首页 > 最新文献

Journal of Nanoparticle Research最新文献

英文 中文
Retraction Note: Development of novel anti-Kv 11.1 antibody-conjugated PEG–TiO2 nanoparticles for targeting pancreatic ductal adenocarcinoma cells
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-27 DOI: 10.1007/s11051-025-06264-8
Angelica Sette, Jolanda Spadavecchia, Jessem Landoulsi, Sandra Casale, Bernard Haye, Olivia Crociani, Annarosa Arcangeli
{"title":"Retraction Note: Development of novel anti-Kv 11.1 antibody-conjugated PEG–TiO2 nanoparticles for targeting pancreatic ductal adenocarcinoma cells","authors":"Angelica Sette, Jolanda Spadavecchia, Jessem Landoulsi, Sandra Casale, Bernard Haye, Olivia Crociani, Annarosa Arcangeli","doi":"10.1007/s11051-025-06264-8","DOIUrl":"10.1007/s11051-025-06264-8","url":null,"abstract":"","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143496875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic growth of Ag nanoparticles on TiO2 films: growth behavior and kinetics study by UV–Vis-NIR extinction spectroscopy and scanning electron microscopy
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-25 DOI: 10.1007/s11051-025-06259-5
Shuai Li, Qing-Yu Zhang

Ag nanoparticles can easily be deposited on semiconductors through the photocatalytic growth process to yield directly attached metal nanoparticles on the material surface. However, the growth behavior and kinetics of the photocatalytic growth require further investigations to guide controlled preparation. Herein, the behavior and kinetics of photocatalytic growth Ag nanoparticles on sol–gel TiO2 films were first explored by in situ UV–Vis-NIR extinction spectroscopy and scanning electron microscopy. The results suggested average size evolution of Ag NPs varied according to d3 ∝ t law, and Ostwald ripening mechanism dominated by the growth process of Ag NPs. The in situ UV–Vis-NIR extinction spectra highlighted the presence of a critical concentration of Ag+ ion at a given irradiation intensity. The critical AgNO3 concentration C(I) gradually rose with the irradiation intensity. The values of C(I) at 1, 1.6, and 5.3 mW/cm2 irradiations were approximately 400, 800, and 1600 mg/L, respectively. For Ag+ ion levels below the critical concentration, the growth of Ag NPs was controlled by Ag+ diffusion-limited growth. For Ag+ ion levels above the critical concentration, the growth of Ag NPs was controlled by photo-induced carrier diffusion-limited growth. Overall, the clarified kinetics of photocatalytic growth of Ag nanoparticles on sol–gel TiO2 films would help prepare customized noble metal nanoparticles by photocatalytic growth or other similar methods like electrochemical deposition and galvanic cell replacement.

{"title":"Photocatalytic growth of Ag nanoparticles on TiO2 films: growth behavior and kinetics study by UV–Vis-NIR extinction spectroscopy and scanning electron microscopy","authors":"Shuai Li,&nbsp;Qing-Yu Zhang","doi":"10.1007/s11051-025-06259-5","DOIUrl":"10.1007/s11051-025-06259-5","url":null,"abstract":"<div><p>Ag nanoparticles can easily be deposited on semiconductors through the photocatalytic growth process to yield directly attached metal nanoparticles on the material surface. However, the growth behavior and kinetics of the photocatalytic growth require further investigations to guide controlled preparation. Herein, the behavior and kinetics of photocatalytic growth Ag nanoparticles on sol–gel TiO<sub>2</sub> films were first explored by in situ UV–Vis-NIR extinction spectroscopy and scanning electron microscopy. The results suggested average size evolution of Ag NPs varied according to d<sup>3</sup> ∝ t law, and Ostwald ripening mechanism dominated by the growth process of Ag NPs. The in situ UV–Vis-NIR extinction spectra highlighted the presence of a critical concentration of Ag<sup>+</sup> ion at a given irradiation intensity. The critical AgNO<sub>3</sub> concentration C(I) gradually rose with the irradiation intensity. The values of C(I) at 1, 1.6, and 5.3 mW/cm<sup>2</sup> irradiations were approximately 400, 800, and 1600 mg/L, respectively. For Ag<sup>+</sup> ion levels below the critical concentration, the growth of Ag NPs was controlled by Ag<sup>+</sup> diffusion-limited growth. For Ag<sup>+</sup> ion levels above the critical concentration, the growth of Ag NPs was controlled by photo-induced carrier diffusion-limited growth. Overall, the clarified kinetics of photocatalytic growth of Ag nanoparticles on sol–gel TiO<sub>2</sub> films would help prepare customized noble metal nanoparticles by photocatalytic growth or other similar methods like electrochemical deposition and galvanic cell replacement.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of multifunctional sulfur-nitrogen co-doped carbon quantum dots via facile one-pot microwave-assisted synthesis: applications on antioxidant, antimicrobial activities, and Fe3+ ion sensing
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-24 DOI: 10.1007/s11051-025-06260-y
Yeduru Venkatesh, Parimi Venkata Subrahmanyam Naidu, Madaraboina Ramanjaneyulu, Podilapu Atchutha Rao, Durga Bhavani Kundrapu

