Pub Date : 2024-04-04DOI: 10.1007/s10894-024-00399-7
P. Chakraborty, R. Tewari
Considering the high energy neutron environment in a nuclear fusion reactor, Reduced Activation type Ferritic/Martensitic Steels (RAFMS) containing tungsten, have been carefully curated from their surrogate Cr–Mo type Ferritic/Martensitic Steels (FMS). The substitution of molybdenum by tungsten improved the radiation stability and mechanical characteristics RAFMS. However, the effect of tungsten on the liquid metal corrosion resistance of FMS has not been well investigated. The current work attempts to estimate liquid metal compatibility by examining the surface oxides of Indian RAFMS (IN RAFMS) and its surrogate steel, P91 (9Cr-1Mo), using X-ray Photoelectron Spectroscopy. Subsequently, thermodynamic calculations have been used to establish the stability of such oxides in both ambient circumstances and liquid lead–lithium eutectic alloy (Pb–Li). The results showed that tungsten can provide a higher resistance to liquid metal attack than molybdenum because its oxides are more stable. Actual corrosion experiments with IN RAFMS and P91 were performed in liquid Pb–Li for a durations upto 2000 h, successfully validating the above stated prediction.
考虑到核聚变反应堆中的高能中子环境,我们对含钨的《还原活化型铁素体/马氏体钢》(RAFMS)进行了精心设计,将其与代用的《铬钼型铁素体/马氏体钢》(FMS)区分开来。用钨替代钼改善了 RAFMS 的辐射稳定性和机械特性。然而,钨对 FMS 的液态金属耐腐蚀性的影响还没有得到很好的研究。目前的研究工作试图通过使用 X 射线光电子能谱学检查印度 RAFMS(IN RAFMS)及其替代钢 P91(9Cr-1Mo)的表面氧化物来估计液态金属兼容性。随后,利用热力学计算确定了这些氧化物在环境和液态铅锂共晶合金(Pb-Li)中的稳定性。结果表明,钨比钼具有更强的抗液态金属侵蚀能力,因为钨的氧化物更加稳定。使用 IN RAFMS 和 P91 在液态铅锂中进行了长达 2000 小时的实际腐蚀实验,成功验证了上述预测。
{"title":"Understanding the Effect of W and Mo on the Liquid Metal Compatibility of Ferritic/Martensitic Steels: A Predictive Study","authors":"P. Chakraborty, R. Tewari","doi":"10.1007/s10894-024-00399-7","DOIUrl":"10.1007/s10894-024-00399-7","url":null,"abstract":"<div><p>Considering the high energy neutron environment in a nuclear fusion reactor, Reduced Activation type Ferritic/Martensitic Steels (RAFMS) containing tungsten, have been carefully curated from their surrogate Cr–Mo type Ferritic/Martensitic Steels (FMS). The substitution of molybdenum by tungsten improved the radiation stability and mechanical characteristics RAFMS. However, the effect of tungsten on the liquid metal corrosion resistance of FMS has not been well investigated. The current work attempts to estimate liquid metal compatibility by examining the surface oxides of Indian RAFMS (IN RAFMS) and its surrogate steel, P91 (9Cr-1Mo), using X-ray Photoelectron Spectroscopy. Subsequently, thermodynamic calculations have been used to establish the stability of such oxides in both ambient circumstances and liquid lead–lithium eutectic alloy (Pb–Li). The results showed that tungsten can provide a higher resistance to liquid metal attack than molybdenum because its oxides are more stable. Actual corrosion experiments with IN RAFMS and P91 were performed in liquid Pb–Li for a durations upto 2000 h, successfully validating the above stated prediction.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-024-00399-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1007/s10894-024-00398-8
Michela Gelfusa, Riccardo Rossi, Andrea Murari
The understanding and control of complex systems in general, and thermonuclear plasmas in particular, require analysis tools, which can detect not the simple correlations but can also provide information about the actual mutual influence between quantities. Indeed, time series, the typical signals collected in many systems, carry more information than can be extracted with simple correlation analysis. The objective of the present work consists of showing how the technology of Time Delay Neural Networks (TDNNs) can extract robust indications about the actual mutual influence between time indexed signals. A series of numerical tests with synthetic data prove the potential of TDNN ensembles to analyse complex nonlinear interactions, including feedback loops. The developed techniques can not only determine the direction of causality between time series but can also quantify the strength of their mutual influences. An important application to thermonuclear fusion, the determination of the additional heating deposition profile, illustrates the capability of the approach to address also spatially distributed problems.
