首页 > 最新文献

Journal of Flow Chemistry最新文献

英文 中文
Functionalization of unsaturated carbon–carbon bonds by continuous-flow ozonolysis 通过连续流臭氧分解使不饱和碳-碳键官能化
IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-15 DOI: 10.1007/s41981-024-00328-x
Caio M. Pacheco, Fernanda A. Lima, Mauro R. B. P. Gomez, Lucas B. Barbosa, Raquel A. C. Leão, Rodrigo O. M. A. de Souza

In the continuous struggle for improvements in laboratory processes, flow synthesis has been widely used for being safer, more reproducible, as for improving yields and scalability. Therefore, flow ozonolysis has become a turning point as flow reactors provides a much safer work environment and reactions can now be produced at industrial scales. In this review we would discuss several reactors used in flow ozonolysis and its importance for the safety of the ozonolysis process.

在不断改进实验室工艺的过程中,流动合成因其更安全、可重现性更高以及产量和可扩展性更强而得到广泛应用。因此,流动臭氧分解已成为一个转折点,因为流动反应器提供了更安全的工作环境,而且现在可以进行工业规模的反应。在本综述中,我们将讨论几种用于流动臭氧溶解的反应器及其对臭氧溶解过程安全性的重要性。
{"title":"Functionalization of unsaturated carbon–carbon bonds by continuous-flow ozonolysis","authors":"Caio M. Pacheco,&nbsp;Fernanda A. Lima,&nbsp;Mauro R. B. P. Gomez,&nbsp;Lucas B. Barbosa,&nbsp;Raquel A. C. Leão,&nbsp;Rodrigo O. M. A. de Souza","doi":"10.1007/s41981-024-00328-x","DOIUrl":"10.1007/s41981-024-00328-x","url":null,"abstract":"<div><p>In the continuous struggle for improvements in laboratory processes, flow synthesis has been widely used for being safer, more reproducible, as for improving yields and scalability. Therefore, flow ozonolysis has become a turning point as flow reactors provides a much safer work environment and reactions can now be produced at industrial scales. In this review we would discuss several reactors used in flow ozonolysis and its importance for the safety of the ozonolysis process.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 3","pages":"491 - 513"},"PeriodicalIF":2.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous preparation and reaction of nonaflyl azide (NfN3) for the synthesis of organic azides and 1,2,3-triazoles 用于合成有机叠氮化物和 1,2,3-三唑的壬烯呋喃叠氮化物 (NfN3) 的连续制备和反应
IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-04 DOI: 10.1007/s41981-024-00327-y
Sebastian P. Green, Hannah C. Broderick, Katherine M. P. Wheelhouse, Jason P. Hallett, Philip W. Miller, James A. Bull

Organic azides are widely used in organic synthesis. Continuous flow processing can be used to bypass their isolation, and can therefore be useful in mitigating the hazards associated with these potentially toxic and explosive reagents. Nonaflyl azide has been reported as an effective, bench-stable, and relatively safe diazo transfer reagent that can be useful in the preparation of azides from amines and so avoid the use of alkyl halides. Here we demonstrate the synthesis and purification of nonaflyl azide in continuous flow with isolation of the neat, pure reagent by membrane filtration. The neat reagent was used in the preparation of organic azides from primary amines, and then applied to the synthesis of triazoles. A variety of triazoles, including the antiseizure drug Rufinamide, were prepared from primary amines and alkynes via the CuAAC click reaction in a semi-batch parallel array without isolation of alkyl azide intermediates. A telescoped two-stage continuous flow process was also designed and demonstrated to form triazoles via the same CuAAC reaction, which avoids the handling of the intermediate reactive azides.

