Domain adaptation attempts to transfer the knowledge obtained from the source domain to the target domain, i.e., the domain where the testing data are. The main challenge lies in the distribution discrepancy between source and target domain. Most existing works endeavor to learn domain invariant representation usually by minimizing a distribution distance, e.g., MMD and the discriminator in the recently proposed generative adversarial network (GAN). Following the similar idea of GAN, this work proposes a novel GAN architecture with duplex adversarial discriminators (referred to as DupGAN), which can achieve domain-invariant representation and domain transformation. Specifically, our proposed network consists of three parts, an encoder, a generator and two discriminators. The encoder embeds samples from both domains into the latent representation, and the generator decodes the latent representation to both source and target domains respectively conditioned on a domain code, i.e., achieves domain transformation. The generator is pitted against duplex discriminators, one for source domain and the other for target, to ensure the reality of domain transformation, the latent representation domain invariant and the category information of it preserved as well. Our proposed work achieves the state-of-the-art performance on unsupervised domain adaptation of digit classification and object recognition.
{"title":"Duplex Generative Adversarial Network for Unsupervised Domain Adaptation","authors":"Lanqing Hu, Meina Kan, S. Shan, Xilin Chen","doi":"10.1109/CVPR.2018.00162","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00162","url":null,"abstract":"Domain adaptation attempts to transfer the knowledge obtained from the source domain to the target domain, i.e., the domain where the testing data are. The main challenge lies in the distribution discrepancy between source and target domain. Most existing works endeavor to learn domain invariant representation usually by minimizing a distribution distance, e.g., MMD and the discriminator in the recently proposed generative adversarial network (GAN). Following the similar idea of GAN, this work proposes a novel GAN architecture with duplex adversarial discriminators (referred to as DupGAN), which can achieve domain-invariant representation and domain transformation. Specifically, our proposed network consists of three parts, an encoder, a generator and two discriminators. The encoder embeds samples from both domains into the latent representation, and the generator decodes the latent representation to both source and target domains respectively conditioned on a domain code, i.e., achieves domain transformation. The generator is pitted against duplex discriminators, one for source domain and the other for target, to ensure the reality of domain transformation, the latent representation domain invariant and the category information of it preserved as well. Our proposed work achieves the state-of-the-art performance on unsupervised domain adaptation of digit classification and object recognition.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"32 1","pages":"1498-1507"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78544129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Identifying small size images or small objects is a notoriously challenging problem, as discriminative representations are difficult to learn from the limited information contained in them with poor-quality appearance and unclear object structure. Existing research works usually increase the resolution of low-resolution image in the pixel space in order to provide better visual quality for human viewing. However, the improved performance of such methods is usually limited or even trivial in the case of very small image size (we will show it in this paper explicitly). In this paper, different from image super-resolution (ISR), we propose a novel super-resolution technique called feature super-resolution (FSR), which aims at enhancing the discriminatory power of small size image in order to provide high recognition precision for machine. To achieve this goal, we propose a new Feature Super-Resolution Generative Adversarial Network (FSR-GAN) model that transforms the raw poor features of small size images to highly discriminative ones by performing super-resolution in the feature space. Our FSR-GAN consists of two subnetworks: a feature generator network G and a feature discriminator network D. By training the G and the D networks in an alternative manner, we encourage the G network to discover the latent distribution correlations between small size and large size images and then use G to improve the representations of small images. Extensive experiment results on Oxford5K, Paris, Holidays, and Flick100k datasets demonstrate that the proposed FSR approach can effectively enhance the discriminatory ability of features. Even when the resolution of query images is reduced greatly, e.g., 1/64 original size, the query feature enhanced by our FSR approach achieves surprisingly high retrieval performance at different image resolutions and increases the retrieval precision by 25% compared to the raw query feature.
