首页 > 最新文献

Biomaterials Science最新文献

英文 中文
Development of ZmT-PEG hydrogels through Michael addition reaction and protein self-assembly for 3D cell culture 通过迈克尔加成反应和蛋白质自组装技术开发用于三维细胞培养的 ZmT-PEG 水凝胶。
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-09 DOI: 10.1039/D4BM00643G
Yunhui Fu, Yiwen Zhou, Yiying Chen, Zhedan Zhang, Chen Zhang, Changping Deng, Xikui Tong, Wenyun Zheng, Meiyan Wang and Xingyuan Ma

Bioactive protein-derived hydrogels are highly attractive three-dimensional (3D) platforms for in vitro cell culture. However, most protein and polypeptide hydrogels are extracted from animal tissues or chemically synthesized, with many drawbacks. Herein, we fabricated an optically transparent ZmT-PEG hydrogel via a facile one-pot strategy. The modified Z1Z2 (Zm) was obtained by introducing cysteine at the C-terminus of Z1Z2 (ZC) and inserting the RGD sequence into the low conserved (CD) loop (ZR). A Michael addition reaction occurred between Zm and 4-arm PEG-MAL, and Zm-PEG self-assembled with truncated Telethonin (Tm) to form the hydrogel. We expressed the Zm and Tm proteins in Escherichia coli. CD spectroscopy showed that genetic modification and the reaction with 4-arm PEG-MAL had no effect on the secondary structure of the Zm protein. When Zm was at 10 wt% and the ratio of Zm : 4-arm PEG-MAL : Tm was 2 : 1 : 1, the gelation time was 6–8 hours. SEM results revealed that the hydrogels had an interconnected porous structure with pore diameters of 20–150 μm. Cell experiments showed that MCF-7 cells could grow and proliferate significantly on the hydrogel after 7 days of culture. Immunofluorescence results suggested that MCF-7 cells on the ZmT hydrogel had a spherical structure similar to that on Matrigel. These results indicate that the ZmT-PEG hydrogel can be used for cell culture in vitro and is promising for large-scale production.

生物活性蛋白质衍生水凝胶是极具吸引力的体外细胞培养三维(3D)平台。然而,大多数蛋白质和多肽水凝胶都是从动物组织中提取或化学合成的,存在许多缺点。在此,我们通过简单的一锅法制备了一种光学透明的 ZmT-PEG 水凝胶。通过在 Z1Z2(ZC)的 C 端引入半胱氨酸,并在低保守环(CD)(ZR)中插入 RGD 序列,得到了修饰的 Z1Z2(Zm)。Zm 与四臂 PEG-MAL 发生迈克尔加成反应,Zm-PEG 与截短的 Telethonin(Tm)自组装形成水凝胶。我们在大肠杆菌中表达了 Zm 和 Tm 蛋白。CD 光谱显示,基因修饰和与 4-arm PEG-MAL 的反应对 Zm 蛋白的二级结构没有影响。当 Zm 为 10 wt%,Zm :4-arm PEG-MAL :Tm 的比例为 2 :1 :1 时,凝胶时间为 6-8 小时。扫描电镜结果显示,水凝胶具有相互连接的多孔结构,孔径为 20-150 μm。细胞实验表明,MCF-7 细胞在水凝胶上培养 7 天后可明显生长和增殖。免疫荧光结果表明,ZmT 水凝胶上的 MCF-7 细胞具有类似于 Matrigel 上的球形结构。这些结果表明,ZmT-PEG 水凝胶可用于体外细胞培养,并有望大规模生产。
{"title":"Development of ZmT-PEG hydrogels through Michael addition reaction and protein self-assembly for 3D cell culture","authors":"Yunhui Fu, Yiwen Zhou, Yiying Chen, Zhedan Zhang, Chen Zhang, Changping Deng, Xikui Tong, Wenyun Zheng, Meiyan Wang and Xingyuan Ma","doi":"10.1039/D4BM00643G","DOIUrl":"10.1039/D4BM00643G","url":null,"abstract":"<p >Bioactive protein-derived hydrogels are highly attractive three-dimensional (3D) platforms for <em>in vitro</em> cell culture. However, most protein and polypeptide hydrogels are extracted from animal tissues or chemically synthesized, with many drawbacks. Herein, we fabricated an optically transparent ZmT-PEG hydrogel <em>via</em> a facile one-pot strategy. The modified Z1Z2 (Zm) was obtained by introducing cysteine at the C-terminus of Z1Z2 (ZC) and inserting the RGD sequence into the low conserved (CD) loop (ZR). A Michael addition reaction occurred between Zm and 4-arm PEG-MAL, and Zm-PEG self-assembled with truncated Telethonin (Tm) to form the hydrogel. We expressed the Zm and Tm proteins in <em>Escherichia coli</em>. CD spectroscopy showed that genetic modification and the reaction with 4-arm PEG-MAL had no effect on the secondary structure of the Zm protein. When Zm was at 10 wt% and the ratio of Zm : 4-arm PEG-MAL : Tm was 2 : 1 : 1, the gelation time was 6–8 hours. SEM results revealed that the hydrogels had an interconnected porous structure with pore diameters of 20–150 μm. Cell experiments showed that MCF-7 cells could grow and proliferate significantly on the hydrogel after 7 days of culture. Immunofluorescence results suggested that MCF-7 cells on the ZmT hydrogel had a spherical structure similar to that on Matrigel. These results indicate that the ZmT-PEG hydrogel can be used for cell culture <em>in vitro</em> and is promising for large-scale production.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 22","pages":" 5803-5811"},"PeriodicalIF":5.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive additives from the dorsal dermis of mice for enhanced vascularization in 3D bioprinting† 从小鼠背真皮中提取生物活性添加剂,用于增强三维生物打印中的血管形成。
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-08 DOI: 10.1039/D4BM00957F
Yu Feng, Linhao Hou, Chao Zhang, Liting Liang, Qinghua Liu, Zhao Li, Wei Song, Yi Kong, Yaxin Tan, Yuyan Huang, Xu Guo, Mengde Zhang, Yuzhen Wang, Jinpeng Du and Sha Huang