In this work, a simple, inexpensive, and environmentally benign method has been developed to synthesize luminescent sulfur and nitrogen co-doped carbon quantum dots (S,N-CQDs) utilizing DL-DOPA, o-phenylenediamine, and sulfuric acid via microwave-assisted synthesis. The optical characteristics of the as-fabricated S,N-CQDs were analyzed using various spectroscopic techniques, including UV–Vis, fluorescence, and TCSPC techniques. For structural characterization, a comprehensive approach was employed, involving HR TEM, FE-SEM coupled with EDX, and XRD. Additionally, the functional groups and surface composition were identified through XPS, FTIR, and Raman spectroscopy. The thermal stability of the as-fabricated S,N-CQDs was assessed using thermogravimetric analysis (TGA), confirming their robust structural properties. The synthesized S,N-CQDs, with an average size of 9.3 nm, demonstrated impressive thermal stability, remarkable biocompatibility, and a high quantum yield of 17%, along with outstanding optical and chemical properties, and promising biological activities. They demonstrated excellent free radical scavenging activity (EC50: 61.26 µg/mL) and effective antimicrobial properties. Moreover, the as-fabricated S,N-CQDs exhibited outstanding selectivity and sensitivity toward Fe3⁺ ions, with a limit of detection (LOD) of 0.15 µM. Their ability to distinguish Fe3⁺ from other metal ions confirms their potential as fluorescent probes for Fe3⁺ detection in environmental and biological samples.

Graphical abstract

{"title":"Synthesis of multifunctional sulfur-nitrogen co-doped carbon quantum dots via facile one-pot microwave-assisted synthesis: applications on antioxidant, antimicrobial activities, and Fe3+ ion sensing","authors":"Yeduru Venkatesh,&nbsp;Parimi Venkata Subrahmanyam Naidu,&nbsp;Madaraboina Ramanjaneyulu,&nbsp;Podilapu Atchutha Rao,&nbsp;Durga Bhavani Kundrapu","doi":"10.1007/s11051-025-06260-y","DOIUrl":"10.1007/s11051-025-06260-y","url":null,"abstract":"<div><p>In this work, a simple, inexpensive, and environmentally benign method has been developed to synthesize luminescent sulfur and nitrogen co-doped carbon quantum dots (S,N-CQDs) utilizing DL-DOPA, o-phenylenediamine, and sulfuric acid via microwave-assisted synthesis. The optical characteristics of the as-fabricated S,N-CQDs were analyzed using various spectroscopic techniques, including UV–Vis, fluorescence, and TCSPC techniques. For structural characterization, a comprehensive approach was employed, involving HR TEM, FE-SEM coupled with EDX, and XRD. Additionally, the functional groups and surface composition were identified through XPS, FTIR, and Raman spectroscopy. The thermal stability of the as-fabricated S,N-CQDs was assessed using thermogravimetric analysis (TGA), confirming their robust structural properties. The synthesized S,N-CQDs, with an average size of 9.3 nm, demonstrated impressive thermal stability, remarkable biocompatibility, and a high quantum yield of 17%, along with outstanding optical and chemical properties, and promising biological activities. They demonstrated excellent free radical scavenging activity (EC50: 61.26 µg/mL) and effective antimicrobial properties. Moreover, the as-fabricated S,N-CQDs exhibited outstanding selectivity and sensitivity toward Fe<sup>3</sup>⁺ ions, with a limit of detection (LOD) of 0.15 µM. Their ability to distinguish Fe<sup>3</sup>⁺ from other metal ions confirms their potential as fluorescent probes for Fe<sup>3</sup>⁺ detection in environmental and biological samples.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prospects of nano phosphorus fertilizers (NPFs) in plant-based agriculture: effects and mechanisms
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-21 DOI: 10.1007/s11051-025-06261-x
Peiying Wang, Partho Das, Lei Wang, Jingyi Zhou, Chaoyi Deng, Ileana Vera-Reyes, Christian O. Dimkpa, Jason C. White, Yi Wang