{"title":"Feature Super-Resolution: Make Machine See More Clearly","authors":"Weimin Tan, Bo Yan, Bahetiyaer Bare","doi":"10.1109/CVPR.2018.00420","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00420","url":null,"abstract":"Identifying small size images or small objects is a notoriously challenging problem, as discriminative representations are difficult to learn from the limited information contained in them with poor-quality appearance and unclear object structure. Existing research works usually increase the resolution of low-resolution image in the pixel space in order to provide better visual quality for human viewing. However, the improved performance of such methods is usually limited or even trivial in the case of very small image size (we will show it in this paper explicitly). In this paper, different from image super-resolution (ISR), we propose a novel super-resolution technique called feature super-resolution (FSR), which aims at enhancing the discriminatory power of small size image in order to provide high recognition precision for machine. To achieve this goal, we propose a new Feature Super-Resolution Generative Adversarial Network (FSR-GAN) model that transforms the raw poor features of small size images to highly discriminative ones by performing super-resolution in the feature space. Our FSR-GAN consists of two subnetworks: a feature generator network G and a feature discriminator network D. By training the G and the D networks in an alternative manner, we encourage the G network to discover the latent distribution correlations between small size and large size images and then use G to improve the representations of small images. Extensive experiment results on Oxford5K, Paris, Holidays, and Flick100k datasets demonstrate that the proposed FSR approach can effectively enhance the discriminatory ability of features. Even when the resolution of query images is reduced greatly, e.g., 1/64 original size, the query feature enhanced by our FSR approach achieves surprisingly high retrieval performance at different image resolutions and increases the retrieval precision by 25% compared to the raw query feature.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"143 1","pages":"3994-4002"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78680638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, Kuiyuan Yang
Semantic image segmentation is a basic street scene understanding task in autonomous driving, where each pixel in a high resolution image is categorized into a set of semantic labels. Unlike other scenarios, objects in autonomous driving scene exhibit very large scale changes, which poses great challenges for high-level feature representation in a sense that multi-scale information must be correctly encoded. To remedy this problem, atrous convolution[14]was introduced to generate features with larger receptive fields without sacrificing spatial resolution. Built upon atrous convolution, Atrous Spatial Pyramid Pooling (ASPP)[2] was proposed to concatenate multiple atrous-convolved features using different dilation rates into a final feature representation. Although ASPP is able to generate multi-scale features, we argue the feature resolution in the scale-axis is not dense enough for the autonomous driving scenario. To this end, we propose Densely connected Atrous Spatial Pyramid Pooling (DenseASPP), which connects a set of atrous convolutional layers in a dense way, such that it generates multi-scale features that not only cover a larger scale range, but also cover that scale range densely, without significantly increasing the model size. We evaluate DenseASPP on the street scene benchmark Cityscapes[4] and achieve state-of-the-art performance.
{"title":"DenseASPP for Semantic Segmentation in Street Scenes","authors":"Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, Kuiyuan Yang","doi":"10.1109/CVPR.2018.00388","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00388","url":null,"abstract":"Semantic image segmentation is a basic street scene understanding task in autonomous driving, where each pixel in a high resolution image is categorized into a set of semantic labels. Unlike other scenarios, objects in autonomous driving scene exhibit very large scale changes, which poses great challenges for high-level feature representation in a sense that multi-scale information must be correctly encoded. To remedy this problem, atrous convolution[14]was introduced to generate features with larger receptive fields without sacrificing spatial resolution. Built upon atrous convolution, Atrous Spatial Pyramid Pooling (ASPP)[2] was proposed to concatenate multiple atrous-convolved features using different dilation rates into a final feature representation. Although ASPP is able to generate multi-scale features, we argue the feature resolution in the scale-axis is not dense enough for the autonomous driving scenario. To this end, we propose Densely connected Atrous Spatial Pyramid Pooling (DenseASPP), which connects a set of atrous convolutional layers in a dense way, such that it generates multi-scale features that not only cover a larger scale range, but also cover that scale range densely, without significantly increasing the model size. We evaluate DenseASPP on the street scene benchmark Cityscapes[4] and achieve state-of-the-art performance.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"12 1","pages":"3684-3692"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76684713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multi-layer light field displays are a type of computational three-dimensional (3D) display which has recently gained increasing interest for its holographic-like effect and natural compatibility with 2D displays. However, the major shortcoming, depth limitation, still cannot be overcome in the traditional light field modeling and reconstruction based on multi-layer liquid crystal displays (LCDs). Considering this disadvantage, our paper incorporates a salience guided depth optimization over a limited display range to calibrate the displayed depth and present the maximum area of salience region for multi-layer light field display. Different from previously reported cascaded light field displays that use the fixed initialization plane as the depth center of display content, our method automatically calibrates the depth initialization based on the salience results derived from the proposed contrast enhanced salience detection method. Experiments demonstrate that the proposed method provides a promising advantage in visual perception for the compressive light field displays from both software simulation and prototype demonstration.