{"title":"Causality Detection and Quantification by Ensembles of Time Delay Neural Networks for Application to Nuclear Fusion Reactors","authors":"Michela Gelfusa, Riccardo Rossi, Andrea Murari","doi":"10.1007/s10894-024-00398-8","DOIUrl":"10.1007/s10894-024-00398-8","url":null,"abstract":"<div><p>The understanding and control of complex systems in general, and thermonuclear plasmas in particular, require analysis tools, which can detect not the simple correlations but can also provide information about the actual mutual influence between quantities. Indeed, time series, the typical signals collected in many systems, carry more information than can be extracted with simple correlation analysis. The objective of the present work consists of showing how the technology of Time Delay Neural Networks (TDNNs) can extract robust indications about the actual mutual influence between time indexed signals. A series of numerical tests with synthetic data prove the potential of TDNN ensembles to analyse complex nonlinear interactions, including feedback loops. The developed techniques can not only determine the direction of causality between time series but can also quantify the strength of their mutual influences. An important application to thermonuclear fusion, the determination of the additional heating deposition profile, illustrates the capability of the approach to address also spatially distributed problems.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-024-00398-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-30DOI: 10.1007/s10894-024-00400-3
S. Wei, F. Wu, Y. Zhu, J. Yang, L. Zeng, X. Li, J. Zhang
High energy gain is essential for the energy production via laser fusion. In this paper, an efficient method combining the hydrodynamic simulations and the machine learning algorithms is proposed to optimize the laser pulse for fast ignition simulations. An analytical model between the energy gain and compressed plasma parameters is derived as the evaluate function for the optimizations. An implosion with a fusion gain more than 100 is achieved with a total laser energy about 730 kJ in the spherical fast ignition scheme or 300 kJ in the double-cone ignition (DCI) scheme in one-dimensional simulations. The implosion data generated during the course of optimization is found to be suitable for the training of a deep neural network (DNN) surrogate model. In the future, this DNN surrogate model could be transfer learned with experimental feedback and optimize the laser pulse with a higher accuracy.
{"title":"A Machine Learning Method for the Optimization Design of Laser Pulse in Fast Ignition Simulations","authors":"S. Wei, F. Wu, Y. Zhu, J. Yang, L. Zeng, X. Li, J. Zhang","doi":"10.1007/s10894-024-00400-3","DOIUrl":"10.1007/s10894-024-00400-3","url":null,"abstract":"<div><p>High energy gain is essential for the energy production via laser fusion. In this paper, an efficient method combining the hydrodynamic simulations and the machine learning algorithms is proposed to optimize the laser pulse for fast ignition simulations. An analytical model between the energy gain and compressed plasma parameters is derived as the evaluate function for the optimizations. An implosion with a fusion gain more than 100 is achieved with a total laser energy about 730 kJ in the spherical fast ignition scheme or 300 kJ in the double-cone ignition (DCI) scheme in one-dimensional simulations. The implosion data generated during the course of optimization is found to be suitable for the training of a deep neural network (DNN) surrogate model. In the future, this DNN surrogate model could be transfer learned with experimental feedback and optimize the laser pulse with a higher accuracy.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-024-00400-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140363336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1007/s10894-024-00401-2
Lei Wang, Jiahe Zhou, Shuting Li, Chuanyang Lu, Yafei Li, Huaxin Li, Jianguo Yang, Yanming He
The microwave window unit is the core component of the electron cyclotron heating and current drive (EC H&CD) system used in fusion reactors. In this work, a diamond disk for the microwave window was designed according to the electromagnetic propagation theory. Then, the finite element method was employed to build a microwave window model based on our tailored dimension. The effect of brazing and subsequent service processes on the stress/strain distributions and electrical parameters were explored. Overall, the microwave window exhibited excellent performance, with the maximum principal stress of the brazed disk under service being 51 MPa, which was much lower than the allowable stress of diamond. It was also indicated that the electrical properties barely changed, which could satisfy functional requirements. This work provided theoretical guidance for the design and manufacture of diamond microwave windows used in fusion reactors.