Effective angiogenesis is essential for creating complex vascular networks in tissue engineering; however, there is a scarcity of safe and potent pro-angiogenic factors. Although a decellularized extracellular matrix (dECM) offers excellent biocompatibility and is widely used in tissue engineering as a pro-angiogenic additive, its conventional extraction technique resulting in significant loss of bioactivity limits clinical potential. The dorsal dermal tissue has rich blood perfusion and its dECM is rich in angiogenic factors. In this study, the dECM components from the dorsal dermis of mice (DD) were produced to enhance in vitro and in vivo pro-angiogenic abilities using a novel physical method. Morphological studies showed no significant difference between DD-wild-type (DD-wt) and DD-wild-type-newborn (DD-wtn), and there was also no difference in DNA or RNA concentration. In addition, DD-wtn outperformed DD-wt in maintaining the stemness of MSCs, promoting inflammatory response and facilitating endothelial cell differentiation. It is of greater significance to note that the dermal combined fibrous capsule thickness is greater in the DD-wt treated group than in the DD-wtn group. Furthermore, the number of blood vessels in the subcutaneously implanted scaffold with DD-wtn increased by 233%. Consequently, our current finding provides a promising strategy to produce a novel pro-angiogenic bioink additive for enhancing vascularization in 3D bioprinting.

有效的血管生成对于在组织工程中创建复杂的血管网络至关重要;然而,安全而有效的促血管生成因子却十分稀缺。虽然脱细胞细胞外基质(dECM)具有良好的生物相容性,并作为促血管生成添加剂广泛应用于组织工程中,但其传统的提取技术会导致生物活性的显著丧失,从而限制了其临床应用潜力。真皮背侧组织具有丰富的血液灌注,其 dECM 含有丰富的血管生成因子。本研究采用一种新型物理方法,从小鼠背真皮(DD)中提取 dECM 成分,以增强体外和体内促血管生成能力。形态学研究表明,野生型小鼠(DD-wt)和新生野生型小鼠(DD-wtn)之间无明显差异,DNA 或 RNA 浓度也无差异。此外,DD-wtn在维持间充质干细胞的干性、促进炎症反应和促进内皮细胞分化方面均优于DD-wt。更重要的是,DD-wt 处理组的真皮联合纤维囊厚度大于 DD-wtn 组。此外,皮下植入 DD-wtn 支架的血管数量增加了 233%。因此,我们目前的发现为生产新型促血管生成生物墨水添加剂以增强三维生物打印中的血管生成提供了一种前景广阔的策略。
{"title":"Bioactive additives from the dorsal dermis of mice for enhanced vascularization in 3D bioprinting†","authors":"Yu Feng, Linhao Hou, Chao Zhang, Liting Liang, Qinghua Liu, Zhao Li, Wei Song, Yi Kong, Yaxin Tan, Yuyan Huang, Xu Guo, Mengde Zhang, Yuzhen Wang, Jinpeng Du and Sha Huang","doi":"10.1039/D4BM00957F","DOIUrl":"10.1039/D4BM00957F","url":null,"abstract":"<p >Effective angiogenesis is essential for creating complex vascular networks in tissue engineering; however, there is a scarcity of safe and potent pro-angiogenic factors. Although a decellularized extracellular matrix (dECM) offers excellent biocompatibility and is widely used in tissue engineering as a pro-angiogenic additive, its conventional extraction technique resulting in significant loss of bioactivity limits clinical potential. The dorsal dermal tissue has rich blood perfusion and its dECM is rich in angiogenic factors. In this study, the dECM components from the dorsal dermis of mice (DD) were produced to enhance <em>in vitro</em> and <em>in vivo</em> pro-angiogenic abilities using a novel physical method. Morphological studies showed no significant difference between DD-wild-type (DD-wt) and DD-wild-type-newborn (DD-wtn), and there was also no difference in DNA or RNA concentration. In addition, DD-wtn outperformed DD-wt in maintaining the stemness of MSCs, promoting inflammatory response and facilitating endothelial cell differentiation. It is of greater significance to note that the dermal combined fibrous capsule thickness is greater in the DD-wt treated group than in the DD-wtn group. Furthermore, the number of blood vessels in the subcutaneously implanted scaffold with DD-wtn increased by 233%. Consequently, our current finding provides a promising strategy to produce a novel pro-angiogenic bioink additive for enhancing vascularization in 3D bioprinting.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 23","pages":" 6019-6032"},"PeriodicalIF":5.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermosensitive hydrogel doped with osteoconductive fillers for the treatment of periodontitis periapicalis chronica: from synthesis to clinical trial 掺入骨传导填料的热敏水凝胶用于治疗慢性根尖周炎:从合成到临床试验。
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-08 DOI: 10.1039/D4BM00927D
Monika Dobrzyńska-Mizera, Monika Knitter, Marta Kamińska, Daria Szymanowska, Anna Sobczyk-Guzenda, Sylwia Różańska, Jacek Różański, Michał Mikulski, Małgorzata Muzalewska, Marek Wyleżoł, Małgorzata Smuga-Kogut, Zofia Modrzejewska and Maria Laura Di Lorenzo