有机叠氮化物广泛用于有机合成。连续流工艺可用于绕过它们的分离,因此可有效减轻这些潜在有毒和易爆试剂带来的危害。据报道,壬酰基叠氮化物是一种有效、稳定、相对安全的重氮转移试剂,可用于从胺中制备叠氮化物,从而避免使用烷基卤化物。在此,我们展示了连续流合成和纯化壬烯丙基叠氮化物的过程,并通过膜过滤分离出纯净的试剂。纯试剂用于从伯胺制备有机叠氮化物,然后用于合成三唑类化合物。在半批次平行阵列中,通过 CuAAC 点击反应从伯胺和炔烃制备了多种三唑类化合物,包括抗癫痫药物鲁非那胺(Rufinamide),而无需分离烷基叠氮化物中间体。此外,还设计并演示了一种伸缩式两级连续流工艺,可通过相同的 CuAAC 反应生成三唑,从而避免了对中间反应叠氮化物的处理。
{"title":"Continuous preparation and reaction of nonaflyl azide (NfN3) for the synthesis of organic azides and 1,2,3-triazoles","authors":"Sebastian P. Green,&nbsp;Hannah C. Broderick,&nbsp;Katherine M. P. Wheelhouse,&nbsp;Jason P. Hallett,&nbsp;Philip W. Miller,&nbsp;James A. Bull","doi":"10.1007/s41981-024-00327-y","DOIUrl":"10.1007/s41981-024-00327-y","url":null,"abstract":"<div><p>Organic azides are widely used in organic synthesis. Continuous flow processing can be used to bypass their isolation, and can therefore be useful in mitigating the hazards associated with these potentially toxic and explosive reagents. Nonaflyl azide has been reported as an effective, bench-stable, and relatively safe diazo transfer reagent that can be useful in the preparation of azides from amines and so avoid the use of alkyl halides. Here we demonstrate the synthesis and purification of nonaflyl azide in continuous flow with isolation of the neat, pure reagent by membrane filtration. The neat reagent was used in the preparation of organic azides from primary amines, and then applied to the synthesis of triazoles. A variety of triazoles, including the antiseizure drug Rufinamide, were prepared from primary amines and alkynes via the CuAAC click reaction in a semi-batch parallel array without isolation of alkyl azide intermediates. A telescoped two-stage continuous flow process was also designed and demonstrated to form triazoles via the same CuAAC reaction, which avoids the handling of the intermediate reactive azides.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 3","pages":"559 - 568"},"PeriodicalIF":2.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-024-00327-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141546631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of different microfluidic devices in continuous liquid-liquid separation 不同微流控装置在连续液-液分离中的性能
IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-13 DOI: 10.1007/s41981-024-00326-z
Bastian Oldach, Ya-Yu Chiang, Leon Ben-Achour, Tai-Jhen Chen, Norbert Kockmann

Droplet-based microfluidics exhibit numerous benefits leading to relevant innovations and many applications in various fields. The precise handling of droplets in capillaries, including droplet formation, manipulation, and separation, is essential for successful operation. Only a few reports are known concerning the separation of segmented flows, particularly the continuous separation of droplets, which is of high interest regarding the control of biochemical and chemical reactions or other applications where the contact time of the involved phases is crucial. Here, the separation must be flexible and adjusted to different flow parameters, such as the surface tension, the volumetric flow rates, and their ratios. This contribution presents two novel open-source approaches based on additive manufacturing and mechanical deforming for continuous liquid–liquid separation under various flow conditions. The Laplace pressure is the driving force for the separation, which is adjusted to the flow conditions by adapting the distance of pinning points provided by the design of the devices. Details of the device design and experimental setup are shown along with limitations to promote further development and to increase availability for researchers. With the right parameters, sophisticated separations can be realized by inexpensive laboratory equipment and simple control of them. It was found that the distance between the pinning points needs to enlarged for increasing volumetric flow rates and reduced for higher viscosities of the continuous phase respectively higher amounts of the dispersed phase. The open source approach of this article expands the exploration space in addition to commercially available phase separators only available to a selected group of people.

