The emergence of High-Throughput Experimentation (HTE) as a powerful tool for reaction discovery and optimization is changing the way organic chemists are designing their experiments. It is a fantastic way to largely investigate a reaction, in a minimum of time and reagent consumption. However, HTE needs to be accessible to a wide audience for a full implementation in academic and industrial sectors. In that context, developing accessible solid dosing methodologies for submilligram dispensing is necessary. This paper aims at proposing robust mass enhancers solutions for nanomole scale dosing applicable to HTE campaigns.
{"title":"Solid dosing in High-Throughput Experimentation: generalization of mass enhancer technologies for submilligram scale","authors":"Taline Kerackian, Géraud Chacktas, Didier Durand, Eugénie Romero","doi":"10.1007/s41981-023-00304-x","DOIUrl":"10.1007/s41981-023-00304-x","url":null,"abstract":"<div><p>The emergence of High-Throughput Experimentation (HTE) as a powerful tool for reaction discovery and optimization is changing the way organic chemists are designing their experiments. It is a fantastic way to largely investigate a reaction, in a minimum of time and reagent consumption. However, HTE needs to be accessible to a wide audience for a full implementation in academic and industrial sectors. In that context, developing accessible solid dosing methodologies for submilligram dispensing is necessary. This paper aims at proposing robust mass enhancers solutions for nanomole scale dosing applicable to HTE campaigns.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"367 - 375"},"PeriodicalIF":2.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139414919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.1007/s41981-023-00302-z
Qian Wang, Ruize Yin, Zihan Wang, Yanbin Zhang, Jie Wu
Recently demonstrated as a novel reaction screening technology, the stop-flow micro-tubing (SFMT) reactors amalgamate features from continuous micro-flow and conventional batch reactors, resulting in a more logical and rigorous synthesis approach. When compared to traditional batch reactors, SFMT provides a safer and more efficient alternative, particularly suitable for chemical reactions under drastic conditions. The incorporation of commercially available transparent micro-tubing into SFMT makes it an excellent choice for light-mediated reactions, ensuring more uniform exposure to light. And SFMT stands apart from continuous-flow reactors by offering a notably convenient screening approach that is unrestricted by residence time and reactor size, while also effectively eradicating the risk of cross-contamination. The successful reactions developed within the SFMT reactor can be easily translated to continuous-flow synthesis for large-scale production. Overall, the SFMT reactor system exhibits similarities to continuous-flow reactors while surpassing batch reactors, especially for reactions involving gas reagents and/or requiring light illumination. This review aims to provide a comprehensive survey of the synthetic application of SFMT.
{"title":"Application of stop-flow micro-tubing reactor system in organic reaction development","authors":"Qian Wang, Ruize Yin, Zihan Wang, Yanbin Zhang, Jie Wu","doi":"10.1007/s41981-023-00302-z","DOIUrl":"10.1007/s41981-023-00302-z","url":null,"abstract":"<div><p>Recently demonstrated as a novel reaction screening technology, the stop-flow micro-tubing (SFMT) reactors amalgamate features from continuous micro-flow and conventional batch reactors, resulting in a more logical and rigorous synthesis approach. When compared to traditional batch reactors, SFMT provides a safer and more efficient alternative, particularly suitable for chemical reactions under drastic conditions. The incorporation of commercially available transparent micro-tubing into SFMT makes it an excellent choice for light-mediated reactions, ensuring more uniform exposure to light. And SFMT stands apart from continuous-flow reactors by offering a notably convenient screening approach that is unrestricted by residence time and reactor size, while also effectively eradicating the risk of cross-contamination. The successful reactions developed within the SFMT reactor can be easily translated to continuous-flow synthesis for large-scale production. Overall, the SFMT reactor system exhibits similarities to continuous-flow reactors while surpassing batch reactors, especially for reactions involving gas reagents and/or requiring light illumination. This review aims to provide a comprehensive survey of the synthetic application of SFMT.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"97 - 107"},"PeriodicalIF":2.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.1007/s41981-023-00301-0