{"title":"FEM Simulation of ITER EC H&CD Diamond Microwave Window Unit during Preparation and Subsequent Service","authors":"Lei Wang, Jiahe Zhou, Shuting Li, Chuanyang Lu, Yafei Li, Huaxin Li, Jianguo Yang, Yanming He","doi":"10.1007/s10894-024-00401-2","DOIUrl":"10.1007/s10894-024-00401-2","url":null,"abstract":"<div><p>The microwave window unit is the core component of the electron cyclotron heating and current drive (EC H&CD) system used in fusion reactors. In this work, a diamond disk for the microwave window was designed according to the electromagnetic propagation theory. Then, the finite element method was employed to build a microwave window model based on our tailored dimension. The effect of brazing and subsequent service processes on the stress/strain distributions and electrical parameters were explored. Overall, the microwave window exhibited excellent performance, with the maximum principal stress of the brazed disk under service being 51 MPa, which was much lower than the allowable stress of diamond. It was also indicated that the electrical properties barely changed, which could satisfy functional requirements. This work provided theoretical guidance for the design and manufacture of diamond microwave windows used in fusion reactors.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
China fusion engineering test reactor (CFETR) is a magnetic confinement device which will fill the gap between the fusion experimental reactor and the demonstration reactor. To efficiently conduct neutronics modeling for the multiple identical and similar structures present in CFETR’s modular design, an improved one-to-many method is developed and implemented in this study. This method involves using a basic model in conjunction with a 3D transformed coordinate system. However, the absence of a clear solution method for the transformed coordinate system in MCNP presents a challenge. To address this issue, a solution method based on the axis attributes of the surfaces in MCNP and the composite nature of the 3D transformed coordinate system is developed. The improved one-to-many method has been applied to the neutron modeling of CFETR, and its reliability has been verified. In the neutron calculation model corresponding to the one-to-many and one-to-one methods, relative differences of the total TBR and nuclear heating are 0.25%, 0.07% respectively. The contribution of blanket modules to tritium breeding ratio (TBR) and nuclear heating has a relative difference within the range of − 0.25–0.55%. The relative differences of neutron flux and nuclear heating distribution for individual blanket modules #3–1 and #6–1 are within the range of − 0.60–0.40%. The results indicate that the improved one-to-many method can be employed for neutronics modeling in the preliminary design of CFETR.
{"title":"Application and Validation of an Improved One-to-Many Method to CFETR Neutronics Modeling","authors":"Miao Yin, Qixiang Cao, Xiaoyu Wang, Xinghua Wu, Shen Qu","doi":"10.1007/s10894-024-00397-9","DOIUrl":"10.1007/s10894-024-00397-9","url":null,"abstract":"<div><p>China fusion engineering test reactor (CFETR) is a magnetic confinement device which will fill the gap between the fusion experimental reactor and the demonstration reactor. To efficiently conduct neutronics modeling for the multiple identical and similar structures present in CFETR’s modular design, an improved one-to-many method is developed and implemented in this study. This method involves using a basic model in conjunction with a 3D transformed coordinate system. However, the absence of a clear solution method for the transformed coordinate system in MCNP presents a challenge. To address this issue, a solution method based on the axis attributes of the surfaces in MCNP and the composite nature of the 3D transformed coordinate system is developed. The improved one-to-many method has been applied to the neutron modeling of CFETR, and its reliability has been verified. In the neutron calculation model corresponding to the one-to-many and one-to-one methods, relative differences of the total TBR and nuclear heating are 0.25%, 0.07% respectively. The contribution of blanket modules to tritium breeding ratio (TBR) and nuclear heating has a relative difference within the range of − 0.25–0.55%. The relative differences of neutron flux and nuclear heating distribution for individual blanket modules #3–1 and #6–1 are within the range of − 0.60–0.40%. The results indicate that the improved one-to-many method can be employed for neutronics modeling in the preliminary design of CFETR.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The R&D of Central Solenoid Model Coil is a preparatory stage towards the final fabrication of China Fusion Engineering Test Reactor Central Solenoid. In view of the risk of being tear down or destroyed of the CSMC insulation components and current lead caused by the electromagnetic force, the preload system is designed and mounted around the circumferential direction of the cylindrical coil modules. In order to check the joint resistance, peak magnetic field, AC loss, mechanical performance of preload components under eddy current, CSMC will be tested under several typical current waves. For the sake of safety, a comprehensive mechanical analyses on the preload components need to be carried out before the final commissioning of CSMC. In this paper the magnetic density and eddy current on the preload components are calculated first. Then the electromagnetic force on the preload components under the testing current is analyzed. Finally, the mechanical analysis and stress evaluation are performed. The study presented in the paper will provide reference for the operation of CSMC under the testing current.