Herein, a chitosan-based thermosensitive hydrogel (CH) containing hydroxyapatite (HAp), poly(lactic acid) (PLDLLA) or their mixture is proposed as an innovative, biomimetic composition with antimicrobial and bone-forming properties for guided bone regeneration. The modified hydrogels were synthesized and characterized to verify their suitability for the treatment of periodontitis periapicalis chronica. Compared to the unmodified hydrogel, both CH_HAp and CH_PLDLLA revealed improved mechanical properties, as evidenced by rotational rheology. FTIR analysis proved that no chemical interplay existed between the components. All the tested samples displayed no cytotoxicity against osteoblast-like cell culture and confirmed antimicrobial features, both crucial from an application perspective. Radiation sterilization dosage was tailored for the tested samples to maintain sterility for a minimum of 8 weeks of storage and limit crosslinking of the samples. Finally, the hydrogel was used in a clinical trial to treat a patient with chronic inflammation of periapical tissues in teeth 26 and 27. The medical procedure proved the safety, nontoxicity, non-allergenicity, and, most importantly, bone-forming properties of the hydrogel formulation. The kinetics of new bone formation was analyzed in-depth using graphical cross-sections of anatomical structures obtained from pre- and post-operative CBCT scans.

本文提出了一种含有羟基磷灰石(HAp)、聚乳酸(PLDLLA)或它们的混合物的壳聚糖基热敏水凝胶(CH),作为一种创新的生物仿生成分,具有抗菌和骨形成特性,可用于引导骨再生。对改性水凝胶进行了合成和表征,以验证其是否适用于治疗慢性根尖周炎。与未改性的水凝胶相比,CH_HAp 和 CH_PLDLLA 都具有更好的机械性能,这一点可以从旋转流变学中得到证明。傅立叶变换红外光谱分析证明,各成分之间不存在化学相互作用。所有测试样品均未显示出对成骨细胞样细胞培养的细胞毒性,并证实了抗菌特性,这两点在应用中都至关重要。对测试样品的辐射灭菌剂量进行了调整,以在至少 8 周的储存期内保持无菌状态,并限制样品的交联。最后,该水凝胶被用于临床试验,治疗一名患有 26 和 27 号牙齿根尖周组织慢性炎症的患者。医疗过程证明了水凝胶配方的安全性、无毒性、无过敏性,最重要的是,它还具有骨形成特性。利用术前和术后 CBCT 扫描获得的解剖结构横截面图,对新骨形成的动力学进行了深入分析。
{"title":"Thermosensitive hydrogel doped with osteoconductive fillers for the treatment of periodontitis periapicalis chronica: from synthesis to clinical trial","authors":"Monika Dobrzyńska-Mizera, Monika Knitter, Marta Kamińska, Daria Szymanowska, Anna Sobczyk-Guzenda, Sylwia Różańska, Jacek Różański, Michał Mikulski, Małgorzata Muzalewska, Marek Wyleżoł, Małgorzata Smuga-Kogut, Zofia Modrzejewska and Maria Laura Di Lorenzo","doi":"10.1039/D4BM00927D","DOIUrl":"10.1039/D4BM00927D","url":null,"abstract":"<p >Herein, a chitosan-based thermosensitive hydrogel (CH) containing hydroxyapatite (HAp), poly(lactic acid) (PLDLLA) or their mixture is proposed as an innovative, biomimetic composition with antimicrobial and bone-forming properties for guided bone regeneration. The modified hydrogels were synthesized and characterized to verify their suitability for the treatment of <em>periodontitis periapicalis chronica</em>. Compared to the unmodified hydrogel, both CH_HAp and CH_PLDLLA revealed improved mechanical properties, as evidenced by rotational rheology. FTIR analysis proved that no chemical interplay existed between the components. All the tested samples displayed no cytotoxicity against osteoblast-like cell culture and confirmed antimicrobial features, both crucial from an application perspective. Radiation sterilization dosage was tailored for the tested samples to maintain sterility for a minimum of 8 weeks of storage and limit crosslinking of the samples. Finally, the hydrogel was used in a clinical trial to treat a patient with chronic inflammation of periapical tissues in teeth 26 and 27. The medical procedure proved the safety, nontoxicity, non-allergenicity, and, most importantly, bone-forming properties of the hydrogel formulation. The kinetics of new bone formation was analyzed in-depth using graphical cross-sections of anatomical structures obtained from pre- and post-operative CBCT scans.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 23","pages":" 6063-6081"},"PeriodicalIF":5.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting nanocarrier permeation across the human intestine in vitro: model matters† 预测纳米载体在体外通过人体肠道的渗透性:模型很重要。
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-08 DOI: 10.1039/D4BM01092B
Nathalie Jung, Jonas Schreiner, Florentin Baur, Sarah Vogel-Kindgen and Maike Windbergs