Graphical Abstract

基于液滴的微流控技术具有众多优势,可带来相关创新并在各个领域得到广泛应用。精确处理毛细管中的液滴,包括液滴的形成、操作和分离,是成功运行的关键。关于分段流的分离,特别是液滴的连续分离,目前只有少数报道,而这在生化和化学反应的控制或其他应用中具有很高的关注度,因为在这些应用中,各相的接触时间至关重要。在这种情况下,分离必须灵活,并根据不同的流动参数(如表面张力、体积流量及其比率)进行调整。本文介绍了两种基于快速成型制造和机械变形的新型开源方法,用于在各种流动条件下实现连续的液-液分离。拉普拉斯压力是分离的驱动力,可通过调整装置设计所提供的销钉点距离来适应流动条件。为了促进进一步开发和增加研究人员的可用性,我们展示了装置设计和实验设置的细节以及限制条件。有了正确的参数,通过廉价的实验室设备和简单的控制,就可以实现复杂的分离。研究发现,随着体积流量的增加,针刺点之间的距离需要增大,而当连续相的粘度较高时,分散相的数量较多时,针刺点之间的距离需要减小。除了仅向特定人群提供的商用相分离器外,本文的开源方法还拓展了探索空间。
{"title":"Performance of different microfluidic devices in continuous liquid-liquid separation","authors":"Bastian Oldach,&nbsp;Ya-Yu Chiang,&nbsp;Leon Ben-Achour,&nbsp;Tai-Jhen Chen,&nbsp;Norbert Kockmann","doi":"10.1007/s41981-024-00326-z","DOIUrl":"10.1007/s41981-024-00326-z","url":null,"abstract":"<div><p>Droplet-based microfluidics exhibit numerous benefits leading to relevant innovations and many applications in various fields. The precise handling of droplets in capillaries, including droplet formation, manipulation, and separation, is essential for successful operation. Only a few reports are known concerning the separation of segmented flows, particularly the continuous separation of droplets, which is of high interest regarding the control of biochemical and chemical reactions or other applications where the contact time of the involved phases is crucial. Here, the separation must be flexible and adjusted to different flow parameters, such as the surface tension, the volumetric flow rates, and their ratios. This contribution presents two novel open-source approaches based on additive manufacturing and mechanical deforming for continuous liquid–liquid separation under various flow conditions. The Laplace pressure is the driving force for the separation, which is adjusted to the flow conditions by adapting the distance of pinning points provided by the design of the devices. Details of the device design and experimental setup are shown along with limitations to promote further development and to increase availability for researchers. With the right parameters, sophisticated separations can be realized by inexpensive laboratory equipment and simple control of them. It was found that the distance between the pinning points needs to enlarged for increasing volumetric flow rates and reduced for higher viscosities of the continuous phase respectively higher amounts of the dispersed phase. The open source approach of this article expands the exploration space in addition to commercially available phase separators only available to a selected group of people.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 3","pages":"547 - 557"},"PeriodicalIF":2.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-024-00326-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141350167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous flow process optimization aided by machine learning for a pharmaceutical intermediate 利用机器学习优化制药中间体的连续流工艺
IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-05-13 DOI: 10.1007/s41981-024-00318-z
Jinlin Zhu, Chenyang Zhao, Li Sheng, Dadong Shen, Gang Fan, Xufeng Wu, Lushan Yu, Kui Du

In this paper, we demonstrate the use of machine learning to optimize the continuous flow process of a crucial intermediate in the production of Nemonoxacin. Our focus is to achieve the good yield and enantioselectivity in the construction of chiral methyl group utilize the initial 29 experimental datasets and consider six important variables. Employing Single-Objective Bayesian optimization (SOBO), we achieved an impressive predicted yield of up to 89.7%, which is consistent with the experimental results, with a yield of 89.5%. Additionally, A Multi-Objective Bayesian Optimization (MOBO) algorithm, namely qNEHVI, to strike a balance between yield and enantioselectivity in the continuous flow system is applied. The algorithm’s prediction, with a yield of 81.8% and enantioselectivity of 97.85%, was experimentally validated, yielding 83.8% and 97.2%, respectively. This study effectively demonstrates that Bayesian optimization is a powerful tool for optimizing the continuous process in the production of active pharmaceutical ingredients (APIs).