{"title":"The Mechanical Performance Analyses of CFETR CSMC Preload Components Under Testing Current","authors":"Xianwei Wang, Chenyang Li, Haikuo Zhao, Yi Shi, Zhaoliang Wang, Xiulian Li, Xiuxiang Chen","doi":"10.1007/s10894-024-00396-w","DOIUrl":"10.1007/s10894-024-00396-w","url":null,"abstract":"<div><p>The R&D of Central Solenoid Model Coil is a preparatory stage towards the final fabrication of China Fusion Engineering Test Reactor Central Solenoid. In view of the risk of being tear down or destroyed of the CSMC insulation components and current lead caused by the electromagnetic force, the preload system is designed and mounted around the circumferential direction of the cylindrical coil modules. In order to check the joint resistance, peak magnetic field, AC loss, mechanical performance of preload components under eddy current, CSMC will be tested under several typical current waves. For the sake of safety, a comprehensive mechanical analyses on the preload components need to be carried out before the final commissioning of CSMC. In this paper the magnetic density and eddy current on the preload components are calculated first. Then the electromagnetic force on the preload components under the testing current is analyzed. Finally, the mechanical analysis and stress evaluation are performed. The study presented in the paper will provide reference for the operation of CSMC under the testing current.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-024-00396-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140125879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.1007/s10894-023-00394-4
Tao He, Zhongshi Yang, Kedong Li, Xiaoju Liu, Yaowei Yu, Guozhang Jia, Guojian Niu, Feifei Nian, Rong Wang, Liang Wang, Guang-Nan Luo
The effects of divertor pumping on divertor detachment and core performance are investigated using SOLPS-ITER simulations for the H-mode discharges with argon (Ar) seeding on EAST. The simulation results show that a relatively low pumping speed (S) is advantageous for achieving divertor detachment due to an increased Ar density and enhanced radiative dissipation. On the other hand, a relatively low S results in a high Ar density in the core region, which is detrimental to the core performance. Increasing S improves the particle removal capacity, which is not conducive to obtaining detachment but is conducive to reducing the Ar accumulation in the core region. In order to evaluate the compatibility of detachment and high core plasma performance, the impact of S on the divertor Ar retention (measured by impurity compression CAr and enrichment EAr) and the corresponding physical mechanisms were analyzed. In cases with relatively low and medium upstream density (({n}_{mathrm{e},mathrm{sep}}^{mathrm{OMP}})), a higher S is beneficial to increase CAr and EAr, i.e. better core-divertor compatibility, mainly due to the diminished neutral diffusion towards the upstream and the enhanced net force on the Ar towards the target. At relatively high ({n}_{mathrm{e},mathrm{sep}}^{mathrm{OMP}}), both CAr and EA show no clear change with increasing S. This is because the negative contribution of the reduced relative distance between the Ar ionization front and the velocity stagnation point of the Ar ions to the Ar retention becomes significant with increasing S, which can even offset the positive contribution of the neutral diffusion and the net force.