For clinical translation of oral nanocarriers, simulation of the intestinal microenvironment during in vitro testing is crucial to evaluate interactions with the intestinal mucosa. However, studies are often conducted using simplistic cell culture models, overlooking key physiological factors, and potentially leading to an overestimation of nanocarrier permeation. In this study, we systematically investigate different tissue models of the human intestine under static cultivation and dynamic flow conditions and analyze the impact of altered tissue characteristics on nanocarrier permeation. Our results reveal that the selection of cell types as well as the respective culture condition have a notable impact on the physiological characteristics of the resulting tissues. Tissue layer thickness, mucus secretion, and barrier impairment, all increase with increasing amounts of goblet cells and the application of dynamic flow conditions. Permeation studies with poly(lactic-co-glycolic acid) (PLGA) nanocarriers with and without polyethylene glycol (PEG) coating elucidate that the amount of mucus present in the respective model is the limiting factor for the permeation of PLGA nanocarriers, while tissue topography presents the key factor influencing PEG–PLGA nanocarrier permeation. Furthermore, both nanocarriers exhibit diametrically opposite permeation kinetics compared to soluble compounds. In summary, these findings reveal the critical role of the implemented test systems on permeation assessment and emphasize that, in the context of preclinical nanocarrier testing, the choice of in vitro model matters.

对于口服纳米载体的临床转化而言,体外测试期间的肠道微环境模拟对于评估与肠道粘膜的相互作用至关重要。然而,研究通常使用简单的细胞培养模型,忽略了关键的生理因素,可能导致高估纳米载体的渗透性。在本研究中,我们系统地研究了静态培养和动态流动条件下人体肠道的不同组织模型,并分析了组织特征改变对纳米载体渗透的影响。我们的研究结果表明,细胞类型的选择以及相应的培养条件对所形成组织的生理特性有显著影响。组织层厚度、粘液分泌和屏障损伤都会随着鹅口疮细胞数量的增加和动态流动条件的应用而增加。对带有和不带有聚乙二醇(PEG)涂层的聚(乳酸-共聚-乙醇酸)(PLGA)纳米载体的渗透研究表明,相应模型中存在的粘液量是 PLGA 纳米载体渗透的限制因素,而组织地形则是影响 PEG-PLGA 纳米载体渗透的关键因素。此外,与可溶性化合物相比,这两种纳米载体都表现出截然相反的渗透动力学。总之,这些发现揭示了所采用的测试系统对渗透评估的关键作用,并强调在临床前纳米载体测试中,体外模型的选择非常重要。
{"title":"Predicting nanocarrier permeation across the human intestine in vitro: model matters†","authors":"Nathalie Jung, Jonas Schreiner, Florentin Baur, Sarah Vogel-Kindgen and Maike Windbergs","doi":"10.1039/D4BM01092B","DOIUrl":"10.1039/D4BM01092B","url":null,"abstract":"<p >For clinical translation of oral nanocarriers, simulation of the intestinal microenvironment during <em>in vitro</em> testing is crucial to evaluate interactions with the intestinal mucosa. However, studies are often conducted using simplistic cell culture models, overlooking key physiological factors, and potentially leading to an overestimation of nanocarrier permeation. In this study, we systematically investigate different tissue models of the human intestine under static cultivation and dynamic flow conditions and analyze the impact of altered tissue characteristics on nanocarrier permeation. Our results reveal that the selection of cell types as well as the respective culture condition have a notable impact on the physiological characteristics of the resulting tissues. Tissue layer thickness, mucus secretion, and barrier impairment, all increase with increasing amounts of goblet cells and the application of dynamic flow conditions. Permeation studies with poly(lactic-<em>co</em>-glycolic acid) (PLGA) nanocarriers with and without polyethylene glycol (PEG) coating elucidate that the amount of mucus present in the respective model is the limiting factor for the permeation of PLGA nanocarriers, while tissue topography presents the key factor influencing PEG–PLGA nanocarrier permeation. Furthermore, both nanocarriers exhibit diametrically opposite permeation kinetics compared to soluble compounds. In summary, these findings reveal the critical role of the implemented test systems on permeation assessment and emphasize that, in the context of preclinical nanocarrier testing, the choice of <em>in vitro</em> model matters.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 22","pages":" 5775-5788"},"PeriodicalIF":5.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/bm/d4bm01092b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of antithrombotic and antimicrobial ultra-thin structures on a polyethylene terephthalate implant via the surface grafting of heparin brushes† 通过肝素刷表面接枝在聚对苯二甲酸乙二醇酯植入物上构建抗血栓和抗菌超薄结构。
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-08 DOI: 10.1039/D4BM00778F
Haobo Zhang, Dingxuan Wang, Lilong Wei, Weihan Wang, Zhaorong Ren, Sayyed Asim Ali Shah, Junying Zhang, Jue Cheng and Feng Gao

