Pub Date : 2025-02-10DOI: 10.1007/s10659-025-10116-w
M. B. Rubin
Recently, an Eulerian formulation of a nonlinear thermomechanical Cosserat theory of a 3D continuum enriched with a deformable triad of director vectors was developed for anisotropic elastic-inelastic response. To study the influence of the directors on size-dependent response the small deformation purely mechanical equations for this Cosserat continuum are used to formulate and solve the problem of plane-strain pure bending of a circular tube of an elastically isotropic incompressible Cosserat material. Examples present the influences of the stiffness to deformations of the directors and the intrinsic length in the formulation.
{"title":"Small Deformation Plane Strain Pure Bending of a Sector of a Circular Tube of an Incompressible 3D Cosserat Material","authors":"M. B. Rubin","doi":"10.1007/s10659-025-10116-w","DOIUrl":"10.1007/s10659-025-10116-w","url":null,"abstract":"<div><p>Recently, an Eulerian formulation of a nonlinear thermomechanical Cosserat theory of a 3D continuum enriched with a deformable triad of director vectors was developed for anisotropic elastic-inelastic response. To study the influence of the directors on size-dependent response the small deformation purely mechanical equations for this Cosserat continuum are used to formulate and solve the problem of plane-strain pure bending of a circular tube of an elastically isotropic incompressible Cosserat material. Examples present the influences of the stiffness to deformations of the directors and the intrinsic length in the formulation.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-06DOI: 10.1007/s10659-025-10110-2
Zhongqi Quentin Yue
This paper presents analytical formulations for systematically deriving the solutions of Biot’s poroelasticity in saturated multilayered media of either full-space or halfspace extents. The number of the saturated multilayer media is either (n+2) for full-space extent or (n+1) for halfspace extent, where (n) is a positive or zero integer. The applied loadings include the internal forces and liquid source for full-space and both internal and external loadings for halfspace region with eight cases of four boundary conditions. The mathematical tools for the formulations are classical and include the two-dimensional Fourier transform, the Hankel transform, Laplace transform as well as linear algebra. The solutions are expressed in matrix forms and each matrix is explicitly expressed with clear physical meaning and well-defined elements. The matrix solutions in the Fourier and Laplace transform domains are axially symmetric about the vertical axis. The internal and boundary conditions can be four-dimensional and the matrix solutions in the physical domain are also four-dimensional.
{"title":"Matrix Solutions of Biot’s Poroelasticity in Saturated Multilayered Media","authors":"Zhongqi Quentin Yue","doi":"10.1007/s10659-025-10110-2","DOIUrl":"10.1007/s10659-025-10110-2","url":null,"abstract":"<div><p>This paper presents analytical formulations for systematically deriving the solutions of Biot’s poroelasticity in saturated multilayered media of either full-space or halfspace extents. The number of the saturated multilayer media is either <span>(n+2)</span> for full-space extent or <span>(n+1)</span> for halfspace extent, where <span>(n)</span> is a positive or zero integer. The applied loadings include the internal forces and liquid source for full-space and both internal and external loadings for halfspace region with eight cases of four boundary conditions. The mathematical tools for the formulations are classical and include the two-dimensional Fourier transform, the Hankel transform, Laplace transform as well as linear algebra. The solutions are expressed in matrix forms and each matrix is explicitly expressed with clear physical meaning and well-defined elements. The matrix solutions in the Fourier and Laplace transform domains are axially symmetric about the vertical axis. The internal and boundary conditions can be four-dimensional and the matrix solutions in the physical domain are also four-dimensional.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-025-10110-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-03DOI: 10.1007/s10659-024-10097-2
Marco Valerio d’Agostino, Sebastian Holthausen, Davide Bernardini, Adam Sky, Ionel-Dumitrel Ghiba, Robert J. Martin, Patrizio Neff
Following Hill and Leblond, the aim of our work is to show, for isotropic nonlinear elasticity, a relation between the corotational Zaremba–Jaumann objective derivative of the Cauchy stress (sigma ), i.e.
and a constitutive requirement involving the logarithmic strain tensor. Given the deformation tensor (F = mathrm {D}varphi ), the left Cauchy-Green tensor (B = F , F^{T}), and the strain-rate tensor (D = operatorname{sym}(dot{F} , F^{-1})), we show that
$$begin{aligned} & forall ,Din operatorname{Sym}(3) ! setminus ! {0}: ~ left langle frac{mathrm {D}^{operatorname{ZJ}}}{ mathrm {D}t}[sigma ],Dright rangle > 0 & quad iff quad log B longmapsto widehat{sigma}(log B) ; textrm{is strongly Hilbert-monotone} &quad iff quad operatorname{sym} mathrm {D}_{log B} widehat{sigma}(log B) in operatorname{Sym}^{++}_{4}(6) quad text{(TSTS-M$^{++}$)}, end{aligned}$$