell viability exhibited a decline, as evidenced by cytotoxicity testing. Furthermore, the comet assay test demonstrated that cells subjected to microgravity simulation experienced a higher incidence of DNA damage compared to their control counterparts. In conclusion, this comprehensive examination of the impact of simulated microgravity on esophageal cancer cells extends beyond morphological changes, delving into genetic implications through observed DNA damage. The diminished vitality of cells under microgravity conditions underscores the multifaceted effects on cellular behavior in response to environmental variations. These findings represent a significant step towards understanding the dynamics of cancer cells, laying the groundwork for future research aimed at identifying potential therapeutic strategies for this disease.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"50 3-4","pages":"351 - 366"},"PeriodicalIF":1.8,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1007/s10867-024-09662-6
Jan M. M. Oomens
The evolutionary origin of the inverted retina in the vertebrate eye is unknown. This paper explores a hypothetical evolutionary scenario that explains the unique orientation of the photoreceptors in the vertebrate retina. The proposed scenario follows the scientific accepted scenario for eye evolution and gradually builds up towards an eye prototype by considering light direction detection and increase in achievable spatial resolution as the driving forces. It suggests that eye retinas developed along two different morphological processes, an evagination process that results in the inverted retina in vertebrate eyes and an invagination process that results in a verted retina in cephalopod eyes. The development of the inverted vertebrate retina and eye prototype morphology is strongly substantiated by physics of vision. The proposed evolutionary sequence for vertebrate eye development is simple and has the full potential to explain the origin of the inverted retina and leads to an eye prototype enabling visual detection and orientation. It allows the emergence of eye structures like, extraocular muscles, tapetum lucidum, biconvex lens, cornea, and pupil. This study supports the suggestion that a primitive inverted retina in the predecessor of vertebrates is of ectodermal origin and available before neurulation occurred.
{"title":"A possible origin of the inverted vertebrate retina revealed by physical modeling","authors":"Jan M. M. Oomens","doi":"10.1007/s10867-024-09662-6","DOIUrl":"10.1007/s10867-024-09662-6","url":null,"abstract":"<div><p>The evolutionary origin of the inverted retina in the vertebrate eye is unknown. This paper explores a hypothetical evolutionary scenario that explains the unique orientation of the photoreceptors in the vertebrate retina. The proposed scenario follows the scientific accepted scenario for eye evolution and gradually builds up towards an eye prototype by considering light direction detection and increase in achievable spatial resolution as the driving forces. It suggests that eye retinas developed along two different morphological processes, an evagination process that results in the inverted retina in vertebrate eyes and an invagination process that results in a verted retina in cephalopod eyes. The development of the inverted vertebrate retina and eye prototype morphology is strongly substantiated by physics of vision. The proposed evolutionary sequence for vertebrate eye development is simple and has the full potential to explain the origin of the inverted retina and leads to an eye prototype enabling visual detection and orientation. It allows the emergence of eye structures like, extraocular muscles, tapetum lucidum, biconvex lens, cornea, and pupil. This study supports the suggestion that a primitive inverted retina in the predecessor of vertebrates is of ectodermal origin and available before neurulation occurred.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"50 3-4","pages":"327 - 349"},"PeriodicalIF":1.8,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-024-09662-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141886523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1007/s10867-024-09661-7
Ya-chang Chou
During the asymmetric loop extrusion of DNA by a condensin complex, one domain of the complex stably anchors to the DNA molecule, and another domain reels in the DNA strand into a loop. The DNA strand in the loop is fully relaxed, or there is no tension in the loop. Just outside of the loop, there is a tension that resists the extrusion of DNA. To maintain the extrusion of the DNA loop, the condensin complex must have a domain capable of generating a force to overcome the tension outside of the loop. This study proposes that the groove-shaped HEAT repeat domain Ycg1 plays the role of a molecular motor. A DNA molecule may bind to the groove electrostatically, and the weak binding force facilitates the random thermal motion of DNA molecules. A mechanical model that random collisions between DNA and the nonparallel inner surfaces of the groove may generate a directional force which is required for the loop extrusion to sustain. The hinge domain binds to the DNA molecule and acts as an anchor during asymmetric DNA loop extrusion. When the effects of ATP hydrolysis and the viscous drag of the fluid environment are considered, the motor–anchor model for the condensin complex and the mechanical model might explain the asymmetric loop extrusion, the formation of steps, the step size distribution in the loop extrusion, the tension-dependent extrusion speed, the interaction between coexisting loops on the DNA strand, and untying the knots during extrusion. This model can also explain the observed formation of the Z-loop.
