Pub Date : 2024-11-26DOI: 10.1007/s12039-024-02318-x
Harun Khan, Aiswarya Kesh, Kothandaraman Ramanujam, Akhila Kumar Sahu
Nafion has gained widespread recognition as the predominant membrane due to its good proton conductivity, robust chemical resistance, and commendable mechanical stability. However, due to its well-developed water channels, it has poor barrier properties toward vanadium ions. Herein, to reduce vanadium ions permeability across the membranes without compromising the proton conductivity, graphene nanofiber (Herringbone type, GNF-H) as a filler has been incorporated into the Nafion matrix to fabricate the composite membrane. The membranes were subjected to physiochemical characterization, vanadium ion permeability, electrochemical impedance spectroscopy, and galvanostatic charge-discharge at different current densities. Vanadium permeability has significantly reduced in the 0.75% and 1% GNF-H composite membranes. Composite membranes (0.5%, 0.75%, and 1% GNF-H) showed a capacity of ~18.2, ~18.9, and ~16.8 Ah L−1 at 100 mA cm−2, respectively, whereas NafionTM 117 exhibited only ~16.3 Ah L−1 capacity at the same current density. The peak power of the cells consisted of 0.5, 0.75, and 1% GNF-H composite membrane and NafionTM 117 is ~538, ~507, ~465 and 388 mW cm−2, respectively. The present study concludes that applying Nafion/GNF-H in the VRFB system can be a promising strategy to reduce the vanadium ion permeation, cost-cutting and improve the VRFB performance.
GNF-H serves as a physical barrier to vanadium ion movement within the Nafion matrix, potentially lengthening the transport path of vanadium ions through the membrane. This reduces crossover and enhances membrane selectivity while not impeding proton transport, thereby enhancing the performance of VRFB.
{"title":"Functionalized graphene nanofiber-based low-cost composite membrane for vanadium redox flow battery applications","authors":"Harun Khan, Aiswarya Kesh, Kothandaraman Ramanujam, Akhila Kumar Sahu","doi":"10.1007/s12039-024-02318-x","DOIUrl":"10.1007/s12039-024-02318-x","url":null,"abstract":"<p>Nafion has gained widespread recognition as the predominant membrane due to its good proton conductivity, robust chemical resistance, and commendable mechanical stability. However, due to its well-developed water channels, it has poor barrier properties toward vanadium ions. Herein, to reduce vanadium ions permeability across the membranes without compromising the proton conductivity, graphene nanofiber (Herringbone type, GNF-H) as a filler has been incorporated into the Nafion matrix to fabricate the composite membrane. The membranes were subjected to physiochemical characterization, vanadium ion permeability, electrochemical impedance spectroscopy, and galvanostatic charge-discharge at different current densities. Vanadium permeability has significantly reduced in the 0.75% and 1% GNF-H composite membranes. Composite membranes (0.5%, 0.75%, and 1% GNF-H) showed a capacity of ~18.2, ~18.9, and ~16.8 Ah L<sup>−1</sup> at 100 mA cm<sup>−2</sup>, respectively, whereas Nafion<sup>TM</sup> 117 exhibited only ~16.3 Ah L<sup>−1</sup> capacity at the same current density. The peak power of the cells consisted of 0.5, 0.75, and 1% GNF-H composite membrane and Nafion<sup>TM</sup> 117 is ~538, ~507, ~465 and 388 mW cm<sup>−2</sup>, respectively. The present study concludes that applying Nafion/GNF-H in the VRFB system can be a promising strategy to reduce the vanadium ion permeation, cost-cutting and improve the VRFB performance.</p><p>GNF-H serves as a physical barrier to vanadium ion movement within the Nafion matrix, potentially lengthening the transport path of vanadium ions through the membrane. This reduces crossover and enhances membrane selectivity while not impeding proton transport, thereby enhancing the performance of VRFB.</p>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1007/s12039-024-02322-1
E A Mukhanova, P D Kuznetsova, P V Medvedev, C Y Cárdenas Rodriguez, E R Kolomenskaya, A N Bulgakov, S V Chapek, O E Polozhentsev, A V Soldatov
Nowadays, microfluidic synthesis has many advantages over bulk synthesis. By controlling the flow into the microfluidic chip, we can synthesize nanoparticles with defined and precise characteristics. A continuous microfluidics synthesis of CaWO4 was conducted to obtain nanoparticles with a Scheelite structure approximately 10 nm in diameter. The CaWO4 nanoparticles were characterized using elemental composition, chemical structure, particle size distribution, and morphology. Calcium tungstate and its derivatives are well known for their optical properties and have great potential for medical applications. The small diameter of nanoparticles allows the synthesis of composites on their basic for theranostics in cancer treatment. Our work indicates the potential opportunity of a continuous microfluidics technique for the rapid fabrication of Scheelite-type tungstate.