Phosphorus (P) is a crucial macronutrient for plant growth, root development, and yield. Commercial P fertilizers have low efficiency of delivery and utilization and are lost from plant root zones by either low availability or leaching or surface runoff that leads to environmental damage. This review investigates how nano P fertilizers (NPFs) can overcome the current inefficiencies of conventional formulations and, thus, enhance plant yield while minimizing negative environmental impacts. NPFs have significant potential for augmenting plant germination by more effectively penetrating seed coatings and facilitating greater water and nutrient uptake. The nanoscale nature of NPF also uniquely facilitates greater P absorption by roots, which in turn enhances chlorophyll synthesis, improves light absorption, and optimizes electron transport efficiency—key factors in boosting plant photosynthesis. Additionally, it stimulates overall physiological processes (e.g., secondary metabolite production, root exudation), increases antioxidant enzyme activities, and enhances plant yield. NPFs can also minimize the accumulation of toxic elements by several mechanisms, including controlling contaminant bioavailability in soil by enhancing competing plant essential element (e.g., P, Ca) uptake. Moreover, NPFs also mediate soil pH, which has important implications for soil biogeochemistry in low-pH agricultural areas. Soil microbiomes and associated processes will often improve with NPF application relative to conventional P formulations. Although great potential has been demonstrated, a mechanistic understanding of certain aspects of NPF activity remains incomplete, including impacts across diverse crop species, environmental conditions, and soil types. However, NPFs offer great potential as an important tool in the transformation of conventional agriculture, simultaneously lessening the usage of finite P resources, reducing the environmental footprint of agriculture, and improving future food security.

Graphical Abstract

{"title":"Prospects of nano phosphorus fertilizers (NPFs) in plant-based agriculture: effects and mechanisms","authors":"Peiying Wang,&nbsp;Partho Das,&nbsp;Lei Wang,&nbsp;Jingyi Zhou,&nbsp;Chaoyi Deng,&nbsp;Ileana Vera-Reyes,&nbsp;Christian O. Dimkpa,&nbsp;Jason C. White,&nbsp;Yi Wang","doi":"10.1007/s11051-025-06261-x","DOIUrl":"10.1007/s11051-025-06261-x","url":null,"abstract":"<div><p>Phosphorus (P) is a crucial macronutrient for plant growth, root development, and yield. Commercial P fertilizers have low efficiency of delivery and utilization and are lost from plant root zones by either low availability or leaching or surface runoff that leads to environmental damage. This review investigates how nano P fertilizers (NPFs) can overcome the current inefficiencies of conventional formulations and, thus, enhance plant yield while minimizing negative environmental impacts. NPFs have significant potential for augmenting plant germination by more effectively penetrating seed coatings and facilitating greater water and nutrient uptake. The nanoscale nature of NPF also uniquely facilitates greater P absorption by roots, which in turn enhances chlorophyll synthesis, improves light absorption, and optimizes electron transport efficiency—key factors in boosting plant photosynthesis. Additionally, it stimulates overall physiological processes (e.g., secondary metabolite production, root exudation), increases antioxidant enzyme activities, and enhances plant yield. NPFs can also minimize the accumulation of toxic elements by several mechanisms, including controlling contaminant bioavailability in soil by enhancing competing plant essential element (e.g., P, Ca) uptake. Moreover, NPFs also mediate soil pH, which has important implications for soil biogeochemistry in low-pH agricultural areas. Soil microbiomes and associated processes will often improve with NPF application relative to conventional P formulations. Although great potential has been demonstrated, a mechanistic understanding of certain aspects of NPF activity remains incomplete, including impacts across diverse crop species, environmental conditions, and soil types. However, NPFs offer great potential as an important tool in the transformation of conventional agriculture, simultaneously lessening the usage of finite P resources, reducing the environmental footprint of agriculture, and improving future food security.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anticorrosive properties of small Mg and ZnMg clusters investigated by structural and electronic indicators
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-21 DOI: 10.1007/s11051-025-06251-z
Yamina Cheballah, Mohammed Ziane, Karima Cheballah