在冷凝蛋白复合物对 DNA 进行不对称环状挤压的过程中,复合物的一个结构域稳定地固定在 DNA 分子上,另一个结构域将 DNA 链卷绕成环。环路中的 DNA 链完全松弛,或者说环路中没有张力。在环的外侧,有一种张力阻止 DNA 的挤出。为了保持 DNA 环的挤出,冷凝蛋白复合物必须有一个能够产生力的结构域,以克服环外的张力。本研究提出,沟槽状的 HEAT 重复结构域 Ycg1 扮演着分子马达的角色。DNA 分子可能与凹槽发生静电结合,微弱的结合力促进了 DNA 分子的随机热运动。一种机械模型认为,DNA 与凹槽非平行内表面之间的随机碰撞可能会产生一种定向力,而这种定向力是环挤压持续进行所必需的。铰链结构域与 DNA 分子结合,在不对称 DNA 环挤压过程中起到锚定作用。如果考虑到 ATP 水解和流体环境粘性阻力的影响,冷凝蛋白复合物的马达-锚模型和机械模型可以解释不对称环挤压、阶梯的形成、环挤压中阶梯大小的分布、与张力相关的挤压速度、DNA 链上共存环之间的相互作用以及挤压过程中的解结。该模型还能解释观察到的 Z 环的形成。
{"title":"Motor domain of condensin and step formation in extruding loop of DNA","authors":"Ya-chang Chou","doi":"10.1007/s10867-024-09661-7","DOIUrl":"10.1007/s10867-024-09661-7","url":null,"abstract":"<div><p>During the asymmetric loop extrusion of DNA by a condensin complex, one domain of the complex stably anchors to the DNA molecule, and another domain reels in the DNA strand into a loop. The DNA strand in the loop is fully relaxed, or there is no tension in the loop. Just outside of the loop, there is a tension that resists the extrusion of DNA. To maintain the extrusion of the DNA loop, the condensin complex must have a domain capable of generating a force to overcome the tension outside of the loop. This study proposes that the groove-shaped HEAT repeat domain Ycg1 plays the role of a molecular motor. A DNA molecule may bind to the groove electrostatically, and the weak binding force facilitates the random thermal motion of DNA molecules. A mechanical model that random collisions between DNA and the nonparallel inner surfaces of the groove may generate a directional force which is required for the loop extrusion to sustain. The hinge domain binds to the DNA molecule and acts as an anchor during asymmetric DNA loop extrusion. When the effects of ATP hydrolysis and the viscous drag of the fluid environment are considered, the motor–anchor model for the condensin complex and the mechanical model might explain the asymmetric loop extrusion, the formation of steps, the step size distribution in the loop extrusion, the tension-dependent extrusion speed, the interaction between coexisting loops on the DNA strand, and untying the knots during extrusion. This model can also explain the observed formation of the Z-loop.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"50 3-4","pages":"307 - 325"},"PeriodicalIF":1.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1007/s10867-024-09660-8
Faris Saad Alsubaie, Zoltan Neufeld
Collective cell invasion underlies several biological processes such as wound healing, embryonic development, and cancerous invasion. Here, we investigate the impact of cell motility on invasion in epithelial monolayers and its coupling to cellular mechanical properties, such as cell-cell adhesion and cortex contractility. We develop a two-dimensional computational model for cells with active motility based on the cellular Potts model, which predicts that the cellular invasion speed is mainly determined by active cell motility and is independent of the biological and mechanical properties of the cells. We also find that, in general, motile cells out-compete and invade non-motile cells, however, this can be reversed by differential cell proliferation. Stable coexistence of motile and static cell types is also possible for certain parameter regimes.