It remains a challenge to endow a polymeric material with antithrombotic ability by surface grafting without disturbing the bulk properties of the substrate. Heparin-based functional structures of less than 80 nm were fabricated and covalently grafted on a polyethylene terephthalate surface via carbene chemistry (Hep-g-PET). Heparin was oxidized with the minimum antithrombrin sequence retained, creating an aldehyde group on the chain terminus. Oxidized heparin was then covalently attached to a poly(amidoamine) (PAMAM)-grafted PET substrate. The interface between blood and PET was improved by the surface functionality, and the amount of attached platelets decreased to 29 ± 12.1% of its initial value. The bulk properties of the functionalized film were hardly influenced, and the visible light transmittance remained more than 96%. The tethered structures also showed the ability to kill attached S. aureus and E. coli efficiently. The functionalized membrane showed negligible ex vivo cell cytotoxicity and a low hemolysis ratio. Hep-g-PET was implanted in between rat skin and muscle, and showed an outstanding histological response and antimicrobial ability. The influences of the graft thickness and the heparin chain length were explored. The strategies reported in this work may help to improve the design of polymeric implant bio-devices.

如何通过表面接枝赋予聚合物材料抗血栓能力而又不影响基材的整体特性,仍然是一项挑战。通过碳烯化学(Hep-g-PET)在聚对苯二甲酸乙二醇酯表面制造并共价接枝了小于 80 纳米的基于肝素的功能结构。肝素在氧化过程中保留了最少的抗凝血酶序列,从而在肝素链末端产生了一个醛基。氧化后的肝素被共价连接到聚酰胺胺(PAMAM)接枝 PET 基质上。表面功能改善了血液与 PET 之间的界面,附着的血小板量减少到初始值的 29 ± 12.1%。功能化薄膜的体积特性几乎没有受到影响,可见光透射率保持在 96% 以上。系留结构还能有效杀死附着的金黄色葡萄球菌和大肠杆菌。功能化膜的体内细胞毒性可忽略不计,溶血率也很低。将 Hep-g-PET 植入大鼠的皮肤和肌肉之间,显示出了出色的组织学反应和抗菌能力。研究还探讨了移植厚度和肝素链长度的影响。这项工作中报告的策略可能有助于改进聚合物植入生物设备的设计。
{"title":"Construction of antithrombotic and antimicrobial ultra-thin structures on a polyethylene terephthalate implant via the surface grafting of heparin brushes†","authors":"Haobo Zhang, Dingxuan Wang, Lilong Wei, Weihan Wang, Zhaorong Ren, Sayyed Asim Ali Shah, Junying Zhang, Jue Cheng and Feng Gao","doi":"10.1039/D4BM00778F","DOIUrl":"10.1039/D4BM00778F","url":null,"abstract":"<p >It remains a challenge to endow a polymeric material with antithrombotic ability by surface grafting without disturbing the bulk properties of the substrate. Heparin-based functional structures of less than 80 nm were fabricated and covalently grafted on a polyethylene terephthalate surface <em>via</em> carbene chemistry (Hep-g-PET). Heparin was oxidized with the minimum antithrombrin sequence retained, creating an aldehyde group on the chain terminus. Oxidized heparin was then covalently attached to a poly(amidoamine) (PAMAM)-grafted PET substrate. The interface between blood and PET was improved by the surface functionality, and the amount of attached platelets decreased to 29 ± 12.1% of its initial value. The bulk properties of the functionalized film were hardly influenced, and the visible light transmittance remained more than 96%. The tethered structures also showed the ability to kill attached <em>S. aureus</em> and <em>E. coli</em> efficiently. The functionalized membrane showed negligible <em>ex vivo</em> cell cytotoxicity and a low hemolysis ratio. Hep-g-PET was implanted in between rat skin and muscle, and showed an outstanding histological response and antimicrobial ability. The influences of the graft thickness and the heparin chain length were explored. The strategies reported in this work may help to improve the design of polymeric implant bio-devices.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 23","pages":" 6099-6113"},"PeriodicalIF":5.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyaluronic acid-functionalized nanoparticles for ulcerative colitis-targeted therapy: a comparative study of oral administration and intravenous injection† 用于溃疡性结肠炎靶向治疗的透明质酸功能化纳米颗粒:口服与静脉注射的比较研究
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-08 DOI: 10.1039/D4BM00898G
Jinhua Liu, Chunhua Yang, Didier Merlin and Bo Xiao

Targeted delivery of anti-inflammatory drugs to macrophages has attracted great attention for selectively alleviating the symptoms of ulcerative colitis (UC), while minimizing adverse effects. Herein, we aimed to compare the in vivo pharmacokinetics and therapeutic outcomes of macrophage-targeted nanoparticles (NPs) via oral administration and intravenous injection. Polymeric NPs were employed to load an anti-inflammatory drug (curcumin, CUR), followed by surface functionalization with hyaluronic acid (HA). The resulting HA-CUR-NPs had an average diameter of 281 nm and a negatively charged surface. These NPs showed excellent biocompatibility and a significantly higher cell internalization efficiency in RAW 264.7 macrophages compared with their counterparts (carboxymethyl cellulose-functionalized CUR-encapsulated NPs, CUL-CUR-NPs). Moreover, HA-CUR-NPs exhibited a dramatically stronger capacity to inhibit the mRNA expression levels of the typical pro-inflammatory cytokines from lipopolysaccharide-stimulated macrophages compared with CUL-CUR-NPs. In vivo experiments revealed that HA-CUR-NPs after i.v. injection could improve the pharmacokinetics of CUR, and that it showed much better UC therapeutic outcomes compared with the oral administration way. Collectively, in comparison with HA-CUR-NPs (oral), HA-CUR-NPs (i.v.) possess a higher CUR delivery efficiency to the colitis mucosa, which can be developed as an efficient platform for UC treatment.