{"title":"Salience Guided Depth Calibration for Perceptually Optimized Compressive Light Field 3D Display","authors":"Shizheng Wang, Wenjuan Liao, P. Surman, Zhigang Tu, Yuanjin Zheng, Junsong Yuan","doi":"10.1109/CVPR.2018.00217","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00217","url":null,"abstract":"Multi-layer light field displays are a type of computational three-dimensional (3D) display which has recently gained increasing interest for its holographic-like effect and natural compatibility with 2D displays. However, the major shortcoming, depth limitation, still cannot be overcome in the traditional light field modeling and reconstruction based on multi-layer liquid crystal displays (LCDs). Considering this disadvantage, our paper incorporates a salience guided depth optimization over a limited display range to calibrate the displayed depth and present the maximum area of salience region for multi-layer light field display. Different from previously reported cascaded light field displays that use the fixed initialization plane as the depth center of display content, our method automatically calibrates the depth initialization based on the salience results derived from the proposed contrast enhanced salience detection method. Experiments demonstrate that the proposed method provides a promising advantage in visual perception for the compressive light field displays from both software simulation and prototype demonstration.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"62 1","pages":"2031-2040"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77902099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingchao Chen, Yang Liu, Zhaowen Wang, I. Wassell, K. Chetty
Unsupervised Domain Adaptation (UDA) aims to transfer domain knowledge from existing well-defined tasks to new ones where labels are unavailable. In the real-world applications, as the domain (task) discrepancies are usually uncontrollable, it is significantly motivated to match the feature distributions even if the domain discrepancies are disparate. Additionally, as no label is available in the target domain, how to successfully adapt the classifier from the source to the target domain still remains an open question. In this paper, we propose the Re-weighted Adversarial Adaptation Network (RAAN) to reduce the feature distribution divergence and adapt the classifier when domain discrepancies are disparate. Specifically, to alleviate the need of common supports in matching the feature distribution, we choose to minimize optimal transport (OT) based Earth-Mover (EM) distance and reformulate it to a minimax objective function. Utilizing this, RAAN can be trained in an end-to-end and adversarial manner. To further adapt the classifier, we propose to match the label distribution and embed it into the adversarial training. Finally, after extensive evaluation of our method using UDA datasets of varying difficulty, RAAN achieved the state-of-the-art results and outperformed other methods by a large margin when the domain shifts are disparate.
{"title":"Re-weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation","authors":"Qingchao Chen, Yang Liu, Zhaowen Wang, I. Wassell, K. Chetty","doi":"10.1109/CVPR.2018.00832","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00832","url":null,"abstract":"Unsupervised Domain Adaptation (UDA) aims to transfer domain knowledge from existing well-defined tasks to new ones where labels are unavailable. In the real-world applications, as the domain (task) discrepancies are usually uncontrollable, it is significantly motivated to match the feature distributions even if the domain discrepancies are disparate. Additionally, as no label is available in the target domain, how to successfully adapt the classifier from the source to the target domain still remains an open question. In this paper, we propose the Re-weighted Adversarial Adaptation Network (RAAN) to reduce the feature distribution divergence and adapt the classifier when domain discrepancies are disparate. Specifically, to alleviate the need of common supports in matching the feature distribution, we choose to minimize optimal transport (OT) based Earth-Mover (EM) distance and reformulate it to a minimax objective function. Utilizing this, RAAN can be trained in an end-to-end and adversarial manner. To further adapt the classifier, we propose to match the label distribution and embed it into the adversarial training. Finally, after extensive evaluation of our method using UDA datasets of varying difficulty, RAAN achieved the state-of-the-art results and outperformed other methods by a large margin when the domain shifts are disparate.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"41 1","pages":"7976-7985"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78125182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Loc Huynh, Weikai Chen, Shunsuke Saito, Jun Xing, Koki Nagano, Andrew Jones, P. Debevec, Hao Li
We present a learning-based approach for synthesizing facial geometry at medium and fine scales from diffusely-lit facial texture maps. When applied to an image sequence, the synthesized detail is temporally coherent. Unlike current state-of-the-art methods [17, 5], which assume "dark is deep", our model is trained with measured facial detail collected using polarized gradient illumination in a Light Stage [20]. This enables us to produce plausible facial detail across the entire face, including where previous approaches may incorrectly interpret dark features as concavities such as at moles, hair stubble, and occluded pores. Instead of directly inferring 3D geometry, we propose to encode fine details in high-resolution displacement maps which are learned through a hybrid network adopting the state-of-the-art image-to-image translation network [29] and super resolution network [43]. To effectively capture geometric detail at both mid- and high frequencies, we factorize the learning into two separate sub-networks, enabling the full range of facial detail to be modeled. Results from our learning-based approach compare favorably with a high-quality active facial scanhening technique, and require only a single passive lighting condition without a complex scanning setup.