{"title":"Modelling the effect of cell motility on mixing and invasion in epithelial monolayers","authors":"Faris Saad Alsubaie, Zoltan Neufeld","doi":"10.1007/s10867-024-09660-8","DOIUrl":"10.1007/s10867-024-09660-8","url":null,"abstract":"<div><p>Collective cell invasion underlies several biological processes such as wound healing, embryonic development, and cancerous invasion. Here, we investigate the impact of cell motility on invasion in epithelial monolayers and its coupling to cellular mechanical properties, such as cell-cell adhesion and cortex contractility. We develop a two-dimensional computational model for cells with active motility based on the cellular Potts model, which predicts that the cellular invasion speed is mainly determined by active cell motility and is independent of the biological and mechanical properties of the cells. We also find that, in general, motile cells out-compete and invade non-motile cells, however, this can be reversed by differential cell proliferation. Stable coexistence of motile and static cell types is also possible for certain parameter regimes.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"50 3-4","pages":"291 - 306"},"PeriodicalIF":1.8,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-024-09660-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1007/s10867-024-09659-1
Feifei Yang, Qun Guo, Guodong Ren, Jun Ma
External electric and mechanical stimuli can induce shape deformation in excitable media because of its intrinsic flexible property. When the signals propagation in the media is described by a neural network, creation of heterogeneity or defect is considered as the effect of shape deformation due to accumulation or release of energy in the media. In this paper, a temperature-light sensitive neuron model is developed from a nonlinear circuit composed of a phototube and a thermistor, and the physical energy is kept in capacitive and inductive terms. Furthermore, the Hamilton energy for this function neuron is obtained in theoretical way. A regular neural network is built on a square array by activating electric synapse between adjacent neurons, and a few of neurons in local area is excited by noisy disturbance, which induces local energy diversity, and continuous coupling enables energy propagation and diffusion. Initially, the Hamilton energy function for a temperature-light sensitive neuron can be obtained. Then, the finite neurons are applied noise to obtain energy diversity to explore the energy spread between neurons in the network. For keeping local energy balance, one intrinsic parameter is regulated adaptively until energy diversity in this local area is decreased greatly. Regular pattern formation indicates that local energy balance creates heterogeneity or defects and a few of neurons show continuous parameter shift for keeping energy balance in a local area, which supports gradient energy distribution for propagating waves in the network.
{"title":"Wave propagation in a light-temperature neural network under adaptive local energy balance","authors":"Feifei Yang, Qun Guo, Guodong Ren, Jun Ma","doi":"10.1007/s10867-024-09659-1","DOIUrl":"10.1007/s10867-024-09659-1","url":null,"abstract":"<div><p>External electric and mechanical stimuli can induce shape deformation in excitable media because of its intrinsic flexible property. When the signals propagation in the media is described by a neural network, creation of heterogeneity or defect is considered as the effect of shape deformation due to accumulation or release of energy in the media. In this paper, a temperature-light sensitive neuron model is developed from a nonlinear circuit composed of a phototube and a thermistor, and the physical energy is kept in capacitive and inductive terms. Furthermore, the Hamilton energy for this function neuron is obtained in theoretical way. A regular neural network is built on a square array by activating electric synapse between adjacent neurons, and a few of neurons in local area is excited by noisy disturbance, which induces local energy diversity, and continuous coupling enables energy propagation and diffusion. Initially, the Hamilton energy function for a temperature-light sensitive neuron can be obtained. Then, the finite neurons are applied noise to obtain energy diversity to explore the energy spread between neurons in the network. For keeping local energy balance, one intrinsic parameter is regulated adaptively until energy diversity in this local area is decreased greatly. Regular pattern formation indicates that local energy balance creates heterogeneity or defects and a few of neurons show continuous parameter shift for keeping energy balance in a local area, which supports gradient energy distribution for propagating waves in the network.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"50 3-4","pages":"271 - 290"},"PeriodicalIF":1.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1007/s10867-024-09658-2
Emese Orban, Zsuzsanna Pap, Remus Sebastian Sipos, Radu Fechete
Bone is a complex tissue that fulfills the role of a resistance structure. This quality is most commonly assessed by bone densitometry, but bone strength may not only be related to bone mineral density but also to the preservation of bone cytoarchitectonics. The study included two groups of rats, ovariectomized and non-ovariectomized. Each group was divided into three batches: control, simvastatin-treated, and fenofibrate-treated. In the ovariectomized group, hypolipidemic treatment was instituted at 12 weeks post ovariectomy. One rat from each of the 6 batches was sacrificed 8 weeks after the start of treatment in the group. The experimental study was performed using a Bruker Minispec mq 20 spectrometer operating at a frequency of 20 MHz, subsequently also performed by 1H T2-T2 molecular exchange maps. The results were represented by T2-T2 molecular exchange maps that showed, comparatively, both pore size and their interconnectivity at the level of the femoral epiphysis, being able to evaluate both the effect of estrogen on bone tissue biology and the effect of the lipid-lowering medication, simvastatin, and fenofibrate, in both the presence and absence of estrogen. T2-T2 molecular exchange maps showed that the absence of estrogen results in an increase in bone tissue pore size and interconnectivity. In the presence of estrogen, lipid-lowering medication, both simvastatin and fenofibrate alter bone tissue cytoarchitectonics by reducing pore interconnectivity. In the absence of estrogen, fenofibrate improves bone tissue cytoarchitectonics, the T2-T2 molecular exchange map being similar to that of non-osteoporotic bone tissue.