在本文中,我们展示了如何利用机器学习来优化奈莫沙星生产过程中一个关键中间体的连续流工艺。我们的重点是利用最初的 29 个实验数据集,并考虑六个重要变量,在构建手性甲基的过程中实现良好的产率和对映选择性。利用单目标贝叶斯优化(SOBO),我们获得了令人印象深刻的高达 89.7% 的预测产率,这与实验结果一致,产率为 89.5%。此外,我们还采用了一种多目标贝叶斯优化(MOBO)算法,即 qNEHVI,以在连续流系统中实现产率和对映体选择性之间的平衡。实验验证了该算法的预测结果,产率为 81.8%,对映体选择性为 97.85%,产率和对映体选择性分别为 83.8%和 97.2%。这项研究有效地证明了贝叶斯优化算法是优化活性药物成分 (API) 连续生产过程的有力工具。
{"title":"Continuous flow process optimization aided by machine learning for a pharmaceutical intermediate","authors":"Jinlin Zhu,&nbsp;Chenyang Zhao,&nbsp;Li Sheng,&nbsp;Dadong Shen,&nbsp;Gang Fan,&nbsp;Xufeng Wu,&nbsp;Lushan Yu,&nbsp;Kui Du","doi":"10.1007/s41981-024-00318-z","DOIUrl":"10.1007/s41981-024-00318-z","url":null,"abstract":"<div><p>In this paper, we demonstrate the use of machine learning to optimize the continuous flow process of a crucial intermediate in the production of Nemonoxacin. Our focus is to achieve the good yield and enantioselectivity in the construction of chiral methyl group utilize the initial 29 experimental datasets and consider six important variables. Employing Single-Objective Bayesian optimization (SOBO), we achieved an impressive predicted yield of up to 89.7%, which is consistent with the experimental results, with a yield of 89.5%. Additionally, A Multi-Objective Bayesian Optimization (MOBO) algorithm, namely qNEHVI, to strike a balance between yield and enantioselectivity in the continuous flow system is applied. The algorithm’s prediction, with a yield of 81.8% and enantioselectivity of 97.85%, was experimentally validated, yielding 83.8% and 97.2%, respectively. This study effectively demonstrates that Bayesian optimization is a powerful tool for optimizing the continuous process in the production of active pharmaceutical ingredients (APIs).</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 3","pages":"539 - 546"},"PeriodicalIF":2.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Driving sustainability through adoption of hybrid manufacturing in small molecule API production 在小分子原料药生产中采用混合生产技术,推动可持续发展
IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-03-22 DOI: 10.1007/s41981-024-00325-0
Svetlana Borukhova, Robert Sebastian Rönnback

Pharmaceutical industry is challenged by the rising development costs, strict regulatory and environmental requirements all while racing to deliver complex molecules to market. The need to be the first-in-class brings about shorter lifetime to the launched products in favor of better functioning followers. In addition, a shift from large volume blockbusters towards small volume production of complex molecules presents a unique opportunity to challenge the status quo in pharmaceutical manufacturing. Traditional batch manufacturing, while foundational, presents hurdles in scaling and efficiency, particularly for demanding reactions. Continuous manufacturing has emerged as a promising alternative, delivering better control and uniformity of operating conditions, mirroring the efficiencies found in small-scale batch reactors. However, continuous manufacturing is not universally applicable. As a solution, a combination of the two into hybrid manufacturing processes, appears to fill this gap effectively. While the concept of hybrid manufacturing is not new, the current perspective adds an additional angle to the integration of both technologies. Authors propose to sustain the continuity of the operation for batch mode processes by decreasing the reactor size and increasing the level of automation. Furthermore, modular fabrication of smaller-footprint technological platforms is expected to synergize other advancements in the field, such as digitalization, automation, and standardization. As a result, a leap towards the implementation of advanced manufacturing to drive sustainability in pharmaceutical industry is more tangible than ever.

