Correction for ‘Piezoelectric PVDF and its copolymers in biomedicine: innovations and applications’ by Vodyashkin Andrey et al., Biomater. Sci., 2024, 12, 5164–5185, https://doi.org/10.1039/d4bm00904e.
Correction for ‘Piezoelectric PVDF and its copolymers in biomedicine: innovations and applications’ by Vodyashkin Andrey et al., Biomater. Sci., 2024, 12, 5164–5185, https://doi.org/10.1039/d4bm00904e.
Various factors can contribute to bone damage or loss, presenting challenges for bone regeneration. Our study explores the potential clinical applications of two processed forms of Wharton's jelly of the human umbilical cord for treating bone loss. Wharton's jelly from fresh umbilical cords underwent two distinct processes: (1) frozen Wharton's jelly (WJF), preserved with cryoprotective agents, and (2) decellularized Wharton's jelly matrix (WJD), prepared only via lyophilization without cryoprotectants. Both WJD and WJF are rich in collagen, hyaluronan, and polysaccharide proteins. Notably, WJD exhibited a porous structure lacking nuclei from human umbilical cord mesenchymal stem cells, unlike WJF. In direct contact experiments, WJD stimulated osteoblast migration, enhanced osteoblast maturation, and promoted calcium deposition for bone formation when administered to cultured rat osteoblasts. Furthermore, in transwell co-culture experiments, both WJD and WJF increased the rat osteoblast expression of RUNX2 and OPN genes, elevated alkaline phosphatase levels, and enhanced extracellular calcium precipitation, indicating their role in osteoblast maturation and new bone formation. Hyaluronic acid, one of the ingredients from WJD and WJF, was identified as a key component triggering osteogenesis. In vivo experiments involved creating circular bone defects in the calvarias of rats, where WJD and WJF were separately implanted and monitored over five months using micro-computerized tomography. Our results demonstrated that both WJD and WJF enhanced angiogenesis, collagen formation, osteoblast maturation, and bone growth within the bone defects. In summary, WJD and WJF, natural biomaterials with biocompatibility and nontoxicity, act not only as effective scaffolds but also promote osteoblast adhesion and differentiation, and accelerate osteogenesis.
Acute wounds result from damage to the skin barrier, exposing underlying tissues and increasing susceptibility to bacterial and other pathogen infections. Improper wound care increases the risk of exposure and infection, often leading to chronic nonhealing wounds, which cause significant patient suffering. Early wound repair can effectively prevent the development of chronic nonhealing wounds. In this study, Ca-Gallic Acid (CaGA) nanozymes with multienzyme catalytic activity were constructed for treating acute wounds by coordinating Ca ions with gallic acid. CaGA nanozymes exhibit high superoxide dismutase/catalase (SOD/CAT) catalytic activity and good antioxidant performance in vitro. In vitro experiments demonstrated that CaGA nanozymes can effectively promote cell migration, efficiently scavenge ROS, maintain mitochondrial homeostasis, reduce inflammation, and decrease cell apoptosis. In vivo, CaGA nanozymes promoted granulation tissue formation, accelerated collagen fiber deposition, and reconstructed skin appendages, thereby accelerating acute wound healing. CaGA nanozymes have potential clinical application value in wound healing treatment.
Treating sunburn and other UV-induced skin damage issues remains a significant challenge in the field of dermatology. In this study, we synthesized a highly bioactive recombinant type III collagen (rCol III) to accelerate the healing of UV-damaged skin. The high-purity rCol III demonstrated excellent biocompatibility and bioactivity, significantly promoting the adhesion, proliferation, and migration of HFF-1 cells. In a mouse UV-damage model, Combo evaluations demonstrated that rCol III contributed to restore transepidermal water loss (TEWL) values of UV-damaged skin to normal levels. Histological analysis further confirmed that rCol III substantially accelerated skin repair by enhancing collagen regeneration. Additionally, rCol III facilitated the regeneration of zebrafish tail fin tissue and alleviated shrinkage caused by excessive UV exposure. The biocompatible and bioactive rCol III offers a novel strategy for treating UV-induced skin damage, holding immense potential for applications in skin tissue engineering.
