Pub Date : 2012-03-25DOI: 10.1109/AMC.2012.6197127
T. Nozaki, T. Mizoguchi, K. Ohnishi
A four channel bilateral control is one of the teleoperation techniques. In this control, position control system and force control system should be decoupled precisely. However, there is some interference between position control and force control, if the inertia of the master robot is different from slave side. In this paper, a diagonalization method using modal space observer is proposed for the sake of decoupling position control from force control. This method diagonalizes an equivalent mass matrix in a modal space, which is called task mass matrix. Operationality and reproducibility, which are performance indices, are indicated. Furthermore, root locus plots are shown to analyze the stability. The validity of the proposed method is verified by experiments. In other words, the decoupling effect of the diagonalization method is higher than conventional method, and more stable.
{"title":"Position/force decoupling for micro-macro bilateral control based on modal space disturbance observer","authors":"T. Nozaki, T. Mizoguchi, K. Ohnishi","doi":"10.1109/AMC.2012.6197127","DOIUrl":"https://doi.org/10.1109/AMC.2012.6197127","url":null,"abstract":"A four channel bilateral control is one of the teleoperation techniques. In this control, position control system and force control system should be decoupled precisely. However, there is some interference between position control and force control, if the inertia of the master robot is different from slave side. In this paper, a diagonalization method using modal space observer is proposed for the sake of decoupling position control from force control. This method diagonalizes an equivalent mass matrix in a modal space, which is called task mass matrix. Operationality and reproducibility, which are performance indices, are indicated. Furthermore, root locus plots are shown to analyze the stability. The validity of the proposed method is verified by experiments. In other words, the decoupling effect of the diagonalization method is higher than conventional method, and more stable.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72548184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-03-25DOI: 10.1109/AMC.2012.6197133
Michele Focchi, Thiago Boaventura, C. Semini, M. Frigerio, J. Buchli, D. Caldwell
In the realm of legged locomotion, being compliant to external unperceived impacts is crucial when negotiating unstructured terrain. Impedance control is a useful framework to allow the robot to follow reference trajectories and, at the same time, handle external disturbances. To implement impedance control, high performance torque control in all joints is of great importance. In this paper, the torque control for the electric joints of the HyQ robot is described and its performance assessed. HyQ is a quadruped robot which has hybrid actuation: hydraulic and electric. This work complements our previous work, in which the torque control for the hydraulic joints was addressed. Subsequently, we describe the implementation of an impedance controller for the HyQ leg. Experimental results assess the tracking capability of a desired Cartesian force at the end-effector under the action of external disturbances. Another set of experiments involves the tracking and the shaping of different desired stiffness behaviors (stiffness ellipses) at the foot.
{"title":"Torque-control based compliant actuation of a quadruped robot","authors":"Michele Focchi, Thiago Boaventura, C. Semini, M. Frigerio, J. Buchli, D. Caldwell","doi":"10.1109/AMC.2012.6197133","DOIUrl":"https://doi.org/10.1109/AMC.2012.6197133","url":null,"abstract":"In the realm of legged locomotion, being compliant to external unperceived impacts is crucial when negotiating unstructured terrain. Impedance control is a useful framework to allow the robot to follow reference trajectories and, at the same time, handle external disturbances. To implement impedance control, high performance torque control in all joints is of great importance. In this paper, the torque control for the electric joints of the HyQ robot is described and its performance assessed. HyQ is a quadruped robot which has hybrid actuation: hydraulic and electric. This work complements our previous work, in which the torque control for the hydraulic joints was addressed. Subsequently, we describe the implementation of an impedance controller for the HyQ leg. Experimental results assess the tracking capability of a desired Cartesian force at the end-effector under the action of external disturbances. Another set of experiments involves the tracking and the shaping of different desired stiffness behaviors (stiffness ellipses) at the foot.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"28 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81750256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-03-25DOI: 10.1109/AMC.2012.6197129
Shinnosuke Yamaoka, T. Nozaki, D. Yashiro, K. Ohnishi
Stacked piezoelectric actuators are suitable for micro manipulation since it has a high positional resolution and large generative force. However, it is difficult to control acceleration of piezoelectric actuator because of its hysteresis characteristic and spring characteristic. Therefore in this paper, piezo disturbance observer (PDOB) is proposed. Because PDOB treats hysteresis characteristic and spring characteristic as disturbance and compensates these elements, acceleration control is achieved. In addition, piezo reaction force observer (PRFOB) is proposed. By eliminating spring force from disturbance, PRFOB estimates the reaction force without utilizing any force sensors. Validities of PDOB and PRFOB are verified by experiments. Finally, experiment of micro-macro bilateral control (MMBC) constructed a master system and slave system is performed. The master system is a linear motor with conventional disturbance observer (DOB) and reaction force observer (RFOB). The slave system is a stacked piezoelectric actuator with PDOB and PRFOB. It achieved MMBC between a linear motor and a piezoelectric actuator.