摘要 制药业面临着开发成本不断上升、监管和环保要求严格的挑战,同时还要争分夺秒地将复杂的分子产品推向市场。要成为同类产品中的佼佼者,就必须缩短上市产品的生命周期,以获得功能更好的后续产品。此外,从大批量生产大片转向小批量生产复杂分子,为挑战制药业的现状提供了一个独特的机会。传统的批量生产虽然是基础,但在规模和效率方面存在障碍,尤其是对于要求苛刻的反应。连续生产已成为一种很有前途的替代方法,它能更好地控制和统一操作条件,与小规模间歇反应器的效率相仿。然而,连续生产并非普遍适用。作为一种解决方案,将二者结合成混合制造工艺似乎能有效弥补这一缺陷。虽然混合制造的概念并不新鲜,但目前的观点为这两种技术的整合增添了新的视角。作者建议通过缩小反应器尺寸和提高自动化水平来保持批量模式工艺的连续性。此外,小尺寸技术平台的模块化制造有望与该领域的其他进步(如数字化、自动化和标准化)产生协同效应。因此,采用先进制造技术推动制药业的可持续发展比以往任何时候都更加切实可行。
{"title":"Driving sustainability through adoption of hybrid manufacturing in small molecule API production","authors":"Svetlana Borukhova,&nbsp;Robert Sebastian Rönnback","doi":"10.1007/s41981-024-00325-0","DOIUrl":"10.1007/s41981-024-00325-0","url":null,"abstract":"<div><p>Pharmaceutical industry is challenged by the rising development costs, strict regulatory and environmental requirements all while racing to deliver complex molecules to market. The need to be the first-in-class brings about shorter lifetime to the launched products in favor of better functioning followers. In addition, a shift from large volume blockbusters towards small volume production of complex molecules presents a unique opportunity to challenge the status quo in pharmaceutical manufacturing. Traditional batch manufacturing, while foundational, presents hurdles in scaling and efficiency, particularly for demanding reactions. Continuous manufacturing has emerged as a promising alternative, delivering better control and uniformity of operating conditions, mirroring the efficiencies found in small-scale batch reactors. However, continuous manufacturing is not universally applicable. As a solution, a combination of the two into hybrid manufacturing processes, appears to fill this gap effectively. While the concept of hybrid manufacturing is not new, the current perspective adds an additional angle to the integration of both technologies. Authors propose to sustain the continuity of the operation for batch mode processes by decreasing the reactor size and increasing the level of automation. Furthermore, modular fabrication of smaller-footprint technological platforms is expected to synergize other advancements in the field, such as digitalization, automation, and standardization. As a result, a leap towards the implementation of advanced manufacturing to drive sustainability in pharmaceutical industry is more tangible than ever.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"303 - 312"},"PeriodicalIF":2.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient pinnick oxidation by a superheated micro-reaction process 通过过热微反应过程实现高效松脂氧化
IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-03-20 DOI: 10.1007/s41981-024-00324-1
Jinpei Huang, Yongxiang Li, Yuanzheng Zhou, Yifu Yu, Jingyi Feng, Yongjun Zhang, Yifeng Zhou

The Pinnick oxidation, due to its tolerance for sensitive functional groups, is widely used in the process of oxidizing α,β-unsaturated aldehydes to corresponding carboxylic acids. The reaction reagents typically include sodium chlorite, buffer salts, and a scavenger. However, the controllability of Pinnick oxidation in the batch reaction process is poor due to the inherent limitations of the reactor’s performance. This leads to potential safety risks and necessitates the reaction to proceed slowly under conditions of low temperature and low concentration. In this work, we introduced a new continuous micro-reaction process to intensify the Pinnick oxidation. The water-soluble crotonic acid was selected as a typical object of study. Through the study of reaction parameters and the construction of a micro-reaction system, efficient continuous process was achieved under high-temperature and high-pressure conditions for the first time. Compared to the batch process, the reaction benefited from the superheated condition resulting in a significant acceleration of the reaction rate, efficient gas–liquid interphase mass transfer allowing for effective utilization of the generated chlorine dioxide, and the inherent safety of the microreactor enabling an increase in reaction concentration. In addition, the buffer salts used in the Pinnick oxidation has been successfully replaced by hydrochloric acid and applied to the continuous flow. This work shows the tremendous potential of microreactors in utilizing harsh reaction conditions to achieve process intensification.