向巨噬细胞靶向递送抗炎药物,以选择性地缓解溃疡性结肠炎(UC)的症状,同时最大限度地减少不良反应,已引起人们的极大关注。在此,我们旨在比较口服和静脉注射巨噬细胞靶向纳米颗粒(NPs)的体内药代动力学和治疗效果。我们采用聚合物 NPs 装载抗炎药物(姜黄素,CUR),然后用透明质酸(HA)进行表面功能化。所制成的 HA-CUR-NPs 平均直径为 281 nm,表面带负电荷。与同类产品(羧甲基纤维素功能化的 CUR 包囊 NPs,CUL-CUR-NPs)相比,这些 NPs 表现出良好的生物相容性,在 RAW 264.7 巨噬细胞中的细胞内化效率明显更高。此外,与 CUL-CUR-NPs 相比,HA-CUR-NPs 对脂多糖刺激巨噬细胞产生的典型促炎细胞因子 mRNA 表达水平的抑制能力明显更强。体内实验显示,HA-CUR-NPs 经静脉注射后可改善 CUR 的药代动力学,与口服方式相比,其 UC 治疗效果更好。总之,与HA-CUR-NPs(口服)相比,HA-CUR-NPs(静脉注射)具有更高的向结肠炎粘膜输送CUR的效率,可开发为治疗UC的有效平台。
{"title":"Hyaluronic acid-functionalized nanoparticles for ulcerative colitis-targeted therapy: a comparative study of oral administration and intravenous injection†","authors":"Jinhua Liu, Chunhua Yang, Didier Merlin and Bo Xiao","doi":"10.1039/D4BM00898G","DOIUrl":"10.1039/D4BM00898G","url":null,"abstract":"<p >Targeted delivery of anti-inflammatory drugs to macrophages has attracted great attention for selectively alleviating the symptoms of ulcerative colitis (UC), while minimizing adverse effects. Herein, we aimed to compare the <em>in vivo</em> pharmacokinetics and therapeutic outcomes of macrophage-targeted nanoparticles (NPs) <em>via</em> oral administration and intravenous injection. Polymeric NPs were employed to load an anti-inflammatory drug (curcumin, CUR), followed by surface functionalization with hyaluronic acid (HA). The resulting HA-CUR-NPs had an average diameter of 281 nm and a negatively charged surface. These NPs showed excellent biocompatibility and a significantly higher cell internalization efficiency in RAW 264.7 macrophages compared with their counterparts (carboxymethyl cellulose-functionalized CUR-encapsulated NPs, CUL-CUR-NPs). Moreover, HA-CUR-NPs exhibited a dramatically stronger capacity to inhibit the mRNA expression levels of the typical pro-inflammatory cytokines from lipopolysaccharide-stimulated macrophages compared with CUL-CUR-NPs. <em>In vivo</em> experiments revealed that HA-CUR-NPs after i.v. injection could improve the pharmacokinetics of CUR, and that it showed much better UC therapeutic outcomes compared with the oral administration way. Collectively, in comparison with HA-CUR-NPs (oral), HA-CUR-NPs (i.v.) possess a higher CUR delivery efficiency to the colitis mucosa, which can be developed as an efficient platform for UC treatment.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 22","pages":" 5834-5844"},"PeriodicalIF":5.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ modified mesoporous silica nanoparticles: synthesis, properties and theranostic applications 原位修饰介孔二氧化硅纳米颗粒:合成、特性和治疗应用。
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-07 DOI: 10.1039/D4BM00094C
Chloe Trayford and Sabine van Rijt

Over the last 20 years, mesoporous silica nanoparticles (MSNs) have drawn considerable attention in the biomedical field due to their large surface area, porous network, biocompatibility, and abundant modification possibilities. In situ MSN modification refers to the incorporation of materials such as alkoxysilanes, ions and nanoparticles (NPs) in the silica matrix during synthesis. Matrix modification is a popular approach for endowing MSNs with additional functionalities such as imaging properties, bioactivity, and degradability, while leaving the mesopores free for drug loading. As such, in situ modified MSNs are considered promising theranostic agents. This review provides an extensive overview of different materials and modification strategies that have been used and their effect on MSN properties. We also highlight how in situ modified MSNs have been applied in theranostic applications, oncology and regenerative medicine. We conclude with perspectives on the future outlooks and current challenges for the widespread clinical use of in situ modified MSNs.