{"title":"Mesoscopic Facial Geometry Inference Using Deep Neural Networks","authors":"Loc Huynh, Weikai Chen, Shunsuke Saito, Jun Xing, Koki Nagano, Andrew Jones, P. Debevec, Hao Li","doi":"10.1109/CVPR.2018.00877","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00877","url":null,"abstract":"We present a learning-based approach for synthesizing facial geometry at medium and fine scales from diffusely-lit facial texture maps. When applied to an image sequence, the synthesized detail is temporally coherent. Unlike current state-of-the-art methods [17, 5], which assume \"dark is deep\", our model is trained with measured facial detail collected using polarized gradient illumination in a Light Stage [20]. This enables us to produce plausible facial detail across the entire face, including where previous approaches may incorrectly interpret dark features as concavities such as at moles, hair stubble, and occluded pores. Instead of directly inferring 3D geometry, we propose to encode fine details in high-resolution displacement maps which are learned through a hybrid network adopting the state-of-the-art image-to-image translation network [29] and super resolution network [43]. To effectively capture geometric detail at both mid- and high frequencies, we factorize the learning into two separate sub-networks, enabling the full range of facial detail to be modeled. Results from our learning-based approach compare favorably with a high-quality active facial scanhening technique, and require only a single passive lighting condition without a complex scanning setup.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"52 1","pages":"8407-8416"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76900806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Volumetric grid is widely used for 3D deep learning due to its regularity. However the use of relatively lower order local approximation functions such as piece-wise constant function (occupancy grid) or piece-wise linear function (distance field) to approximate 3D shape means that it needs a very high-resolution grid to represent finer geometry details, which could be memory and computationally inefficient. In this work, we propose the PointGrid, a 3D convolutional network that incorporates a constant number of points within each grid cell thus allowing the network to learn higher order local approximation functions that could better represent the local geometry shape details. With experiments on popular shape recognition benchmarks, PointGrid demonstrates state-of-the-art performance over existing deep learning methods on both classification and segmentation.
{"title":"PointGrid: A Deep Network for 3D Shape Understanding","authors":"Truc Le, Y. Duan","doi":"10.1109/CVPR.2018.00959","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00959","url":null,"abstract":"Volumetric grid is widely used for 3D deep learning due to its regularity. However the use of relatively lower order local approximation functions such as piece-wise constant function (occupancy grid) or piece-wise linear function (distance field) to approximate 3D shape means that it needs a very high-resolution grid to represent finer geometry details, which could be memory and computationally inefficient. In this work, we propose the PointGrid, a 3D convolutional network that incorporates a constant number of points within each grid cell thus allowing the network to learn higher order local approximation functions that could better represent the local geometry shape details. With experiments on popular shape recognition benchmarks, PointGrid demonstrates state-of-the-art performance over existing deep learning methods on both classification and segmentation.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"96 1","pages":"9204-9214"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74373639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Zhao, Yu Cheng, Yan Xu, Lin Xiong, Jianshu Li, F. Zhao, J. Karlekar, Sugiri Pranata, Shengmei Shen, Junliang Xing, Shuicheng Yan, Jiashi Feng
Pose variation is one key challenge in face recognition. As opposed to current techniques for pose invariant face recognition, which either directly extract pose invariant features for recognition, or first normalize profile face images to frontal pose before feature extraction, we argue that it is more desirable to perform both tasks jointly to allow them to benefit from each other. To this end, we propose a Pose Invariant Model (PIM) for face recognition in the wild, with three distinct novelties. First, PIM is a novel and unified deep architecture, containing a Face Frontalization sub-Net (FFN) and a Discriminative Learning sub-Net (DLN), which are jointly learned from end to end. Second, FFN is a well-designed dual-path Generative Adversarial Network (GAN) which simultaneously perceives global structures and local details, incorporated with an unsupervised cross-domain adversarial training and a "learning to learn" strategy for high-fidelity and identity-preserving frontal view synthesis. Third, DLN is a generic Convolutional Neural Network (CNN) for face recognition with our enforced cross-entropy optimization strategy for learning discriminative yet generalized feature representation. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks demonstrate the superiority of the proposed model over the state-of-the-arts.