平尼克氧化法因其对敏感官能团的耐受性,被广泛应用于将α、β-不饱和醛氧化成相应羧酸的过程中。反应试剂通常包括亚氯酸钠、缓冲盐和清除剂。然而,由于反应器性能的固有限制,批量反应过程中平尼克氧化的可控性较差。这导致了潜在的安全风险,并使反应必须在低温和低浓度条件下缓慢进行。在这项工作中,我们引入了一种新的连续微反应工艺来强化平尼克氧化反应。我们选择了水溶性巴豆酸作为典型的研究对象。通过对反应参数的研究和微反应系统的构建,首次实现了高温高压条件下的高效连续反应过程。与间歇式工艺相比,该反应得益于超高温条件显著加快了反应速率,高效的气液相间传质使生成的二氧化氯得到了有效利用,微反应器的固有安全性使反应浓度得以提高。此外,平尼克氧化法中使用的缓冲盐已被盐酸成功取代,并应用于连续流。这项工作显示了微反应器在利用苛刻的反应条件实现工艺强化方面的巨大潜力。
{"title":"Efficient pinnick oxidation by a superheated micro-reaction process","authors":"Jinpei Huang,&nbsp;Yongxiang Li,&nbsp;Yuanzheng Zhou,&nbsp;Yifu Yu,&nbsp;Jingyi Feng,&nbsp;Yongjun Zhang,&nbsp;Yifeng Zhou","doi":"10.1007/s41981-024-00324-1","DOIUrl":"10.1007/s41981-024-00324-1","url":null,"abstract":"<p>The Pinnick oxidation, due to its tolerance for sensitive functional groups, is widely used in the process of oxidizing <i>α</i>,<i>β</i>-unsaturated aldehydes to corresponding carboxylic acids. The reaction reagents typically include sodium chlorite, buffer salts, and a scavenger. However, the controllability of Pinnick oxidation in the batch reaction process is poor due to the inherent limitations of the reactor’s performance. This leads to potential safety risks and necessitates the reaction to proceed slowly under conditions of low temperature and low concentration. In this work, we introduced a new continuous micro-reaction process to intensify the Pinnick oxidation. The water-soluble crotonic acid was selected as a typical object of study. Through the study of reaction parameters and the construction of a micro-reaction system, efficient continuous process was achieved under high-temperature and high-pressure conditions for the first time. Compared to the batch process, the reaction benefited from the superheated condition resulting in a significant acceleration of the reaction rate, efficient gas–liquid interphase mass transfer allowing for effective utilization of the generated chlorine dioxide, and the inherent safety of the microreactor enabling an increase in reaction concentration. In addition, the buffer salts used in the Pinnick oxidation has been successfully replaced by hydrochloric acid and applied to the continuous flow. This work shows the tremendous potential of microreactors in utilizing harsh reaction conditions to achieve process intensification.</p>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 3","pages":"529 - 537"},"PeriodicalIF":2.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid prototyping of a modular optical flow cell for image-based droplet size measurements in emulsification processes 用于乳化过程中基于图像的液滴粒度测量的模块化光学流动池的快速原型开发
IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-03-19 DOI: 10.1007/s41981-024-00323-2
Inga Burke, Christina Assies, Norbert Kockmann

Emulsification processes are often found in the process industry and their evaluation is crucial for product quality and safety. Numerous methods exist to analyze critical quality attributes (CQA) such as the droplet sizes and droplet size distribution (DSD) of an emulsification process. During the emulsification process, the optical process accessibility may be limited due to high disperse phase content of liquid-liquid systems. To overcome this challenge, a modular, optical measurement flow cell is presented to widen the application window of optical methods in emulsification processes. In this contribution, the channel geometry is subject of optimization to modify the flow characteristics and produce high optical quality. In terms of rapid prototyping, an iterative optimization procedure via SLA-3D printing was used to increase operability. The results demonstrated that the flow cell resulting from the optimization procedure provides a broad observation window for droplet detection.