在过去的 20 年中,介孔二氧化硅纳米颗粒(MSN)因其大表面积、多孔网络、生物相容性和丰富的改性可能性而在生物医学领域备受关注。MSN 原位改性是指在合成过程中将烷氧基硅烷、离子和纳米粒子(NPs)等材料加入二氧化硅基质中。基质改性是一种流行的方法,可赋予 MSN 更多的功能,如成像特性、生物活性和可降解性,同时保留中孔用于装载药物。因此,原位修饰的 MSN 被认为是前景广阔的治疗药物。本综述广泛概述了已使用的不同材料和改性策略及其对 MSN 性能的影响。我们还重点介绍了原位修饰 MSN 在治疗应用、肿瘤学和再生医学中的应用。最后,我们展望了原位修饰 MSN 在临床广泛应用方面的未来前景和当前挑战。
{"title":"In situ modified mesoporous silica nanoparticles: synthesis, properties and theranostic applications","authors":"Chloe Trayford and Sabine van Rijt","doi":"10.1039/D4BM00094C","DOIUrl":"10.1039/D4BM00094C","url":null,"abstract":"<p >Over the last 20 years, mesoporous silica nanoparticles (MSNs) have drawn considerable attention in the biomedical field due to their large surface area, porous network, biocompatibility, and abundant modification possibilities. <em>In situ</em> MSN modification refers to the incorporation of materials such as alkoxysilanes, ions and nanoparticles (NPs) in the silica matrix during synthesis. Matrix modification is a popular approach for endowing MSNs with additional functionalities such as imaging properties, bioactivity, and degradability, while leaving the mesopores free for drug loading. As such, <em>in situ</em> modified MSNs are considered promising theranostic agents. This review provides an extensive overview of different materials and modification strategies that have been used and their effect on MSN properties. We also highlight how <em>in situ</em> modified MSNs have been applied in theranostic applications, oncology and regenerative medicine. We conclude with perspectives on the future outlooks and current challenges for the widespread clinical use of <em>in situ</em> modified MSNs.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 21","pages":" 5450-5467"},"PeriodicalIF":5.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457002/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional nanochaperones for PEGylated insulin delivery in long-term glycemic control† 在长期血糖控制中输送聚乙二醇化胰岛素的功能性纳米伴侣。
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-04 DOI: 10.1039/D4BM01163E
Xiaohui Wu, Yanli Zhang, Shuoshuo Song, Sainan Liu, Feihe Ma, Rujiang Ma and Linqi Shi

PEGylation is a promising strategy for modulating the physicochemical properties and improving the therapeutic efficacy of protein drugs. However, the application of multi-PEGylation frequently results in diminished protein activity. A single low molecular weight PEG (5 kDa) modified at the amino terminus of the B chain preserves the biological activity of insulin and moderately improves its pharmacokinetics. Nonetheless, this modification offers limited protein stabilization. Furthermore, overdoses still carry the risk of hypoglycemia, posing challenges for the clinical application of PEGylated insulin. Here, we constructed multifunctional nanochaperones featuring phenylboronic acid (PBA) modified hydrophobic microdomains and nitrilotriacetic acid (NTA)-based coordination domains (PN-nChaps) for PEGylated insulin delivery. This delivery strategy effectively overcomes the limitations associated with PEGylation by enhancing the stability and reducing the immunogenicity of PEGylated insulin, while enabling glucose-responsive controlled release. PEGylated insulin with nanochaperone carrier demonstrates a prolonged half-life (t1/2 = 18.66 h), facilitates on-demand release, and minimizes the risk of hypoglycemia. This approach provides a safe and effective strategy for long-term glycemic management in diabetic patients.

PEG 化是调节蛋白质药物理化性质和提高疗效的一种有前途的策略。然而,多重 PEG 化的应用往往会导致蛋白质活性降低。在 B 链氨基末端修饰单个低分子量 PEG(5 kDa)可保持胰岛素的生物活性,并适度改善其药代动力学。然而,这种修饰对蛋白质的稳定作用有限。此外,过量使用仍有低血糖的风险,这给聚乙二醇化胰岛素的临床应用带来了挑战。在此,我们构建了具有苯硼酸(PBA)修饰疏水微域和基于氮基三乙酸(NTA)配位域(PN-nChaps)的多功能纳米伴侣,用于 PEG 化胰岛素的递送。这种给药策略有效克服了 PEG 化的局限性,提高了 PEG 化胰岛素的稳定性,降低了其免疫原性,同时实现了葡萄糖响应式控释。带有纳米伴侣载体的 PEG 化胰岛素具有较长的半衰期(t1/2 = 18.66 h),有利于按需释放,并将低血糖风险降至最低。这种方法为糖尿病患者的长期血糖管理提供了一种安全有效的策略。
{"title":"Functional nanochaperones for PEGylated insulin delivery in long-term glycemic control†","authors":"Xiaohui Wu, Yanli Zhang, Shuoshuo Song, Sainan Liu, Feihe Ma, Rujiang Ma and Linqi Shi","doi":"10.1039/D4BM01163E","DOIUrl":"10.1039/D4BM01163E","url":null,"abstract":"<p >PEGylation is a promising strategy for modulating the physicochemical properties and improving the therapeutic efficacy of protein drugs. However, the application of multi-PEGylation frequently results in diminished protein activity. A single low molecular weight PEG (5 kDa) modified at the amino terminus of the B chain preserves the biological activity of insulin and moderately improves its pharmacokinetics. Nonetheless, this modification offers limited protein stabilization. Furthermore, overdoses still carry the risk of hypoglycemia, posing challenges for the clinical application of PEGylated insulin. Here, we constructed multifunctional nanochaperones featuring phenylboronic acid (PBA) modified hydrophobic microdomains and nitrilotriacetic acid (NTA)-based coordination domains (PN-nChaps) for PEGylated insulin delivery. This delivery strategy effectively overcomes the limitations associated with PEGylation by enhancing the stability and reducing the immunogenicity of PEGylated insulin, while enabling glucose-responsive controlled release. PEGylated insulin with nanochaperone carrier demonstrates a prolonged half-life (<em>t</em><small><sub>1/2</sub></small> = 18.66 h), facilitates on-demand release, and minimizes the risk of hypoglycemia. This approach provides a safe and effective strategy for long-term glycemic management in diabetic patients.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 22","pages":" 5742-5752"},"PeriodicalIF":5.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loureirin hydrogel promotes healing of radionuclide-contaminated wounds by regulating angiogenesis and immune cells† Loureirin 水凝胶通过调节血管生成和免疫细胞,促进放射性核素污染伤口的愈合。
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-03 DOI: 10.1039/D4BM00813H
Zhuojun Wu, Longjiang Xu, Xiaoting Xu, Jun Hou, Wenlin Li, Guibin Luo, Yufan Xu, Qiu Chen and Fengmei Cui