Retraction of ‘Development of EGFR-targeted evodiamine nanoparticles for the treatment of colorectal cancer’ by Chunpu Li et al., Biomater. Sci., 2019, 7, 3627–3639, https://doi.org/10.1039/C9BM00613C.
The myotendinous junction (MTJ) facilitates force transmission between muscle and tendon to produce joint movement. The complex microarchitecture and regional mechanical heterogeneity of the myotendinous junction pose major challenges in creating this interface in vitro. Engineering this junction in vitro is challenging due to substantial fabrication difficulties in creating scaffolds with intricate microarchitecture and stiffness heterogeneity to mimic the native muscle–tendon interface. To address the current challenges in creating the MTJ in vitro, digital light processing (DLP)-based 3D printing was used to fabricate poly(glycerol sebacate)acrylate (PGSA)-based muscle–tendon scaffolds with physiologically informed microstructure and mechanical properties. Local mechanical properties in various regions of the scaffold were tuned by adjusting the exposure time and light intensity used during the continuous DLP-based 3D printing process to match the mechanical properties present in distinct regions of native muscle–tendon tissue using printing parameters defined by an artificial intelligence-trained algorithm. To evaluate how the presence of zonal stiffness regions can affect the phenotype of a 3D-printed MTJ in vitro model, three 3D-printed PGSA-based scaffold conditions were investigated: (1) a scaffold with muscle-informed mechanical properties in its entirety without zonal stiffness regions, (2) a scaffold with one end possessing native muscle stiffness and the other end possessing native tendon stiffness, and (3) a scaffold with three distinct regions whose stiffness values correspond to those of muscle on one end of the scaffold, MTJ in the middle junction of the scaffold, and tendon on the other end of the scaffold. The scaffold containing regional mechanical heterogeneity most similar to the native MTJ (condition 3) was found to enhance the expression of MTJ-related markers compared to those without the presence of zonal stiffness regions. Overall, the DLP-based 3D printing platform and biomaterial system developed in this study could serve as a useful tool for mimicking the complexity of the native MTJ, which possesses inherent geometric and mechanical heterogeneity.
Contemporary wound dressings lack antibacterial properties, exhibit a low water vapour transmission rate, and demonstrate inadequate porosity. In order to overcome these limitations, scientists have employed water hyacinth to produce carboxymethyl cellulose (CMC). CMC/PVP nanocomposite films containing biogenic zinc oxide nanoparticles (nZnOs) were synthesised using cost effective solution-casting technique. As the proportion of nZnOs in the film increased, swelling and water permeability decreased, whereas mechanical stability improved. Dynamic light scattering testing and transmission electron microscopy confirmed that the particle size was around 50.7 nm. Field emission scanning electron microscopy (FESEM) images showed that nZnOs were distributed uniformly in the polymer matrix. Cell viability against Vero cells was greater than 94%, and a substantial zone of inhibition against S. aureus and E. coli bacteria was observed. Wounds of albino mice were treated with CMC/PVP and CMC/PVP/nZnO (6%) nanocomposite hydrogels and healed in 20 and 12 days, respectively, as demonstrated by wound healing assay and histological staining. In vitro and in vivo studies revealed that the novel nanocomposite hydrogels exhibit improved cell viability and wound healing features. Therefore, they could be exploited as promising skin wound dressing materials.