使用 SOLPS-ITER 模拟研究了 EAST 上氩气(Ar)播种的 H 模式放电中,分流器抽气对分流器脱离和堆芯性能的影响。模拟结果表明,由于氩气密度增加和辐射耗散增强,相对较低的抽气速度(S)有利于实现憩室脱离。另一方面,相对较低的 S 会导致堆芯区域的氩气密度过高,不利于堆芯性能。增加 S 可以提高颗粒去除能力,这不利于获得分离,但有利于减少核心区域的氩气积累。为了评估分离与高堆芯等离子体性能的兼容性,分析了 S 对分流器氩气保留的影响(以杂质压缩 CAr 和富集 EAr 度量)以及相应的物理机制。在上游密度相对较低和中等的情况下(({n}_mathrm{e},mathrm{sep}}^{mathrm{OMP}}),较高的 S 有利于增加 CAr 和 EAr,即更好的堆芯-分流器兼容性,这主要是由于中性物质向上游的扩散减少以及氩向目标的净作用力增强。在相对较高({n}_{mathrm{e},mathrm{sep}}^{mathrm{OMP}})时,CAr 和 EA 都不会随着 S 的增加而发生明显变化。这是因为随着 S 的增加,氩离子电离前沿与氩离子速度停滞点之间相对距离的减小对氩保留的负作用会变得很大,甚至会抵消中性扩散和净力的正作用。
{"title":"Modeling Study of Divertor Pumping Effect on Detachment and Impurity Retention with Argon Seeding in EAST","authors":"Tao He, Zhongshi Yang, Kedong Li, Xiaoju Liu, Yaowei Yu, Guozhang Jia, Guojian Niu, Feifei Nian, Rong Wang, Liang Wang, Guang-Nan Luo","doi":"10.1007/s10894-023-00394-4","DOIUrl":"10.1007/s10894-023-00394-4","url":null,"abstract":"<div><p>The effects of divertor pumping on divertor detachment and core performance are investigated using SOLPS-ITER simulations for the H-mode discharges with argon (Ar) seeding on EAST. The simulation results show that a relatively low pumping speed (<i>S</i>) is advantageous for achieving divertor detachment due to an increased Ar density and enhanced radiative dissipation. On the other hand, a relatively low <i>S</i> results in a high Ar density in the core region, which is detrimental to the core performance. Increasing <i>S</i> improves the particle removal capacity, which is not conducive to obtaining detachment but is conducive to reducing the Ar accumulation in the core region. In order to evaluate the compatibility of detachment and high core plasma performance, the impact of <i>S</i> on the divertor Ar retention (measured by impurity compression <i>C</i><sub>Ar</sub> and enrichment <i>E</i><sub>Ar</sub>) and the corresponding physical mechanisms were analyzed. In cases with relatively low and medium upstream density (<span>({n}_{mathrm{e},mathrm{sep}}^{mathrm{OMP}})</span>), a higher <i>S</i> is beneficial to increase <i>C</i><sub>Ar</sub> and <i>E</i><sub>Ar</sub>, i.e. better core-divertor compatibility, mainly due to the diminished neutral diffusion towards the upstream and the enhanced net force on the Ar towards the target. At relatively high <span>({n}_{mathrm{e},mathrm{sep}}^{mathrm{OMP}})</span>, both <i>C</i><sub>Ar</sub> and <i>E</i><sub>A</sub> show no clear change with increasing <i>S</i>. This is because the negative contribution of the reduced relative distance between the Ar ionization front and the velocity stagnation point of the Ar ions to the Ar retention becomes significant with increasing <i>S</i>, which can even offset the positive contribution of the neutral diffusion and the net force.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"43 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.1007/s10894-023-00390-8
L. Buligins, I. Bucenieks, I. Grants, I. Kaldre, K. Kravalis, O. Mikanovskis
The aim of this study is to investigate the behaviour of liquid metal flow in Capillary Porous System (CPS) under strong external magnetic field. Overlapping simple cubic (SC) periodic array of electrically non-conducting spheres with diameter 6 mm and distance between spheres centres 5.6 mm is 3D printed from PLA electrically non-conducting filament. At room temperature, flow of up to 50 mL/s of In–Ga–Sn in pore space in magnetic field of superconducting magnet up to 5T is investigated. Three orientations of magnetic field in relation to the main flow in SC cell are considered—colinear with main flow and perpendicular to it. The values of Reynolds, Hartmann and Stuart numbers in experiment are up to 1160, 90 and 350, respectively. The results indicate that parallel to the main flow orientation of magnetic field has little influence on the flowrate, while perpendicular orientation strongly reduces flowrate with dependence close to 1/Ha, which agrees well with ANSYS Fluent simulations in a unit SC cell, resembling results for channel flow in magnetic field.