Graphical abstract
Microfluidic synthesis of CaWO4 nanoparticles with a Scheelite structure using a continuous process yielding 10 nm particles. Characterization includes elemental composition, structure, and morphology. This substance has potential applications in photodynamic therapy because of its optical properties.
{"title":"Microfluidic synthesis of calcium tungstate CaWO4","authors":"E A Mukhanova, P D Kuznetsova, P V Medvedev, C Y Cárdenas Rodriguez, E R Kolomenskaya, A N Bulgakov, S V Chapek, O E Polozhentsev, A V Soldatov","doi":"10.1007/s12039-024-02322-1","DOIUrl":"10.1007/s12039-024-02322-1","url":null,"abstract":"<div><p>Nowadays, microfluidic synthesis has many advantages over bulk synthesis. By controlling the flow into the microfluidic chip, we can synthesize nanoparticles with defined and precise characteristics. A continuous microfluidics synthesis of CaWO<sub>4</sub> was conducted to obtain nanoparticles with a Scheelite structure approximately 10 nm in diameter. The CaWO<sub>4</sub> nanoparticles were characterized using elemental composition, chemical structure, particle size distribution, and morphology. Calcium tungstate and its derivatives are well known for their optical properties and have great potential for medical applications. The small diameter of nanoparticles allows the synthesis of composites on their basic for theranostics in cancer treatment. Our work indicates the potential opportunity of a continuous microfluidics technique for the rapid fabrication of Scheelite-type tungstate.</p><h3>Graphical abstract</h3><p>Microfluidic synthesis of CaWO<sub>4</sub> nanoparticles with a Scheelite structure using a continuous process yielding 10 nm particles. Characterization includes elemental composition, structure, and morphology. This substance has potential applications in photodynamic therapy because of its optical properties.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1007/s12039-024-02311-4
Xiao-Li Qin, Xue-Qing Ding, Yu-Qin Li, Yi-Hao Yu, Fan Xu, Zhou Rong
A method for synthesizing 3-substituted isocoumarins under copper catalysis involves the cyclization reaction of o-bromobenzoic acid and alkynes in DMSO, with the assistance of K2CO3 at 100 °C. It exhibits a wide range of substrate compatibility and excellent tolerance towards diverse functional groups.
Graphical abstract
A method for synthesizing 3-substituted isocoumarins under copper catalysis involves the cyclization reaction of o-bromobenzoic acid and alkynes in DMSO, with the assistance of K2CO3 at 100 °C. This reaction demonstrates a synthesis yield of 8–81% for 3-substituted isocoumarins.
{"title":"Copper-catalyzed synthesis of 3-substituted isocoumarins from 2-halogenation benzoic acid and alkynes","authors":"Xiao-Li Qin, Xue-Qing Ding, Yu-Qin Li, Yi-Hao Yu, Fan Xu, Zhou Rong","doi":"10.1007/s12039-024-02311-4","DOIUrl":"10.1007/s12039-024-02311-4","url":null,"abstract":"<div><p>A method for synthesizing 3-substituted isocoumarins under copper catalysis involves the cyclization reaction of <i>o</i>-bromobenzoic acid and alkynes in DMSO, with the assistance of K<sub>2</sub>CO<sub>3</sub> at 100 °C. It exhibits a wide range of substrate compatibility and excellent tolerance towards diverse functional groups.</p><h3>Graphical abstract</h3><p>A method for synthesizing 3-substituted isocoumarins under copper catalysis involves the cyclization reaction of o-bromobenzoic acid and alkynes in DMSO, with the assistance of K<sub>2</sub>CO<sub>3</sub> at 100 °C. This reaction demonstrates a synthesis yield of 8–81% for 3-substituted isocoumarins.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Investigating alternative energy sources is now crucial since the topic of climate action is growing in significance. One of the most promising renewable biomass feedstocks is levulinic acid (LA), which can be converted via an intermediary called γ-valerolactone (GVL) into value-added products. This study examined the hydrogenation of levulinic acid to γ-valerolactone using various copper-supported H–ZSM-5 catalysts with different Cu loadings (2–30 wt%) that were synthesized using a simple impregnation technique. The synthesized catalyst's morphological and chemical structure was examined using a variety of techniques, including XRD, N2 adsorption-desorption, TPR, TPD–NH3, and N2O titration. Overall, at 265°C and 30 hours of time on stream (TOS), 5 Cu/H–ZSM-5 showed the best conversion (87%) and selectivity (83%).
Graphical Abstract
One of the most promising renewable biomass feedstocks is levulinic acid (LA), which can be converted via an intermediary called γ-valerolactone (GVL) into value-added products. This study examined the hydrogenation of levulinic acid to γ-valerolactone using copper-supported H–ZSM-5 catalysts with different Cu loadings.