Bin Wu, Xindi Feng, Wei Du, Zhixiang Li, Gang Qian, Xuezhi Duan, Xinggui Zhou, Zhen Liu, Jing Zhang
Nowadays ε-caprolactone, the monomer of biodegradable polycaprolactone, is mainly produced via the strong exothermic Baeyer–Villiger oxidation of cyclohexanone in semi-batch reactors. In this work, the continuous synthesis of ε-caprolactone was conducted in a self-designed microreactor system to address its strong exothermic feature, resulting in a cyclohexanone conversion of 90.3% and an ε-caprolactone yield of 82.6%. Analysis using a liquid chromatography equipped with high resolution time-of-flight mass spectrometer suggested that the byproducts mainly consist of ε-caprolactone oligomers in the form of dimer, trimer, and tetramer. Such oligomers were produced via hydrolysis of ε-caprolactone, followed by esterification of the hydrolysis product, 6-hydroxyhexanoic acid. Kinetic studies suggest that the hydrolysis reaction orders for ε-caprolactone and water are 0.75 and 2.52, respectively, while dimerization of 6-hydroxyhexanoic acid is a zero-order reaction. The activation energies of the hydrolysis and dimerization were ~ 77.5 kJ·mol−1 and ~ 55.4 kJ·mol−1, respectively. Density functional theory calculations revealed the significant catalytic effect of acetic acid on both side reactions, where the dimerization of 6-hydroxyhexanoic acid proceeds through an alkoxy pathway.
{"title":"Continuous synthesis of ε-caprolactone in a microreactor and kinetics insights into its side reactions","authors":"Bin Wu, Xindi Feng, Wei Du, Zhixiang Li, Gang Qian, Xuezhi Duan, Xinggui Zhou, Zhen Liu, Jing Zhang","doi":"10.1007/s41981-023-00301-0","DOIUrl":"10.1007/s41981-023-00301-0","url":null,"abstract":"<div><p>Nowadays <i>ε</i>-caprolactone, the monomer of biodegradable polycaprolactone, is mainly produced via the strong exothermic Baeyer–Villiger oxidation of cyclohexanone in semi-batch reactors. In this work, the continuous synthesis of <i>ε</i>-caprolactone was conducted in a self-designed microreactor system to address its strong exothermic feature, resulting in a cyclohexanone conversion of 90.3% and an <i>ε</i>-caprolactone yield of 82.6%. Analysis using a liquid chromatography equipped with high resolution time-of-flight mass spectrometer suggested that the byproducts mainly consist of <i>ε</i>-caprolactone oligomers in the form of dimer, trimer, and tetramer. Such oligomers were produced via hydrolysis of <i>ε</i>-caprolactone, followed by esterification of the hydrolysis product, 6-hydroxyhexanoic acid. Kinetic studies suggest that the hydrolysis reaction orders for <i>ε</i>-caprolactone and water are 0.75 and 2.52, respectively, while dimerization of 6-hydroxyhexanoic acid is a zero-order reaction. The activation energies of the hydrolysis and dimerization were ~ 77.5 kJ·mol<sup>−1</sup> and ~ 55.4 kJ·mol<sup>−1</sup>, respectively. Density functional theory calculations revealed the significant catalytic effect of acetic acid on both side reactions, where the dimerization of 6-hydroxyhexanoic acid proceeds through an alkoxy pathway.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"337 - 347"},"PeriodicalIF":2.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-27DOI: 10.1007/s41981-023-00303-y
Bettina Rávai, Máté János Orosz, Orsolya Péterfi, Dorián László Galata, Erika Bálint
Generally, chemical engineering students get well acquainted with the batch synthesis of various active pharmaceutical ingredients, however, only tiny focus is provided to undergraduates on the topic of flow chemistry. In this paper, we report that students participating in the chemical engineering BSc course at the Budapest University of Technology and Economics were encouraged to perform the flow synthesis of paracetamol, a common pain painkiller. Two different synthetic routes for the continuous production of paracetamol were investigated and compared the batch and flow methods. Thus, these experiments allowed the students to discover flow chemistry for themselves under supervision: how to set up a flow system, how to carry out a reaction continuously, and to experience the advantages of flow chemistry over batch synthesis. In addition, students also got familiar with in-line Fourier transform infrared spectroscopy, as one of the reactions was monitored in real-time.