本文研究了强外磁场作用下毛细孔系统中液态金属的流动行为。采用聚乳酸(PLA)导电丝3D打印出直径为6毫米、中心间距为5.6毫米的重叠简单立方(SC)导电球体周期阵列。在室温下,研究了在5T超导磁体磁场下in - ga - sn在孔隙空间中高达50 mL/s的流动。考虑了与SC槽内主流有关的磁场的三个方向——与主流共线和垂直于主流。实验中的Reynolds数、Hartmann数和Stuart数分别高达1160、90和350。结果表明,与磁场主流方向平行对流量影响不大,而垂直方向对流量影响较大,且影响程度接近1/Ha,这与ANSYS Fluent在单位SC胞内的模拟结果吻合较好,与磁场作用下通道流的模拟结果相似。
{"title":"MHD Flow in Simple Cubic Periodic Array Geometry","authors":"L. Buligins, I. Bucenieks, I. Grants, I. Kaldre, K. Kravalis, O. Mikanovskis","doi":"10.1007/s10894-023-00390-8","DOIUrl":"10.1007/s10894-023-00390-8","url":null,"abstract":"<div><p>The aim of this study is to investigate the behaviour of liquid metal flow in Capillary Porous System (CPS) under strong external magnetic field. Overlapping simple cubic (SC) periodic array of electrically non-conducting spheres with diameter 6 mm and distance between spheres centres 5.6 mm is 3D printed from PLA electrically non-conducting filament. At room temperature, flow of up to 50 mL/s of In–Ga–Sn in pore space in magnetic field of superconducting magnet up to 5T is investigated. Three orientations of magnetic field in relation to the main flow in SC cell are considered—colinear with main flow and perpendicular to it. The values of Reynolds, Hartmann and Stuart numbers in experiment are up to 1160, 90 and 350, respectively. The results indicate that parallel to the main flow orientation of magnetic field has little influence on the flowrate, while perpendicular orientation strongly reduces flowrate with dependence close to 1/Ha, which agrees well with ANSYS Fluent simulations in a unit SC cell, resembling results for channel flow in magnetic field.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"42 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10894-023-00390-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138502332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27DOI: 10.1007/s10894-023-00391-7
Lei Wang, Xiujie Zhang, Zhenchao Sun
The liquid metal magnetohydrodynamic (MHD) flow through coupled ducts with conducting walls under inclined transversal gradient magnetic field is an important physical flow phenomenon, which has the unknown physical mechanism about the interaction between the electromagnetic coupling effect and the three-dimensional (3D) MHD effect. To reveal this physical mechanism, 3D numerical simulations based on a customized solver in the OpenFoam environment are conducted to systematically study the effect of inclined gradient magnetic field on the MHD flow states through coupled conducting ducts. Then the mechanism behind the generation of the 3D MHD effect in the gradient magnetic field zones has been discussed in detail. It is found that the electromagnetic coupling effect can enhance this 3D MHD effect in the co-flow case, but suppress it in the counter-flow case. Moreover, the strong electromagnetic coupling effect in the counter-flow case will induce a “self-circulation” flow region in the duct when the external magnetic field is inclined, and the inclined angle also has a great influence on the area of this flow region, which reduces with the increase of the inclined angle. These results are important for the in-depth fundamental understanding of the 3D MHD effect of liquid metal flowing through coupled conducting ducts under inclined gradient magnetic field, and also helpful for the future design of the liquid metal blanket of fusion reactor.
{"title":"Effects of Inclined Gradient Magnetic Field on the Liquid Metal Flow States Through Coupled Conducting Ducts","authors":"Lei Wang, Xiujie Zhang, Zhenchao Sun","doi":"10.1007/s10894-023-00391-7","DOIUrl":"10.1007/s10894-023-00391-7","url":null,"abstract":"<div><p>The liquid metal magnetohydrodynamic (MHD) flow through coupled ducts with conducting walls under inclined transversal gradient magnetic field is an important physical flow phenomenon, which has the unknown physical mechanism about the interaction between the electromagnetic coupling effect and the three-dimensional (3D) MHD effect. To reveal this physical mechanism, 3D numerical simulations based on a customized solver in the OpenFoam environment are conducted to systematically study the effect of inclined gradient magnetic field on the MHD flow states through coupled conducting ducts. Then the mechanism behind the generation of the 3D MHD effect in the gradient magnetic field zones has been discussed in detail. It is found that the electromagnetic coupling effect can enhance this 3D MHD effect in the co-flow case, but suppress it in the counter-flow case. Moreover, the strong electromagnetic coupling effect in the counter-flow case will induce a “self-circulation” flow region in the duct when the external magnetic field is inclined, and the inclined angle also has a great influence on the area of this flow region, which reduces with the increase of the inclined angle. These results are important for the in-depth fundamental understanding of the 3D MHD effect of liquid metal flowing through coupled conducting ducts under inclined gradient magnetic field, and also helpful for the future design of the liquid metal blanket of fusion reactor.</p></div>","PeriodicalId":634,"journal":{"name":"Journal of Fusion Energy","volume":"42 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}