Graphical abstract

乳化过程经常出现在加工工业中,对其进行评估对产品质量和安全至关重要。目前有许多方法可以分析乳化过程中的液滴尺寸和液滴尺寸分布 (DSD) 等关键质量属性 (CQA)。在乳化过程中,由于液-液系统的分散相含量较高,光学过程的可及性可能会受到限制。为了克服这一挑战,我们提出了一种模块化光学测量流动池,以拓宽光学方法在乳化过程中的应用范围。在这一贡献中,对通道几何形状进行了优化,以改变流动特性并产生高光学质量。在快速原型制作方面,采用了 SLA-3D 打印迭代优化程序,以提高可操作性。结果表明,优化程序产生的流动池为液滴检测提供了广阔的观察窗口。
{"title":"Rapid prototyping of a modular optical flow cell for image-based droplet size measurements in emulsification processes","authors":"Inga Burke,&nbsp;Christina Assies,&nbsp;Norbert Kockmann","doi":"10.1007/s41981-024-00323-2","DOIUrl":"10.1007/s41981-024-00323-2","url":null,"abstract":"<div><p>Emulsification processes are often found in the process industry and their evaluation is crucial for product quality and safety. Numerous methods exist to analyze critical quality attributes (CQA) such as the droplet sizes and droplet size distribution (DSD) of an emulsification process. During the emulsification process, the optical process accessibility may be limited due to high disperse phase content of liquid-liquid systems. To overcome this challenge, a modular, optical measurement flow cell is presented to widen the application window of optical methods in emulsification processes. In this contribution, the channel geometry is subject of optimization to modify the flow characteristics and produce high optical quality. In terms of rapid prototyping, an iterative optimization procedure via SLA-3D printing was used to increase operability. The results demonstrated that the flow cell resulting from the optimization procedure provides a broad observation window for droplet detection.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 3","pages":"515 - 528"},"PeriodicalIF":2.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-024-00323-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Investigators in Flow Chemistry 2023 2023 年流动化学领域的新兴研究人员
IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-03-18 DOI: 10.1007/s41981-024-00322-3
Cecilia Bottecchia, Wu Jie, Luca Capaldo
{"title":"Emerging Investigators in Flow Chemistry 2023","authors":"Cecilia Bottecchia,&nbsp;Wu Jie,&nbsp;Luca Capaldo","doi":"10.1007/s41981-024-00322-3","DOIUrl":"10.1007/s41981-024-00322-3","url":null,"abstract":"","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"1 - 9"},"PeriodicalIF":2.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of micromixing times in commercially available continuous-flow mixers: evaluation of the incorporation and interaction by exchange with the mean model 确定市售连续流动混合器的微混合时间:通过与平均模型交换来评估混合和相互作用
IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-03-06 DOI: 10.1007/s41981-024-00321-4
Jasper H. A. Schuurmans, Micha Peeters, Matthieu Dorbec, Koen P. L. Kuijpers

To understand and predict the effect of mixing in a mixer or reactor, characterization is essential. The Villermaux-Dushman system of competitive parallel reactions is one of the most frequently used methods to obtain details on the micromixing behavior in mixers and reactors. For quantitative information, a model can convert experimental data into a universal micromixing time, which can be used to compare set-ups and reaction conditions. Different modeling approaches have been developed over time and complicate the comparison of results with newfound micromixing times. In this work, these different modeling approaches are elaborated upon to show the significant differences that can arise between these models. Special attention goes out to a model for continuous-flow mixers, which operates differently and has different characteristics compared to mixing in conventional batch reactors. The volume fractions of the two phases being mixed are generally closer to one another in flow mixers, requiring adaptations in the experimental and modeling approach. Several models were tested, after which the interaction by exchange with the mean (IEM) model was selected. Using this model, micromixing times were determined for a variety of continuous-flow mixers under different operating conditions.