{"title":"Flow chemical laboratory practice for undergraduate students: synthesis of paracetamol","authors":"Bettina Rávai, Máté János Orosz, Orsolya Péterfi, Dorián László Galata, Erika Bálint","doi":"10.1007/s41981-023-00303-y","DOIUrl":"10.1007/s41981-023-00303-y","url":null,"abstract":"<div><p>Generally, chemical engineering students get well acquainted with the batch synthesis of various active pharmaceutical ingredients, however, only tiny focus is provided to undergraduates on the topic of flow chemistry. In this paper, we report that students participating in the chemical engineering BSc course at the Budapest University of Technology and Economics were encouraged to perform the flow synthesis of paracetamol, a common pain painkiller. Two different synthetic routes for the continuous production of paracetamol were investigated and compared the batch and flow methods. Thus, these experiments allowed the students to discover flow chemistry for themselves under supervision: how to set up a flow system, how to carry out a reaction continuously, and to experience the advantages of flow chemistry over batch synthesis. In addition, students also got familiar with <i>in-line</i> Fourier transform infrared spectroscopy, as one of the reactions was monitored in real-time.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><img></picture></div><div><p>The educational manuscript covers the field of continuous flow synthesis of paracetamol supplemented with in-line Fourier transform infrared spectroscopy, which was developed for undergraduate students in the chemical engineering BSc course at the Budapest University of Technology and Economics</p></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 2","pages":"409 - 415"},"PeriodicalIF":2.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-023-00303-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-22DOI: 10.1007/s41981-023-00300-1
Yu-tian Tao, Ke-Jun Wu, Chao-Hong He
The combination of ultrasound and microreactors for the synthesis of nanomaterials is becoming increasingly popular, but effectively altering the ultrasonic field at the microscale to control the crystallization process remains a challenge. Herein, we investigated numerically and experimentally the effects of the ultrasonic field on the synthesis of boron-doped carbon nitride supported silver nanoparticles based on our homemade ultrasound-assisted coiled flow inverter microreactor (UCFIR). Specifically, the ultrasound promotes the radial mixing in the coiled flow inverter microreactor, even under low Reynolds number 10, resulting in better control over the crystallization process. The effects of key parameters, such as ultrasonic field distribution and ultrasonic power, on the particle size and size distribution of Ag/B-g-C3N4 have been demonstrated. The results show that when the ultrasound transducer is positioned on the ‘abc’ sides, the Ag/B-g-C3N4 with small and uniform Ag particles (4.12 ± 1.12 nm) can be obtained. As ultrasound power increased (0–176 W) and residence time decreased (17.5–140 s), the size of silver nanoparticles decreased, and their distribution narrowed.