The structural and electronic properties of neutral and charged Mg and ZnMg clusters, for different sizes, have been investigated in order to know how the reactivity of pure magnesium clusters will be influenced by the substitution of a single atom of zinc, and how these clusters interact with the oxygen atom. The calculations have been performed in the framework of the density functional theory in the generalized gradient approximation for the exchange and correlation. The results show that doping with a single Zn impurity is enough to change the structure of the host magnesium cluster and modify the bonding pattern making the structures more stable. The calculated adiabatic electron affinity and vertical detachment energy of pure magnesium clusters show good agreement with the available experimental data and indicate that Zn doping enhances their stability during the reduction process. The adsorption of Zn atom significantly affects the stability of the magnesium clusters during the oxidation process. The calculated results of the adsorption energy of oxygen show that, in general, the reactivity of oxygen atom decreases when the cluster size increase, which impact their anticorrosive properties making them more suitable for generating protective coating layers.

{"title":"Anticorrosive properties of small Mg and ZnMg clusters investigated by structural and electronic indicators","authors":"Yamina Cheballah,&nbsp;Mohammed Ziane,&nbsp;Karima Cheballah","doi":"10.1007/s11051-025-06251-z","DOIUrl":"10.1007/s11051-025-06251-z","url":null,"abstract":"<div><p>The structural and electronic properties of neutral and charged Mg and ZnMg clusters, for different sizes, have been investigated in order to know how the reactivity of pure magnesium clusters will be influenced by the substitution of a single atom of zinc, and how these clusters interact with the oxygen atom. The calculations have been performed in the framework of the density functional theory in the generalized gradient approximation for the exchange and correlation. The results show that doping with a single Zn impurity is enough to change the structure of the host magnesium cluster and modify the bonding pattern making the structures more stable. The calculated adiabatic electron affinity and vertical detachment energy of pure magnesium clusters show good agreement with the available experimental data and indicate that Zn doping enhances their stability during the reduction process. The adsorption of Zn atom significantly affects the stability of the magnesium clusters during the oxidation process. The calculated results of the adsorption energy of oxygen show that, in general, the reactivity of oxygen atom decreases when the cluster size increase, which impact their anticorrosive properties making them more suitable for generating protective coating layers.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of stabilizers on composition and stability of bimetallic copper/silver nanoparticles
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-20 DOI: 10.1007/s11051-025-06257-7
Kateryna Bryleva, Zinaida Bunina, Victoria Varchenko, Olena Hryshyna, Konstantin Belikov, Anatoliy Paliy, Olena Kolchyk, Larisa Kovalenko

The study investigated processes of bimetallic copper/silver nanoparticle formation in aqueous media using two reducing agents: sodium borohydride and ascorbic acid. Adding these reducing agents in sequence allows the synthesis of bimetallic nanoparticles at room temperature. The influence of stabilizing agents such as sodium dodecyl sulfate, cetyltrimethylammonium bromide, and oleic acid and their combinations on the composition of nanoparticles in suspensions and the stability of suspensions was examined. When using a combination of oleic acid and sodium dodecyl sulfate, bimetallic copper/silver nanoparticles with a preset composition of 4:1 were formed. These nanosized systems remain stable for at least 3 months. The proposed synthetic method allows the fabrication of copper/silver nanoparticles ranging in size from 30 to 40 nm. The studied nanoparticles were shown to completely inhibit the colony growth of E. coli and S. aureus test strains on dense nutrient media when diluted to 10%, with exposure times of 3 and 5 h.