{"title":"Acceleration control of stacked piezoelectric actuator utilizing disturbance observer and reaction force observer","authors":"Shinnosuke Yamaoka, T. Nozaki, D. Yashiro, K. Ohnishi","doi":"10.1109/AMC.2012.6197129","DOIUrl":"https://doi.org/10.1109/AMC.2012.6197129","url":null,"abstract":"Stacked piezoelectric actuators are suitable for micro manipulation since it has a high positional resolution and large generative force. However, it is difficult to control acceleration of piezoelectric actuator because of its hysteresis characteristic and spring characteristic. Therefore in this paper, piezo disturbance observer (PDOB) is proposed. Because PDOB treats hysteresis characteristic and spring characteristic as disturbance and compensates these elements, acceleration control is achieved. In addition, piezo reaction force observer (PRFOB) is proposed. By eliminating spring force from disturbance, PRFOB estimates the reaction force without utilizing any force sensors. Validities of PDOB and PRFOB are verified by experiments. Finally, experiment of micro-macro bilateral control (MMBC) constructed a master system and slave system is performed. The master system is a linear motor with conventional disturbance observer (DOB) and reaction force observer (RFOB). The slave system is a stacked piezoelectric actuator with PDOB and PRFOB. It achieved MMBC between a linear motor and a piezoelectric actuator.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"17 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84401134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-03-25DOI: 10.1109/AMC.2012.6197020
H. Tomori, Y. Midorikawa, Taro Nakamura
An artificial rubber muscle was used as an actuator in the present study because it was safe for the muscle manipulator to come into contact with the human body. However, this actuator vibrates and can cause late responses because of the air pressure that is applied to the manipulation. We have built a magnetorheological (MR) brake that uses MR fluid with fast response into the joint to control the vibration. In this paper, we have described the manipulator's dynamic characteristics by construction of a model for improvement of the control performance of the MR brake. Furthermore, a simulation was performed using the model and efficient braking by the MR brake was achieved.
{"title":"Derivation of nonlinear dynamic model of novel pneumatic artificial muscle manipulator with a magnetorheological brake","authors":"H. Tomori, Y. Midorikawa, Taro Nakamura","doi":"10.1109/AMC.2012.6197020","DOIUrl":"https://doi.org/10.1109/AMC.2012.6197020","url":null,"abstract":"An artificial rubber muscle was used as an actuator in the present study because it was safe for the muscle manipulator to come into contact with the human body. However, this actuator vibrates and can cause late responses because of the air pressure that is applied to the manipulation. We have built a magnetorheological (MR) brake that uses MR fluid with fast response into the joint to control the vibration. In this paper, we have described the manipulator's dynamic characteristics by construction of a model for improvement of the control performance of the MR brake. Furthermore, a simulation was performed using the model and efficient braking by the MR brake was achieved.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"30 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81082424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-03-25DOI: 10.1109/AMC.2012.6197114
T. Shimono, Yoshiyuki Hatta, N. Motoi
This paper proposes an evaluation index for the analysis of the motion complexity in parallel multi-degrees-of-freedom (MDOF) haptic system. Firstly, the modal decomposition based on discrete Fourier series expansion (DFS) is described. Modal information expresses a motion element that corresponds to a specific physical action. The modal information can be defined by the Fourier coefficients. This paper proposes a total harmonic distortion (THD) of the haptic modal information as a haptic motion index. The utility of the proposed index is confirmed from the experimental results on the bilateral motion control of MDOF haptic system.
