In this study, the novel Au/Cu2O/Graphene quantum dots nanocomposites have been synthesized via a fast, simple and environmentally friendly method for the first time. Specifically, Cu2O nanocubes (Cu2O NCBs) synthesized by a reduction reaction at room temperature were combined with Au nanoparticles (Au NPs) and Graphene quantum dots (GQDs) obtained from low-cost and naturally abundant material. The synthesized Au/Cu2O/GQDs were characterized by UV-vis, FTIR, XRD, TEM, FESEM, and EDS. The results show that the Au/Cu2O/GQDs have an average size of about 32-36 nm, in which the diameter of Au NPs is ~28-32 nm, Cu2O particles have the form of nanocube with the size of ~29-33 nm and GQDs are small spherical with an average size of ~5 nm. In addition, the electrochemical properties of the Au/Cu2O/GQDs electrodes were investigated using the cyclic voltammetry (CV) technique. The obtained results show that the Au/Cu2O/GQDs have high electroactivity, which are very potential and promising to be used in glucose sensor with a very wide concentration of glucose detection range from 10-10 M to 1 M with a the LOD of 70 nM (7×10-8 M) and a high sensitivity of 32.5 μAμM-1cm-2. Therefore, Au/Cu2O/GQDs will be potential candidate for non-enzymatic sensitive glucose sensors in the future.
Graphical abstract
Cu2O nanocubes (Cu2O NCBs) were successfully combined with Au nanoparticles (Au NPs) and Graphene quantum dots (GQDs) to generate Au/Cu2O/GQDs nanocomposites. The properties and morphology of synthesized Au/Cu2O/GQDs were also studied. Au/Cu2O/GQDs showed promising electrochemical activity and performed its applicability for glucose detection with a wide concentration of glucose detection range from 10-10 M to 1 M.