{"title":"Effect of stabilizers on composition and stability of bimetallic copper/silver nanoparticles","authors":"Kateryna Bryleva,&nbsp;Zinaida Bunina,&nbsp;Victoria Varchenko,&nbsp;Olena Hryshyna,&nbsp;Konstantin Belikov,&nbsp;Anatoliy Paliy,&nbsp;Olena Kolchyk,&nbsp;Larisa Kovalenko","doi":"10.1007/s11051-025-06257-7","DOIUrl":"10.1007/s11051-025-06257-7","url":null,"abstract":"<div><p>The study investigated processes of bimetallic copper/silver nanoparticle formation in aqueous media using two reducing agents: sodium borohydride and ascorbic acid. Adding these reducing agents in sequence allows the synthesis of bimetallic nanoparticles at room temperature. The influence of stabilizing agents such as sodium dodecyl sulfate, cetyltrimethylammonium bromide, and oleic acid and their combinations on the composition of nanoparticles in suspensions and the stability of suspensions was examined. When using a combination of oleic acid and sodium dodecyl sulfate, bimetallic copper/silver nanoparticles with a preset composition of 4:1 were formed. These nanosized systems remain stable for at least 3 months. The proposed synthetic method allows the fabrication of copper/silver nanoparticles ranging in size from 30 to 40 nm. The studied nanoparticles were shown to completely inhibit the colony growth of <i>E. coli</i> and <i>S. aureus</i> test strains on dense nutrient media when diluted to 10%, with exposure times of 3 and 5 h.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11051-025-06257-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visible fluorescence in carbon dots deposited on silicon under energetic proton beams excitation
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-18 DOI: 10.1007/s11051-025-06255-9
L. Torrisi, V. Havranek, P. Malinsky, A. Mackova, D. Manno, A. Serra, A. Torrisi, M. Cutroneo

Carbon dots (CDs) have been obtained by laser ablation of charcoal in a biocompatible liquid and deposited as a thin film on a silicon substrate. A ns-pulsed Nd:YAG laser, operating at 1064 nm of wavelength, irradiates for times up to 3 h the solid carbon target placed into a phosphate-buffered saline (PBS) solution and distilled water, to prepare the CDs dispersion. The prepared thin film on silicon, under a UV lamp at 365 nm in air generates fluorescence in the visible region, with a band around 470 nm, with a blue color. Further investigations concern the thin-film irradiation using 0.8–3.0 MeV protons with 3 nA current in a vacuum, showing also fluorescence in the visible region, from about 400 up to 700 nm, as recorded by a suitable optical spectrometer. The practical applications of CDs are also presented especially in the biomedical field and in the dosimetry ambit, where they can be employed for bioimaging, diagnostics, and therapy.

{"title":"Visible fluorescence in carbon dots deposited on silicon under energetic proton beams excitation","authors":"L. Torrisi,&nbsp;V. Havranek,&nbsp;P. Malinsky,&nbsp;A. Mackova,&nbsp;D. Manno,&nbsp;A. Serra,&nbsp;A. Torrisi,&nbsp;M. Cutroneo","doi":"10.1007/s11051-025-06255-9","DOIUrl":"10.1007/s11051-025-06255-9","url":null,"abstract":"<div><p>Carbon dots (CDs) have been obtained by laser ablation of charcoal in a biocompatible liquid and deposited as a thin film on a silicon substrate. A ns-pulsed Nd:YAG laser, operating at 1064 nm of wavelength, irradiates for times up to 3 h the solid carbon target placed into a phosphate-buffered saline (PBS) solution and distilled water, to prepare the CDs dispersion. The prepared thin film on silicon, under a UV lamp at 365 nm in air generates fluorescence in the visible region, with a band around 470 nm, with a blue color. Further investigations concern the thin-film irradiation using 0.8–3.0 MeV protons with 3 nA current in a vacuum, showing also fluorescence in the visible region, from about 400 up to 700 nm, as recorded by a suitable optical spectrometer. The practical applications of CDs are also presented especially in the biomedical field and in the dosimetry ambit, where they can be employed for bioimaging, diagnostics, and therapy.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quick and effective approach for removing Ni(II) from paper mill wastewater with magnesium ferrite nanoadsorbent: method development, reusability, isotherm models, and adsorption kinetics
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-18 DOI: 10.1007/s11051-025-06256-8
Aleyna Bahçıvan, Arda Atakol, Buse Tuğba Zaman, Gamze Dalgıç Bozyiğit, Selami Demir, Sezgin Bakırdere

The removal of Ni2+ ions from the effluent of the paper mill was accomplished by using magnesium ferrite nanoparticles. The nanoparticles were produced through a sol–gel process at low temperatures. Experimental factors were meticulously optimized to enhance the adsorption process. Optimal conditions were determined to be 1.0 mL of buffer solution with a pH of 8.0, 100 mg of nano-sorbent, and mixing for 30 min. When these conditions were put to test, the removal efficiency was enhanced to ≥ 98.4%. Additionally, it was discovered that the nanoparticles exhibit exceptional reusability upon regeneration after the first use. The investigation of adsorption equilibrium was conducted utilizing the Langmuir, Freundlich, and Sips models. The Sips isotherm demonstrated the strongest correlation with the experimental results, as indicated by the coefficient of determination (R2) of 0.9976 while the reaction order was estimated as 1.61 by the kinetic model.