{"title":"Total harmonic distortion of haptic modal information for analysis of human fingertip motion","authors":"T. Shimono, Yoshiyuki Hatta, N. Motoi","doi":"10.1109/AMC.2012.6197114","DOIUrl":"https://doi.org/10.1109/AMC.2012.6197114","url":null,"abstract":"This paper proposes an evaluation index for the analysis of the motion complexity in parallel multi-degrees-of-freedom (MDOF) haptic system. Firstly, the modal decomposition based on discrete Fourier series expansion (DFS) is described. Modal information expresses a motion element that corresponds to a specific physical action. The modal information can be defined by the Fourier coefficients. This paper proposes a total harmonic distortion (THD) of the haptic modal information as a haptic motion index. The utility of the proposed index is confirmed from the experimental results on the bilateral motion control of MDOF haptic system.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"5 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82315048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-03-25DOI: 10.1109/AMC.2012.6197107
Uichiro Nishio, T. Nozaki, K. Ohnishi
It is hoped that robots are utilized in environments where human lives. Robots should work safely and perform complicated tasks. For safety, precise force control and lightweight mechanism are important because robots contact with human. In order to perform complicated tasks, multi-degrees-of-freedom system is needed. Tendon-driven system is able to achieve precise motion control and complicated tasks. In this system, wires are utilized as force transmission. Therefore, the system can achieve lightweight robot and can generate large joint torque. However, each joint torque interferes mutually because the tendons are attached to each link. Tendon tension must be kept over zero because the tendons can only generate traction force. In this paper, an inverse matrix of transposed Jacobian matrix with tension control was proposed in order to achieve tension control and torque control. This inverse matrix contains two conditions. One is the condition of joint torque control. The other is the condition that the minimum value of tendon tension is kept zero. In addition, the minimum value of tendon tension can be easily changed by bias force. Simulation results and experimental results show the validity of the proposed method.
{"title":"A method of joint torque control for a tendon-driven system","authors":"Uichiro Nishio, T. Nozaki, K. Ohnishi","doi":"10.1109/AMC.2012.6197107","DOIUrl":"https://doi.org/10.1109/AMC.2012.6197107","url":null,"abstract":"It is hoped that robots are utilized in environments where human lives. Robots should work safely and perform complicated tasks. For safety, precise force control and lightweight mechanism are important because robots contact with human. In order to perform complicated tasks, multi-degrees-of-freedom system is needed. Tendon-driven system is able to achieve precise motion control and complicated tasks. In this system, wires are utilized as force transmission. Therefore, the system can achieve lightweight robot and can generate large joint torque. However, each joint torque interferes mutually because the tendons are attached to each link. Tendon tension must be kept over zero because the tendons can only generate traction force. In this paper, an inverse matrix of transposed Jacobian matrix with tension control was proposed in order to achieve tension control and torque control. This inverse matrix contains two conditions. One is the condition of joint torque control. The other is the condition that the minimum value of tendon tension is kept zero. In addition, the minimum value of tendon tension can be easily changed by bias force. Simulation results and experimental results show the validity of the proposed method.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"47 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88393837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-03-25DOI: 10.1109/AMC.2012.6197009
Jorge Hurel, A. Mandow, A. García-Cerezo
This paper proposes a systematic and comprehensive development of a nonlinear two-dimensional mathematical quarter-car model of the McPherson suspension. The model considers not only vertical motion of the sprung mass (chassis) but also rotation and translation for the unsprung mass (wheel assembly). Furthermore, this model includes the wheel mass and its inertia moment about the longitudinal axis. This work improves the conventional quarter-car model by incorporating both the suspension geometry and the tyre lateral stiffness, which allows analyzing variations in kinematic parameters, such as camber angle and track width. Besides, the paper offers an implementation of the model using Matlab-Simulink, whose dynamics and kinematics have been validated against a realistic two-dimensional model developed with the Adams View program.