{"title":"Assessment of bone tissue cytoarchitectonics by 2D 1H NMR relaxometry maps","authors":"Emese Orban, Zsuzsanna Pap, Remus Sebastian Sipos, Radu Fechete","doi":"10.1007/s10867-024-09658-2","DOIUrl":"10.1007/s10867-024-09658-2","url":null,"abstract":"<div><p>Bone is a complex tissue that fulfills the role of a resistance structure. This quality is most commonly assessed by bone densitometry, but bone strength may not only be related to bone mineral density but also to the preservation of bone cytoarchitectonics. The study included two groups of rats, ovariectomized and non-ovariectomized. Each group was divided into three batches: control, simvastatin-treated, and fenofibrate-treated. In the ovariectomized group, hypolipidemic treatment was instituted at 12 weeks post ovariectomy. One rat from each of the 6 batches was sacrificed 8 weeks after the start of treatment in the group. The experimental study was performed using a Bruker Minispec mq 20 spectrometer operating at a frequency of 20 MHz, subsequently also performed by <sup>1</sup>H <i>T</i><sub>2</sub>-<i>T</i><sub>2</sub> molecular exchange maps. The results were represented by <i>T</i><sub>2</sub>-<i>T</i><sub>2</sub> molecular exchange maps that showed, comparatively, both pore size and their interconnectivity at the level of the femoral epiphysis, being able to evaluate both the effect of estrogen on bone tissue biology and the effect of the lipid-lowering medication, simvastatin, and fenofibrate, in both the presence and absence of estrogen. <i>T</i><sub>2</sub>-<i>T</i><sub>2</sub> molecular exchange maps showed that the absence of estrogen results in an increase in bone tissue pore size and interconnectivity. In the presence of estrogen, lipid-lowering medication, both simvastatin and fenofibrate alter bone tissue cytoarchitectonics by reducing pore interconnectivity. In the absence of estrogen, fenofibrate improves bone tissue cytoarchitectonics, the <i>T</i><sub>2</sub>-<i>T</i><sub>2</sub> molecular exchange map being similar to that of non-osteoporotic bone tissue.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"50 3-4","pages":"255 - 269"},"PeriodicalIF":1.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-024-09658-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1007/s10867-024-09657-3
Ankit Kothiya, Neeru Adlakha
Studying the calcium dynamics within a fibroblast cell individually has provided only a restricted understanding of its functions. However, research efforts focusing on systems biology approaches for such investigations have been largely neglected by researchers until now. Fibroblast cells rely on signaling from calcium ((Ca^{2+})) and nitric oxide (NO) to maintain their physiological functions and structural stability. Various studies have demonstrated the correlation between NO and the control of (Ca^{2+}) dynamics in cells. However, there is currently no existing model to assess the disruptions caused by various factors in regulatory dynamics, potentially resulting in diverse fibrotic disorders. A mathematical model has been developed to investigate the effects of changes in parameters such as buffer, receptor, sarcoplasmic endoplasmic reticulum (Ca^{2+})-ATPase (SERCA) pump, and source influx on the regulation and dysregulation of spatiotemporal calcium and NO dynamics in fibroblast cells. This model is based on a system of reaction-diffusion equations, and numerical simulations are conducted using the finite element method. Disturbances in key processes related to calcium and nitric oxide, including source influx, buffer mechanism, SERCA pump, and inositol trisphosphate ((IP_3)) receptor, may contribute to deregulation in the calcium and NO dynamics within fibroblasts. The findings also provide new insights into the extent and severity of disorders resulting from alterations in various parameters, potentially leading to deregulation and the development of fibrotic disease.