要了解和预测混合器或反应器中的混合效果,特征描述至关重要。竞争性平行反应的 Villermaux-Dushman 系统是获取混合器和反应器中微混合行为细节的最常用方法之一。对于定量信息,模型可以将实验数据转换为通用的微混合时间,用于比较设置和反应条件。随着时间的推移,人们开发出了不同的建模方法,这使得将结果与新发现的微混合时间进行比较变得更加复杂。在这项工作中,将详细阐述这些不同的建模方法,以显示这些模型之间可能存在的显著差异。特别要注意的是连续流动混合器的模型,与传统间歇式反应器的混合相比,连续流动混合器的运行方式和特点有所不同。在流动混合器中,被混合的两相的体积分数通常更接近,因此需要对实验和建模方法进行调整。在对多个模型进行测试后,选择了与平均值交换的相互作用(IEM)模型。利用该模型,确定了各种连续流动混合器在不同操作条件下的微混合时间。
{"title":"Determination of micromixing times in commercially available continuous-flow mixers: evaluation of the incorporation and interaction by exchange with the mean model","authors":"Jasper H. A. Schuurmans,&nbsp;Micha Peeters,&nbsp;Matthieu Dorbec,&nbsp;Koen P. L. Kuijpers","doi":"10.1007/s41981-024-00321-4","DOIUrl":"10.1007/s41981-024-00321-4","url":null,"abstract":"<div><p>To understand and predict the effect of mixing in a mixer or reactor, characterization is essential. The Villermaux-Dushman system of competitive parallel reactions is one of the most frequently used methods to obtain details on the micromixing behavior in mixers and reactors. For quantitative information, a model can convert experimental data into a universal micromixing time, which can be used to compare set-ups and reaction conditions. Different modeling approaches have been developed over time and complicate the comparison of results with newfound micromixing times. In this work, these different modeling approaches are elaborated upon to show the significant differences that can arise between these models. Special attention goes out to a model for continuous-flow mixers, which operates differently and has different characteristics compared to mixing in conventional batch reactors. The volume fractions of the two phases being mixed are generally closer to one another in flow mixers, requiring adaptations in the experimental and modeling approach. Several models were tested, after which the interaction by exchange with the mean (IEM) model was selected. Using this model, micromixing times were determined for a variety of continuous-flow mixers under different operating conditions.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"33 - 42"},"PeriodicalIF":2.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Access semi-stabilized and unstabilized diazo compounds using iodosylbenzene 利用碘代苯获得半稳定和非稳定重氮化合物
IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-02-29 DOI: 10.1007/s41981-024-00320-5
Laurent Vinet, Emmanuelle M. D. Allouche, Vanessa Kairouz, André B. Charette

Continuous flow chemistry has become the method of choice for the synthesis of toxic and explosive intermediates such as diazo reagents because they can be generated on demand and readily used, eliminating the need to handle hazardous materials. This inherent increase in safety makes it more feasible to use these reagents in day-to-day synthesis. Herein, we describe a continuous flow, metal-free, easy-to-use method for the preparation of semi-stabilized and unstabilized diazo reagents. The scope of the described continuous flow oxidation of hydrazones using a packed bed column with iodosylbenzene includes 13 semi-stabilized and 13 unstabilized diazo reagents in solution in dichloromethane while producing only 1 equivalent of water and iodobenzene as by-products. These otherwise difficult to access compounds are further reacted either in situ or at the reactor outlet to yield esters and ethers in good to excellent yields (47–96%).

Graphical Abstract

连续流化学已成为合成重氮试剂等有毒和易爆中间体的首选方法,因为它们可以按需生成并随时使用,无需处理危险材料。这种内在安全性的提高使得在日常合成中使用这些试剂变得更加可行。在此,我们介绍一种连续流、无金属、易用的半稳定和非稳定重氮试剂制备方法。所描述的使用填料床柱与碘苯进行连续流氧化肼的范围包括二氯甲烷溶液中的 13 种半稳定重氮试剂和 13 种非稳定重氮试剂,同时只产生 1 个当量的水和碘苯作为副产品。这些原本难以获得的化合物可在原位或反应器出口处进一步反应,生成酯和醚,收率从良好到极佳(47-96%)。
{"title":"Access semi-stabilized and unstabilized diazo compounds using iodosylbenzene","authors":"Laurent Vinet,&nbsp;Emmanuelle M. D. Allouche,&nbsp;Vanessa Kairouz,&nbsp;André B. Charette","doi":"10.1007/s41981-024-00320-5","DOIUrl":"10.1007/s41981-024-00320-5","url":null,"abstract":"<div><p>Continuous flow chemistry has become the method of choice for the synthesis of toxic and explosive intermediates such as diazo reagents because they can be generated on demand and readily used, eliminating the need to handle hazardous materials. This inherent increase in safety makes it more feasible to use these reagents in day-to-day synthesis. Herein, we describe a continuous flow, metal-free, easy-to-use method for the preparation of semi-stabilized and unstabilized diazo reagents. The scope of the described continuous flow oxidation of hydrazones using a packed bed column with iodosylbenzene includes 13 semi-stabilized and 13 unstabilized diazo reagents in solution in dichloromethane while producing only 1 equivalent of water and iodobenzene as by-products. These otherwise difficult to access compounds are further reacted either in situ or at the reactor outlet to yield esters and ethers in good to excellent yields (47–96%).</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"109 - 118"},"PeriodicalIF":2.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140008176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Flow Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1