{"title":"A quick and effective approach for removing Ni(II) from paper mill wastewater with magnesium ferrite nanoadsorbent: method development, reusability, isotherm models, and adsorption kinetics","authors":"Aleyna Bahçıvan,&nbsp;Arda Atakol,&nbsp;Buse Tuğba Zaman,&nbsp;Gamze Dalgıç Bozyiğit,&nbsp;Selami Demir,&nbsp;Sezgin Bakırdere","doi":"10.1007/s11051-025-06256-8","DOIUrl":"10.1007/s11051-025-06256-8","url":null,"abstract":"<div><p>The removal of Ni<sup>2+</sup> ions from the effluent of the paper mill was accomplished by using magnesium ferrite nanoparticles. The nanoparticles were produced through a sol–gel process at low temperatures. Experimental factors were meticulously optimized to enhance the adsorption process. Optimal conditions were determined to be 1.0 mL of buffer solution with a pH of 8.0, 100 mg of nano-sorbent, and mixing for 30 min. When these conditions were put to test, the removal efficiency was enhanced to ≥ 98.4%. Additionally, it was discovered that the nanoparticles exhibit exceptional reusability upon regeneration after the first use. The investigation of adsorption equilibrium was conducted utilizing the Langmuir, Freundlich, and Sips models. The Sips isotherm demonstrated the strongest correlation with the experimental results, as indicated by the coefficient of determination (<i>R</i><sup>2</sup>) of 0.9976 while the reaction order was estimated as 1.61 by the kinetic model.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticulate systems for combination therapies of lung cancer: A review
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-17 DOI: 10.1007/s11051-025-06233-1
Ayda Moradi, Sina Maskoukian, Tomasz Bączek, Navid Rabiee, Mohammad Reza Saeb, Mehdi Farokhi, Fatemeh Mottaghitalab

Lung cancer is the leading cause of cancer-related deaths, worldwide. To date, various strategies have been developed and examined for treating lung cancer. The era of nanotechnology has opened a new avenue for designing advanced nanoparticulate systems for single or multiple delivery of chemotherapeutics. Despite the promising synergism between these systems, some challenges still remain. Therefore, various combination therapies based on nanostructures are developed to alleviate the drawbacks of conventional systems. These combinations may or may not have synergistic therapeutic effects. It has been observed that using combination therapies could result in a higher rate of response to treatment when compared with each modality alone. While these nanotechnological routes demonstrate promising therapeutic potentials, still some challenges such as manufacturing scalability, stability under physiological conditions, and ability to clinical translation remain unsolved. These therapies not only moderate the symptoms of the disease but also are useful for cure. It is worth noting that performing various combinations of therapies based on the symptoms, stage, and type of lung cancer could have better therapeutic outcomes than single therapies. Therefore, these kinds of treatments are proposed for clinical lung cancer treatment.

