A study on the interaction of non-metal oxide with water is very critical in order to understand the formation of acidic species and polyanions. It is very easy to understand the interaction of non-metal oxides with water by employing density functional theory (DFT). First-principles DFT is used to simulate the water cluster with three-dimensional continuums by defining a supercell with dimensions (13.49 times 12.696 times 3.174) Å3. The geometry-optimized non-metal oxides are placed on the water clusters and allow for interactions. The geometry and stability of the chemical species formed are discussed and the results are correlated with the experiments. The phonon calculations are also carried out to confirm the chemical species formed and match well with the literature.
Graphical abstract
First-principles DFT is used to simulate the water cluster with three-dimensional continuums by defining a supercell with dimensions (13.49 times 12.696 times 3.174 ) Å3. Interactions of water cluster with non-metal oxides furnished H2CO3, ({text{HSO}}_{3}^{-}), ({text{SO}}_{4}^{2-}), and ({text{NO}}_{3}^{-}) for CO2, SO2, SO3, and ({{text{N}}_{2}text{O}}_{5}) respectively