单独研究成纤维细胞内的钙动态只能有限地了解其功能。然而,迄今为止,以系统生物学方法为重点的研究工作在很大程度上被研究人员所忽视。成纤维细胞依靠钙(C a 2 +)和一氧化氮(NO)的信号传递来维持其生理功能和结构稳定性。各种研究都证明了一氧化氮与细胞内 C a 2 + 动态控制之间的相关性。然而,目前还没有现成的模型来评估各种因素对调控动态造成的破坏,从而可能导致各种纤维化疾病。我们建立了一个数学模型,以研究缓冲剂、受体、肌浆内质网 C a 2 + ATP 酶(SERCA)泵和源流入等参数的变化对成纤维细胞中钙和 NO 时空动态调节和失调的影响。该模型基于反应-扩散方程系统,并采用有限元法进行了数值模拟。与钙和一氧化氮有关的关键过程,包括钙源流入、缓冲机制、SERCA 泵和三磷酸肌醇(I P 3)受体的紊乱,可能会导致成纤维细胞内的钙和一氧化氮动力学失调。这些发现还为我们提供了新的视角,使我们了解各种参数的改变可能导致的失调程度和严重性,以及纤维化疾病的发展。
{"title":"Regulatory disturbances in the dynamical signaling systems of (Ca^{2+}) and NO in fibroblasts cause fibrotic disorders","authors":"Ankit Kothiya, Neeru Adlakha","doi":"10.1007/s10867-024-09657-3","DOIUrl":"10.1007/s10867-024-09657-3","url":null,"abstract":"<div><p>Studying the calcium dynamics within a fibroblast cell individually has provided only a restricted understanding of its functions. However, research efforts focusing on systems biology approaches for such investigations have been largely neglected by researchers until now. Fibroblast cells rely on signaling from calcium <span>((Ca^{2+}))</span> and nitric oxide (<i>NO</i>) to maintain their physiological functions and structural stability. Various studies have demonstrated the correlation between <i>NO</i> and the control of <span>(Ca^{2+})</span> dynamics in cells. However, there is currently no existing model to assess the disruptions caused by various factors in regulatory dynamics, potentially resulting in diverse fibrotic disorders. A mathematical model has been developed to investigate the effects of changes in parameters such as buffer, receptor, sarcoplasmic endoplasmic reticulum <span>(Ca^{2+})</span>-ATPase (<i>SERCA</i>) pump, and source influx on the regulation and dysregulation of spatiotemporal calcium and <i>NO</i> dynamics in fibroblast cells. This model is based on a system of reaction-diffusion equations, and numerical simulations are conducted using the finite element method. Disturbances in key processes related to calcium and nitric oxide, including source influx, buffer mechanism, <i>SERCA</i> pump, and inositol trisphosphate <span>((IP_3))</span> receptor, may contribute to deregulation in the calcium and <i>NO</i> dynamics within fibroblasts. The findings also provide new insights into the extent and severity of disorders resulting from alterations in various parameters, potentially leading to deregulation and the development of fibrotic disease.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"50 2","pages":"229 - 251"},"PeriodicalIF":1.8,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140943119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The detection of magnetic fields by animals is known as magnetoreception. The ferromagnetic hypothesis explains magnetoreception assuming that magnetic nanoparticles are used as magnetic field transducers. Magnetite nanoparticles in the abdomen of Apis mellifera honeybees have been proposed in the literature as the magnetic field transducer. However, studies with ants and stingless bees have shown that the whole body of the insect contain magnetic material, and that the largest magnetization is in the antennae. The aim of the present study is to investigate the magnetization of all the body parts of honeybees as has been done with ants and stingless bees. To do that, the head without antennae, antennae, thorax, and abdomen obtained from Apis mellifera honeybees were analyzed using magnetometry and Ferromagnetic Resonance (FMR) techniques. The magnetometry and FMR measurements show the presence of magnetic material in all honeybee body parts. Our results present evidence of the presence of biomineralized magnetite nanoparticles in the honeybee abdomen and, for the first time, magnetite in the antennae. FMR measurements permit to identify the magnetite in the abdomen as biomineralized. As behavioral experiments reported in the literature have shown that the abdomen is involved in magnetoreception, new experimental approaches must be done to confirm or discard the involvement of the antennae in magnetoreception.