{"title":"Towards Pose Invariant Face Recognition in the Wild","authors":"Jian Zhao, Yu Cheng, Yan Xu, Lin Xiong, Jianshu Li, F. Zhao, J. Karlekar, Sugiri Pranata, Shengmei Shen, Junliang Xing, Shuicheng Yan, Jiashi Feng","doi":"10.1109/CVPR.2018.00235","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00235","url":null,"abstract":"Pose variation is one key challenge in face recognition. As opposed to current techniques for pose invariant face recognition, which either directly extract pose invariant features for recognition, or first normalize profile face images to frontal pose before feature extraction, we argue that it is more desirable to perform both tasks jointly to allow them to benefit from each other. To this end, we propose a Pose Invariant Model (PIM) for face recognition in the wild, with three distinct novelties. First, PIM is a novel and unified deep architecture, containing a Face Frontalization sub-Net (FFN) and a Discriminative Learning sub-Net (DLN), which are jointly learned from end to end. Second, FFN is a well-designed dual-path Generative Adversarial Network (GAN) which simultaneously perceives global structures and local details, incorporated with an unsupervised cross-domain adversarial training and a \"learning to learn\" strategy for high-fidelity and identity-preserving frontal view synthesis. Third, DLN is a generic Convolutional Neural Network (CNN) for face recognition with our enforced cross-entropy optimization strategy for learning discriminative yet generalized feature representation. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks demonstrate the superiority of the proposed model over the state-of-the-arts.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"27 1","pages":"2207-2216"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75221520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To estimate the 6-DoF extrinsic pose of a pinhole camera with partially unknown intrinsic parameters is a critical sub-problem in structure-from-motion and camera localization. In most of existing camera pose estimation solvers, the principal point is assumed to be in the image center. Unfortunately, this assumption is not always true, especially for asymmetrically cropped images. In this paper, we develop the first exactly minimal solver for the case of unknown principal point and focal length by using four and a half point correspondences (P4.5Pfuv). We also present an extremely fast solver for the case of unknown aspect ratio (P5Pfuva). The new solvers outperform the previous state-of-the-art in terms of stability and speed. Finally, we explore the extremely challenging case of both unknown principal point and radial distortion, and develop the first practical non-minimal solver by using seven point correspondences (P7Pfruv). Experimental results on both simulated data and real Internet images demonstrate the usefulness of our new solvers.
{"title":"Camera Pose Estimation with Unknown Principal Point","authors":"Viktor Larsson, Z. Kukelova, Yinqiang Zheng","doi":"10.1109/CVPR.2018.00315","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00315","url":null,"abstract":"To estimate the 6-DoF extrinsic pose of a pinhole camera with partially unknown intrinsic parameters is a critical sub-problem in structure-from-motion and camera localization. In most of existing camera pose estimation solvers, the principal point is assumed to be in the image center. Unfortunately, this assumption is not always true, especially for asymmetrically cropped images. In this paper, we develop the first exactly minimal solver for the case of unknown principal point and focal length by using four and a half point correspondences (P4.5Pfuv). We also present an extremely fast solver for the case of unknown aspect ratio (P5Pfuva). The new solvers outperform the previous state-of-the-art in terms of stability and speed. Finally, we explore the extremely challenging case of both unknown principal point and radial distortion, and develop the first practical non-minimal solver by using seven point correspondences (P7Pfruv). Experimental results on both simulated data and real Internet images demonstrate the usefulness of our new solvers.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"26 1","pages":"2984-2992"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74223184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We achieve tomography of 3D volumetric natural objects, where each projected 2D image corresponds to a different specimen. Each specimen has unknown random 3D orientation, location, and scale. This imaging scenario is relevant to microscopic and mesoscopic organisms, aerosols and hydrosols viewed naturally by a microscope. In-class scale variation inhibits prior single-particle reconstruction methods. We thus generalize tomographic recovery to account for all degrees of freedom of a similarity transformation. This enables geometric self-calibration in imaging of transparent objects. We make the computational load manageable and reach good quality reconstruction in a short time. This enables extraction of statistics that are important for a scientific study of specimen populations, specifically size distribution parameters. We apply the method to study of plankton.
{"title":"Statistical Tomography of Microscopic Life","authors":"Aviad Levis, Y. Schechner, R. Talmon","doi":"10.1109/CVPR.2018.00671","DOIUrl":"https://doi.org/10.1109/CVPR.2018.00671","url":null,"abstract":"We achieve tomography of 3D volumetric natural objects, where each projected 2D image corresponds to a different specimen. Each specimen has unknown random 3D orientation, location, and scale. This imaging scenario is relevant to microscopic and mesoscopic organisms, aerosols and hydrosols viewed naturally by a microscope. In-class scale variation inhibits prior single-particle reconstruction methods. We thus generalize tomographic recovery to account for all degrees of freedom of a similarity transformation. This enables geometric self-calibration in imaging of transparent objects. We make the computational load manageable and reach good quality reconstruction in a short time. This enables extraction of statistics that are important for a scientific study of specimen populations, specifically size distribution parameters. We apply the method to study of plankton.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"86 1","pages":"6411-6420"},"PeriodicalIF":0.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74607350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}