Existing strategies to investigate the antitumor effects of artemisinin and its derivatives (ART) are inadequate. Both free Fe(II) and heme in mitochondria have been proposed to be ART activators. However, the two impact factors have been considered separately or have not been thoroughly investigated. Here, the designed ART-based novel nanosystem with transferrin-modified hollow mesoporous silica nanoparticles as drug-delivery carriers is loaded with a functional artemisinin derivative (Cou-DHA), glucose oxidase, and perfluoropentane inside the cavity, which can enhance synergistic Fe(II)-ART-mediated chemodynamic therapy (CDT). Under the action of H2O2 generated by starvation therapy, the Fenton reaction occurs with Fe(III) in transferrin converted into free Fe(II). Remarkably, this report is the first to provide Fe(II) to ART actively and efficiently by combining starvation therapy and Fenton reaction-based CDT. Importantly, mitochondria-targeted Cou-DHA delivers ART into the mitochondria to sensitize the anticancer effects of ART with the supplied Fe(II) to realize Fe(II)-ART-mediated CDT. The ART-based novel nanosystem developed in our work thus has great potential for exploitation in advanced cancer therapies.
Titanium nanotubular surfaces have been extensively studied for their potential use in biomedical implants due to their ability to promote relevant phenomena associated with osseointegration, among other functions. However, despite the large body of literature on the subject, potential synergistic/antagonistic effects resulting from the combined influence of environmental variables and nanotopographical cues remain poorly investigated. Specifically, it is still unclear whether the nanotube-induced variations in cellular activity are preserved across different biochemical contexts. To bridge this gap, this study systematically evaluates the combined influence of nanotopographical cues and environmental factors on human MG63 osteoblastic cells. To this end, we capitalized on a triphasic anodization protocol to create nanostructured surfaces characterized by an average nanotube inner diameter of 25 nm (NT1) and 82 nm (NT2), as well as a two-tiered honeycomb (HC) architecture. A variable glucose content was chosen as the environmental modifier due to its well-known ability to affect specific functions of MG63 cells. Alkaline phosphatase (ALP), viability/metabolic activity and proliferation were quantified to identify the suitable preconditioning window required for dictating a change in behaviour without significantly damaging cells. Successively, a combination of immunofluorescence, colorimetric assays, live cell imaging and western blots quantified viability/metabolic activity and cell proliferation, migration and differentiation as a function of the combined effects exerted by the nanostructured substrates and the glucose content. To achieve a thorough understanding of MG63 cell adaptation and response, a comparative analysis table that includes and systematically cross-analyzes all variables from this study was used for interpretation and discussion of the results. Taken together, we have demonstrated that all surfaces mitigate the negative effects of high glucose. However, nanotubular topographies, particularly NT2, elicit a more beneficial outcome in high glucose in respect to untreated titanium. In addition, while NT1 surfaces are associated with the most stable cellular response across varying glucose levels, the NT2 and HC substrates exhibit the strongest enhancement of cell migration, viability/metabolism and differentiation. Moreover, shorter-term processes such as adhesion and proliferation are favored on untreated titanium, while anodized samples support later-term events. Lastly, the role of anodized surfaces is dominant over the effects of environmental glucose, underscoring the importance of carefully considering nanoscale surface features in the design and development of cell-instructive titanium surfaces.
Articular cartilage (AC) is a highly specialized tissue with restricted ability for self-regeneration, given its avascular and acellular nature. Although a considerable number of surgical treatments is available for the repair, reconstruction, and regeneration of AC defects, most of them do not prioritize the development of engineered cartilage with zonal stratification derived from biomimetic biochemical, biomechanical and topographic cues. In the absence of these zonal elements, engineered cartilage will exhibit increased susceptibility to failure and will neither be able to withstand the mechanical loading to which AC is subjected nor will it integrate well with the surrounding tissue. In this regard, new breakthroughs in the development of hierarchical stratified engineered cartilage are highly sought after. Initially, this review provides a comprehensive analysis of the composition and zonal organization of AC, aiming to enhance our understanding of the significance of the structure of AC for its function. Next, we direct our attention towards the existing in vitro and in vivo studies that introduce zonal elements in engineered cartilage to elicit appropriate AC regeneration by employing tissue engineering strategies. Finally, the advantages, challenges, and future perspectives of these approaches are presented.