{"title":"Magnetite in the abdomen and antennae of Apis mellifera honeybees","authors":"Jilder Dandy Peña Serna, Odivaldo Cambraia Alves, Fernanda Abreu, Daniel Acosta-Avalos","doi":"10.1007/s10867-024-09656-4","DOIUrl":"10.1007/s10867-024-09656-4","url":null,"abstract":"<div><p>The detection of magnetic fields by animals is known as magnetoreception. The ferromagnetic hypothesis explains magnetoreception assuming that magnetic nanoparticles are used as magnetic field transducers. Magnetite nanoparticles in the abdomen of <i>Apis mellifera</i> honeybees have been proposed in the literature as the magnetic field transducer. However, studies with ants and stingless bees have shown that the whole body of the insect contain magnetic material, and that the largest magnetization is in the antennae. The aim of the present study is to investigate the magnetization of all the body parts of honeybees as has been done with ants and stingless bees. To do that, the head without antennae, antennae, thorax, and abdomen obtained from <i>Apis mellifera</i> honeybees were analyzed using magnetometry and Ferromagnetic Resonance (FMR) techniques. The magnetometry and FMR measurements show the presence of magnetic material in all honeybee body parts. Our results present evidence of the presence of biomineralized magnetite nanoparticles in the honeybee abdomen and, for the first time, magnetite in the antennae. FMR measurements permit to identify the magnetite in the abdomen as biomineralized. As behavioral experiments reported in the literature have shown that the abdomen is involved in magnetoreception, new experimental approaches must be done to confirm or discard the involvement of the antennae in magnetoreception.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"50 2","pages":"215 - 228"},"PeriodicalIF":1.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140896523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-20DOI: 10.1007/s10867-024-09655-5
Jiaxin Zhou, Hongli Wang, Qi Ouyang
Time of day affects how well the immune system responds to viral or bacterial infections. While it is well known that the immune system is regulated by the circadian clock, the dynamic origin of time-of-day-dependent immunity remains unclear. In this paper, we studied the circadian control of immune response upon infection of influenza A virus through mathematical modeling. Dynamic simulation analyses revealed that the time-of-day-dependent immunity was rooted in the relative phase between the circadian clock and the pulse of viral infection. The relative phase, which depends on the time the infection occurs, plays a crucial role in the immune response. It can drive the immune system to one of two distinct bistable states, a high inflammatory state with a higher mortality rate or a safe state characterized by low inflammation. The mechanism we found here also explained why the same species infected by different viruses has different time-of-day-dependent immunities. Further, the time-of-day-dependent immunity was found to be abolished when the immune system was regulated by an impaired circadian clock with decreased oscillation amplitude or without oscillations.
{"title":"Mathematical modeling of viral infection and the immune response controlled by the circadian clock","authors":"Jiaxin Zhou, Hongli Wang, Qi Ouyang","doi":"10.1007/s10867-024-09655-5","DOIUrl":"10.1007/s10867-024-09655-5","url":null,"abstract":"<div><p>Time of day affects how well the immune system responds to viral or bacterial infections. While it is well known that the immune system is regulated by the circadian clock, the dynamic origin of time-of-day-dependent immunity remains unclear. In this paper, we studied the circadian control of immune response upon infection of influenza A virus through mathematical modeling. Dynamic simulation analyses revealed that the time-of-day-dependent immunity was rooted in the relative phase between the circadian clock and the pulse of viral infection. The relative phase, which depends on the time the infection occurs, plays a crucial role in the immune response. It can drive the immune system to one of two distinct bistable states, a high inflammatory state with a higher mortality rate or a safe state characterized by low inflammation. The mechanism we found here also explained why the same species infected by different viruses has different time-of-day-dependent immunities. Further, the time-of-day-dependent immunity was found to be abolished when the immune system was regulated by an impaired circadian clock with decreased oscillation amplitude or without oscillations.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"50 2","pages":"197 - 214"},"PeriodicalIF":1.8,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}