{"title":"Nonlinear two-dimensional modeling of a McPherson suspension for kinematics and dynamics simulation","authors":"Jorge Hurel, A. Mandow, A. García-Cerezo","doi":"10.1109/AMC.2012.6197009","DOIUrl":"https://doi.org/10.1109/AMC.2012.6197009","url":null,"abstract":"This paper proposes a systematic and comprehensive development of a nonlinear two-dimensional mathematical quarter-car model of the McPherson suspension. The model considers not only vertical motion of the sprung mass (chassis) but also rotation and translation for the unsprung mass (wheel assembly). Furthermore, this model includes the wheel mass and its inertia moment about the longitudinal axis. This work improves the conventional quarter-car model by incorporating both the suspension geometry and the tyre lateral stiffness, which allows analyzing variations in kinematic parameters, such as camber angle and track width. Besides, the paper offers an implementation of the model using Matlab-Simulink, whose dynamics and kinematics have been validated against a realistic two-dimensional model developed with the Adams View program.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"54 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86785915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-03-25DOI: 10.1109/AMC.2012.6197130
Branislav Konjevic, M. Puncec, Z. Kovačić
This paper presents two different approaches to trajectory planning that provide boundedness of position, velocity, acceleration and jerk. To achieve that goal on all segments of the planned trajectory, the first approach combines fifth-order and fourth-order polynomials, while the second one separates a velocity profile from a given path. Using a minimal path traversal time criterion for both approaches, the methods were tested and verified on a selected trajectory for a three degrees of freedom (DOF) planar articulated robot.
{"title":"Two approaches to bounded jerk trajectory planning","authors":"Branislav Konjevic, M. Puncec, Z. Kovačić","doi":"10.1109/AMC.2012.6197130","DOIUrl":"https://doi.org/10.1109/AMC.2012.6197130","url":null,"abstract":"This paper presents two different approaches to trajectory planning that provide boundedness of position, velocity, acceleration and jerk. To achieve that goal on all segments of the planned trajectory, the first approach combines fifth-order and fourth-order polynomials, while the second one separates a velocity profile from a given path. Using a minimal path traversal time criterion for both approaches, the methods were tested and verified on a selected trajectory for a three degrees of freedom (DOF) planar articulated robot.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"34 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89365015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-03-25DOI: 10.1109/AMC.2012.6197044
T. Mizoguchi, T. Nozaki, K. Ohnishi
Scaling bilateral control is a method to extend human ability by using master and slave robots. Position scaling extends working space of human; force scaling extends sensitivity of human. This technology is useful when the slave robot is larger in size compared with the master robot. In general, correct environmental impedance, such as softness or hardness of the object, cannot be transmitted in scaling bilateral control due to a mismatch of force scaling and position scaling in the bilateral control. However, correct environmental impedance is necessary for the safe operation, especially in the scaling bilateral control where the mass of robot tends to become large. This paper proposes a method of transmitting environmental impedance in position scaling bilateral control. Position scaling is focused for the sake of extending working space of operator when the slave robot has larger working space compared with the master robot. There exist two methods to scale position in bilateral control; scaling with constant coefficient and scaling with dimension variation. Conventionally, neither of these achieves correct impedance transmission. Proposed method can be applied to both position scaling methods with the same procedure and achieves impedance transmission by using property of gyrator type bilateral control. The transfer admittance has an ability to bring back the scaled bilateral control to non scaled bilateral control during contact motion. The effect of the proposal is verified through simulation and experiment.