{"title":"Continuous synthesis of boron-doped carbon nitride supported silver nanoparticles in an ultrasound-assisted coiled flow inverter microreactor","authors":"Yu-tian Tao, Ke-Jun Wu, Chao-Hong He","doi":"10.1007/s41981-023-00300-1","DOIUrl":"10.1007/s41981-023-00300-1","url":null,"abstract":"<div><p>The combination of ultrasound and microreactors for the synthesis of nanomaterials is becoming increasingly popular, but effectively altering the ultrasonic field at the microscale to control the crystallization process remains a challenge. Herein, we investigated numerically and experimentally the effects of the ultrasonic field on the synthesis of boron-doped carbon nitride supported silver nanoparticles based on our homemade ultrasound-assisted coiled flow inverter microreactor (UCFIR). Specifically, the ultrasound promotes the radial mixing in the coiled flow inverter microreactor, even under low Reynolds number 10, resulting in better control over the crystallization process. The effects of key parameters, such as ultrasonic field distribution and ultrasonic power, on the particle size and size distribution of Ag/B-g-C<sub>3</sub>N<sub>4</sub> have been demonstrated. The results show that when the ultrasound transducer is positioned on the ‘abc’ sides, the Ag/B-g-C<sub>3</sub>N<sub>4</sub> with small and uniform Ag particles (4.12 ± 1.12 nm) can be obtained. As ultrasound power increased (0–176 W) and residence time decreased (17.5–140 s), the size of silver nanoparticles decreased, and their distribution narrowed.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"177 - 196"},"PeriodicalIF":2.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138944876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.1007/s41981-023-00299-5
Vini Singh, Perali Ramu Sridhar, R. Singh
Owing to enhanced light-matter interactions and unique optical properties, plasmonic metal nanostructures have garnered extensive research interest and use in wide range of applications. A 3D-printed device for the synthesis of seed-mediated anisotropic gold (Au) nanoparticles (NPs) by droplet-based method is demonstrated. The miniaturized device was used to synthesize Au NPs by using three different reducing agents of different concentrations at two different flow rates and study the evolution of morphology of NPs. The device channel geometry and configuration allowed on-chip chemical syntheses of Au nanomaterials with good uniformity in shape and size. XRD and zeta potential measurement confirmed face-centered cubic structure and negative surface charge of the synthesized nanomaterials. TEM studies confirmed flower-, urchin- and spindle-shaped morphologies of Au NPs synthesized on using different concentrations of reducing agent. Additionally, computational study to deduce the residence time of the droplets in the device and estimate the electric field distribution around the anisotropic Au NPs is also shown.
由于具有增强的光物质相互作用和独特的光学特性,等离子金属纳米结构引起了广泛的研究兴趣,并被广泛应用于各种领域。本文展示了一种三维打印设备,用于通过基于液滴的方法合成种子介导的各向异性金(Au)纳米粒子(NPs)。该微型装置采用三种不同浓度的还原剂,以两种不同的流速合成金纳米粒子,并研究了金纳米粒子的形态演变。该装置通道的几何形状和配置使得片上化学合成金纳米材料的形状和尺寸具有良好的一致性。XRD 和 zeta 电位测量证实了合成的纳米材料具有面心立方结构和负表面电荷。TEM 研究证实,使用不同浓度的还原剂合成的金纳米粒子具有花形、海胆形和纺锤形形态。此外,计算研究还推断了液滴在装置中的停留时间,并估算了各向异性 Au NPs 周围的电场分布。
{"title":"Continuous-flow Synthesis of Anisotropic Plasmonic Nanostructures","authors":"Vini Singh, Perali Ramu Sridhar, R. Singh","doi":"10.1007/s41981-023-00299-5","DOIUrl":"10.1007/s41981-023-00299-5","url":null,"abstract":"<div><p>Owing to enhanced light-matter interactions and unique optical properties, plasmonic metal nanostructures have garnered extensive research interest and use in wide range of applications. A 3D-printed device for the synthesis of seed-mediated anisotropic gold (Au) nanoparticles (NPs) by droplet-based method is demonstrated. The miniaturized device was used to synthesize Au NPs by using three different reducing agents of different concentrations at two different flow rates and study the evolution of morphology of NPs. The device channel geometry and configuration allowed on-chip chemical syntheses of Au nanomaterials with good uniformity in shape and size. XRD and zeta potential measurement confirmed face-centered cubic structure and negative surface charge of the synthesized nanomaterials. TEM studies confirmed flower-, urchin- and spindle-shaped morphologies of Au NPs synthesized on using different concentrations of reducing agent. Additionally, computational study to deduce the residence time of the droplets in the device and estimate the electric field distribution around the anisotropic Au NPs is also shown.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 2","pages":"397 - 407"},"PeriodicalIF":2.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138746048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-15DOI: 10.1007/s41981-023-00297-7
Federica Minuto, Emanuele Farinini, Serena De Negri, Riccardo Leardi, Davide Ravelli, Pavlo Solokha, Andrea Basso
In this paper we report a [2 + 2] cycloaddition reaction between ketenes and benzils, characterized by an unusual double photochemical activation triggered by visible light. Employment of a flow system and optimization of reaction conditions through Design of Experiments resulted in moderate to good yields of the corresponding β-lactones. A thorough computational analysis allowed to elucidate the mechanism of the reaction and justify the observed diastereoselectivity. The reaction was also successfully tested with mixed benzils, showing complete regioselectivity.