肺癌是全球癌症相关死亡的主要原因。迄今为止,已经开发和研究了各种治疗肺癌的策略。纳米技术时代为设计先进的纳米颗粒系统,用于单次或多次给药化疗开辟了一条新途径。尽管这些系统之间有望产生协同作用,但仍存在一些挑战。因此,人们开发了各种基于纳米结构的组合疗法,以缓解传统系统的弊端。这些组合可能具有协同治疗效果,也可能没有。据观察,与单独使用每种模式相比,使用组合疗法可提高治疗反应率。虽然这些纳米技术途径显示出良好的治疗潜力,但仍有一些挑战尚未解决,如生产的可扩展性、生理条件下的稳定性和临床转化能力。这些疗法不仅能缓解疾病症状,还能用于治疗。值得注意的是,根据肺癌的症状、分期和类型采取不同的组合疗法,可能比单一疗法取得更好的治疗效果。因此,在临床治疗肺癌时,建议采用这类疗法。
{"title":"Nanoparticulate systems for combination therapies of lung cancer: A review","authors":"Ayda Moradi,&nbsp;Sina Maskoukian,&nbsp;Tomasz Bączek,&nbsp;Navid Rabiee,&nbsp;Mohammad Reza Saeb,&nbsp;Mehdi Farokhi,&nbsp;Fatemeh Mottaghitalab","doi":"10.1007/s11051-025-06233-1","DOIUrl":"10.1007/s11051-025-06233-1","url":null,"abstract":"<div><p>Lung cancer is the leading cause of cancer-related deaths, worldwide. To date, various strategies have been developed and examined for treating lung cancer. The era of nanotechnology has opened a new avenue for designing advanced nanoparticulate systems for single or multiple delivery of chemotherapeutics. Despite the promising synergism between these systems, some challenges still remain. Therefore, various combination therapies based on nanostructures are developed to alleviate the drawbacks of conventional systems. These combinations may or may not have synergistic therapeutic effects. It has been observed that using combination therapies could result in a higher rate of response to treatment when compared with each modality alone. While these nanotechnological routes demonstrate promising therapeutic potentials, still some challenges such as manufacturing scalability, stability under physiological conditions, and ability to clinical translation remain unsolved. These therapies not only moderate the symptoms of the disease but also are useful for cure. It is worth noting that performing various combinations of therapies based on the symptoms, stage, and type of lung cancer could have better therapeutic outcomes than single therapies. Therefore, these kinds of treatments are proposed for clinical lung cancer treatment.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of varying alkyl-chain length surfactants on iron nanoparticle sizes for magnetic particle imaging applications
IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-02-15 DOI: 10.1007/s11051-025-06253-x
Aleia G. Williams, Willem Graham, Sydney Henriques, Todd D. Giorgio, Charles E. Johnson, Jacqueline A. Johnson

Currently, iron oxide nanoparticles around 25–30 nm in diameter are the standard magnetic tracers used for magnetic particle imaging (MPI) applications. Compared to iron oxide nanoparticles, less research has been performed in creating pure iron nanoparticles for MPI applications. Previous studies have created iron core–iron oxide shell nanoparticles around 15 nm in diameter, but in order to achieve optimal MPI signal similar to iron oxides, larger diameters around 20 nm are needed. However, due to the strong magnetic characteristics of pure iron, synthesizing pure iron nanoparticles above 15 nm in diameter can be challenging due to the high risk of agglomeration. Therefore, an investigation into creating 20-nm-sized iron nanoparticles was performed utilizing potential surfactants that might prevent agglomeration. A thermal decomposition of iron pentacarbonyl was performed with different surfactants including decylamine (DA), dodecylamine (DDA), hexadecylamine (HDA), octadecylamine (ODA), and dioctyldecylamine (DODA) to determine potential differences in size or composition. All surfactants possessed a linear structure and only varied in alkyl-chain length. From the results, it was found that longer alkyl-chain length surfactants assisted in creating larger iron nanoparticle sizes.

{"title":"Investigation of varying alkyl-chain length surfactants on iron nanoparticle sizes for magnetic particle imaging applications","authors":"Aleia G. Williams,&nbsp;Willem Graham,&nbsp;Sydney Henriques,&nbsp;Todd D. Giorgio,&nbsp;Charles E. Johnson,&nbsp;Jacqueline A. Johnson","doi":"10.1007/s11051-025-06253-x","DOIUrl":"10.1007/s11051-025-06253-x","url":null,"abstract":"<div><p>Currently, iron oxide nanoparticles around 25–30 nm in diameter are the standard magnetic tracers used for magnetic particle imaging (MPI) applications. Compared to iron oxide nanoparticles, less research has been performed in creating pure iron nanoparticles for MPI applications. Previous studies have created iron core–iron oxide shell nanoparticles around 15 nm in diameter, but in order to achieve optimal MPI signal similar to iron oxides, larger diameters around 20 nm are needed. However, due to the strong magnetic characteristics of pure iron, synthesizing pure iron nanoparticles above 15 nm in diameter can be challenging due to the high risk of agglomeration. Therefore, an investigation into creating 20-nm-sized iron nanoparticles was performed utilizing potential surfactants that might prevent agglomeration. A thermal decomposition of iron pentacarbonyl was performed with different surfactants including decylamine (DA), dodecylamine (DDA), hexadecylamine (HDA), octadecylamine (ODA), and dioctyldecylamine (DODA) to determine potential differences in size or composition. All surfactants possessed a linear structure and only varied in alkyl-chain length. From the results, it was found that longer alkyl-chain length surfactants assisted in creating larger iron nanoparticle sizes.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Nanoparticle Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1