{"title":"Scaling bilateral controls with impedance transmission using transfer admittance","authors":"T. Mizoguchi, T. Nozaki, K. Ohnishi","doi":"10.1109/AMC.2012.6197044","DOIUrl":"https://doi.org/10.1109/AMC.2012.6197044","url":null,"abstract":"Scaling bilateral control is a method to extend human ability by using master and slave robots. Position scaling extends working space of human; force scaling extends sensitivity of human. This technology is useful when the slave robot is larger in size compared with the master robot. In general, correct environmental impedance, such as softness or hardness of the object, cannot be transmitted in scaling bilateral control due to a mismatch of force scaling and position scaling in the bilateral control. However, correct environmental impedance is necessary for the safe operation, especially in the scaling bilateral control where the mass of robot tends to become large. This paper proposes a method of transmitting environmental impedance in position scaling bilateral control. Position scaling is focused for the sake of extending working space of operator when the slave robot has larger working space compared with the master robot. There exist two methods to scale position in bilateral control; scaling with constant coefficient and scaling with dimension variation. Conventionally, neither of these achieves correct impedance transmission. Proposed method can be applied to both position scaling methods with the same procedure and achieves impedance transmission by using property of gyrator type bilateral control. The transfer admittance has an ability to bring back the scaled bilateral control to non scaled bilateral control during contact motion. The effect of the proposal is verified through simulation and experiment.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"35 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89897250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-03-25DOI: 10.1109/AMC.2012.6197108
Zheng Chen, B. Yao, Qingfeng Wang
This paper studies precision motion control of linear motors in the presence of parameter variations, disturbances and various significant nonlinearity effects. An adaptive robust control (ARC) algorithm with integrated compensation of major nonlinearities ranging from Coulomb friction and cogging force to the nonlinear electromagnetic field effect is developed. High frequency structural flexible modes and dynamics in linear motors, which are neglected in the previous researches, are explicitly identified experimentally and their effects are carefully examined. With the knowledge of those high frequency dynamics, theoretical analysis is subsequently conducted to generate a set of practically useful guidelines on the tuning of controller gains in maximizing the achievable performance in practice. Comparative experiments of the propose ARC control law with different controller gains are carried out to illustrate the usefulness of the generated guidelines. In addition, to further push the achievable control performance, explicit compensation of the known high-frequency flexible modes and dynamics using pole/zero cancelation is also investigated, and its effectiveness is evaluated through comparative experimental results as well.
{"title":"Adaptive robust precision motion control of linear motors with high frequency flexible modes","authors":"Zheng Chen, B. Yao, Qingfeng Wang","doi":"10.1109/AMC.2012.6197108","DOIUrl":"https://doi.org/10.1109/AMC.2012.6197108","url":null,"abstract":"This paper studies precision motion control of linear motors in the presence of parameter variations, disturbances and various significant nonlinearity effects. An adaptive robust control (ARC) algorithm with integrated compensation of major nonlinearities ranging from Coulomb friction and cogging force to the nonlinear electromagnetic field effect is developed. High frequency structural flexible modes and dynamics in linear motors, which are neglected in the previous researches, are explicitly identified experimentally and their effects are carefully examined. With the knowledge of those high frequency dynamics, theoretical analysis is subsequently conducted to generate a set of practically useful guidelines on the tuning of controller gains in maximizing the achievable performance in practice. Comparative experiments of the propose ARC control law with different controller gains are carried out to illustrate the usefulness of the generated guidelines. In addition, to further push the achievable control performance, explicit compensation of the known high-frequency flexible modes and dynamics using pole/zero cancelation is also investigated, and its effectiveness is evaluated through comparative experimental results as well.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"8 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86436513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}