{"title":"Two photons are better than one: continuous flow synthesis of ꞵ-lactones through a doubly photochemically-activated Paternò-Büchi reaction","authors":"Federica Minuto, Emanuele Farinini, Serena De Negri, Riccardo Leardi, Davide Ravelli, Pavlo Solokha, Andrea Basso","doi":"10.1007/s41981-023-00297-7","DOIUrl":"10.1007/s41981-023-00297-7","url":null,"abstract":"<div><p>In this paper we report a [2 + 2] cycloaddition reaction between ketenes and benzils, characterized by an unusual double photochemical activation triggered by visible light. Employment of a flow system and optimization of reaction conditions through Design of Experiments resulted in moderate to good yields of the corresponding β-lactones. A thorough computational analysis allowed to elucidate the mechanism of the reaction and justify the observed diastereoselectivity. The reaction was also successfully tested with mixed benzils, showing complete regioselectivity.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"149 - 159"},"PeriodicalIF":2.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-023-00297-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138683379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigated the flow acetalization of aldehydes and THP protection of alcohols using sulfonic acid-functionalized silica gel having hydroxy moiety (HO-SAS) as the solid acid catalyst. The reaction both aliphatic and aromatic aldehydes reacted with methanol within 5 min of residence time to give acetalization product in good to excellent yield. THP protection of primary, secondary, and tertiary alcohols proceeded well to the corresponding products. Both reactions did not require a neutralization process. Scalable syntheses were also achieved with continuous operation. The deprotection reactions were also effective using HO-SAS packed flow reactors.
{"title":"HO-SAS catalyzed protection and deprotection of aldehydes and alcohols in continuous flow reactors","authors":"Takahide Fukuyama, Toshiaki Hirano, Kengo Takamura","doi":"10.1007/s41981-023-00298-6","DOIUrl":"10.1007/s41981-023-00298-6","url":null,"abstract":"<div><p>We investigated the flow acetalization of aldehydes and THP protection of alcohols using sulfonic acid-functionalized silica gel having hydroxy moiety (HO-SAS) as the solid acid catalyst. The reaction both aliphatic and aromatic aldehydes reacted with methanol within 5 min of residence time to give acetalization product in good to excellent yield. THP protection of primary, secondary, and tertiary alcohols proceeded well to the corresponding products. Both reactions did not require a neutralization process. Scalable syntheses were also achieved with continuous operation. The deprotection reactions were also effective using HO-SAS packed flow reactors.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"297 - 301"},"PeriodicalIF":2.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139003559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1007/s41981-023-00294-w
Yosuke Muranaka, Taisuke Maki, Soma Matsumoto, Kazuhiro Mae
Micro-distillation is one of the unit operation technologies that are looking toward innovation through on-site and on-demand production system. In this study, a simple structure microdistillator consisting of some plates was applied to reactive distillation, and its potential was investigated. As a target reaction, the heterogeneous esterification between acetic acid and methanol using a solid acid catalyst was employed. The effects of feedstock supply rate, feedstock composition, and device temperature on operation stability and conversion were examined. By controlling the feedstock supply rate and temperature properly, a stable operation with a conversion of approximately 100% was successfully achieved. The amount of methyl acetate produced per weight of catalyst was greater in the reactive distillation using a microdistillator than in the batch reaction, soon after the start of the reaction. Thus, it was demonstrated that the reactive distillation using a microdistillator was able to achieve highly efficient reactions with short reaction time and small amounts of catalyst.
{"title":"Methyl acetate production by reactive distillation using a vertical plate microdistillator","authors":"Yosuke Muranaka, Taisuke Maki, Soma Matsumoto, Kazuhiro Mae","doi":"10.1007/s41981-023-00294-w","DOIUrl":"10.1007/s41981-023-00294-w","url":null,"abstract":"<div><p>Micro-distillation is one of the unit operation technologies that are looking toward innovation through on-site and on-demand production system. In this study, a simple structure microdistillator consisting of some plates was applied to reactive distillation, and its potential was investigated. As a target reaction, the heterogeneous esterification between acetic acid and methanol using a solid acid catalyst was employed. The effects of feedstock supply rate, feedstock composition, and device temperature on operation stability and conversion were examined. By controlling the feedstock supply rate and temperature properly, a stable operation with a conversion of approximately 100% was successfully achieved. The amount of methyl acetate produced per weight of catalyst was greater in the reactive distillation using a microdistillator than in the batch reaction, soon after the start of the reaction. Thus, it was demonstrated that the reactive distillation using a microdistillator was able to achieve highly efficient reactions with short reaction time and small amounts of catalyst.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"289 - 295"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138528263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-29DOI: 10.1007/s41981-023-00296-8
Marharyta Laktsevich-Iskryk, Anastasiya Krech, Mihhail Fokin, Mariliis Kimm, Tatsiana Jarg, Timothy Noël, Maksim Ošeka
A vicinal diamine motif can be found in numerous natural compounds and pharmaceuticals, making it an important synthetic target. Herein, we report a telescoped synthesis of vicinal diamines under continuous flow conditions. This approach involves the electrochemical aziridination of alkenes with primary amines, followed by the strain-release driven ring-opening using various nitrogen nucleophiles. The efficacy of the developed method was demonstrated through the synthesis of diverse symmetrically and non-symmetrically substituted vicinal diamines, as well as vicinal amino azides, which can be further hydrogenated to diamines in flow. Additionally, O-centered nucleophiles were employed for the ring-opening of aziridines in our telescoped synthesis, yielding vicinal amino ethers and alcohol. This process offers a streamlined and efficient pathway for the direct synthesis of valuable products from readily available starting materials, bypassing the isolation of unstable aziridine intermediates.
{"title":"Telescoped synthesis of vicinal diamines via ring-opening of electrochemically generated aziridines in flow","authors":"Marharyta Laktsevich-Iskryk, Anastasiya Krech, Mihhail Fokin, Mariliis Kimm, Tatsiana Jarg, Timothy Noël, Maksim Ošeka","doi":"10.1007/s41981-023-00296-8","DOIUrl":"10.1007/s41981-023-00296-8","url":null,"abstract":"<div><p>A vicinal diamine motif can be found in numerous natural compounds and pharmaceuticals, making it an important synthetic target. Herein, we report a telescoped synthesis of vicinal diamines under continuous flow conditions. This approach involves the electrochemical aziridination of alkenes with primary amines, followed by the strain-release driven ring-opening using various nitrogen nucleophiles. The efficacy of the developed method was demonstrated through the synthesis of diverse symmetrically and non-symmetrically substituted vicinal diamines, as well as vicinal amino azides, which can be further hydrogenated to diamines in flow. Additionally, <i>O</i>-centered nucleophiles were employed for the ring-opening of aziridines in our telescoped synthesis, yielding vicinal amino ethers and alcohol. This process offers a streamlined and efficient pathway for the direct synthesis of valuable products from readily available starting materials, bypassing the isolation of unstable aziridine intermediates.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"139 - 147"},"PeriodicalIF":2.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138528137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}