Radionuclide-contaminated wounds face clinical dilemmas such as repeated erosion and ulceration and are difficult to heal. In this work, we aimed to develop a biodegradable hydrogel with a beneficial effect on radionuclide-contaminated wounds and initially investigated the mechanism of action of the hydrogel. The hydrogel was produced through the ring-opening polymerization of polycaprolactone (PCL) triggered by polyethylene glycol (PEG), and its physicochemical properties were characterized by gel permeation chromatography, nuclear magnetic resonance, rheological properties testing, and other techniques. The low critical solution temperatures were 30 °C and 46 °C, which are suitable for the human body to realize the degradable properties of the hydrogel. A radionuclide-contaminated wound model was established, which proved that the biodegradable hydrogel had good healing properties and did not form secondary lesions. The effect was better than clinically used EGF or VB12. Pathological results showed that mature granulation tissue formed on the 7th day after the injury, and by the 10th day after the injury, the scab had completely fallen off, the epithelial coverage had reached over 70% and the wound was essentially completely healed. Additionally, the hydrogel affects immune metabolism, regulates immune cell function, promotes the formation of new blood vessels and granular tissue, and effectively accelerates the healing process of radionuclide-contaminated wounds.

放射性核素污染的伤口面临反复侵蚀和溃疡等临床难题,难以愈合。在这项工作中,我们旨在开发一种对放射性核素污染伤口有益的可生物降解水凝胶,并初步研究了水凝胶的作用机制。该水凝胶是通过聚乙二醇(PEG)引发聚己内酯(PCL)开环聚合制得的,并通过凝胶渗透色谱、核磁共振、流变特性测试等技术对其理化性质进行了表征。低临界溶液温度分别为 30 ℃ 和 46 ℃,适合人体,实现了水凝胶的可降解特性。建立的放射性核素污染伤口模型证明,生物降解水凝胶具有良好的愈合性能,不会形成二次病变。其效果优于临床使用的 EGF 或 VB12。病理结果显示,伤后第 7 天,成熟的肉芽组织形成,伤后第 10 天,痂皮完全脱落,上皮覆盖率达到 70% 以上,伤口基本完全愈合。此外,水凝胶还能影响免疫代谢,调节免疫细胞功能,促进新生血管和肉芽组织的形成,有效加速放射性核素污染伤口的愈合过程。
{"title":"Loureirin hydrogel promotes healing of radionuclide-contaminated wounds by regulating angiogenesis and immune cells†","authors":"Zhuojun Wu, Longjiang Xu, Xiaoting Xu, Jun Hou, Wenlin Li, Guibin Luo, Yufan Xu, Qiu Chen and Fengmei Cui","doi":"10.1039/D4BM00813H","DOIUrl":"10.1039/D4BM00813H","url":null,"abstract":"<p >Radionuclide-contaminated wounds face clinical dilemmas such as repeated erosion and ulceration and are difficult to heal. In this work, we aimed to develop a biodegradable hydrogel with a beneficial effect on radionuclide-contaminated wounds and initially investigated the mechanism of action of the hydrogel. The hydrogel was produced through the ring-opening polymerization of polycaprolactone (PCL) triggered by polyethylene glycol (PEG), and its physicochemical properties were characterized by gel permeation chromatography, nuclear magnetic resonance, rheological properties testing, and other techniques. The low critical solution temperatures were 30 °C and 46 °C, which are suitable for the human body to realize the degradable properties of the hydrogel. A radionuclide-contaminated wound model was established, which proved that the biodegradable hydrogel had good healing properties and did not form secondary lesions. The effect was better than clinically used EGF or VB12. Pathological results showed that mature granulation tissue formed on the 7th day after the injury, and by the 10th day after the injury, the scab had completely fallen off, the epithelial coverage had reached over 70% and the wound was essentially completely healed. Additionally, the hydrogel affects immune metabolism, regulates immune cell function, promotes the formation of new blood vessels and granular tissue, and effectively accelerates the healing process of radionuclide-contaminated wounds.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 22","pages":" 5789-5802"},"PeriodicalIF":5.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyroptosis induced by natural products and their derivatives for cancer therapy 用于癌症治疗的天然产品及其衍生物诱导的火化作用。
IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-10-01 DOI: 10.1039/D4BM01023J
Yingfei Wen, You Li, Bin-bin Li, Peng Liu, Miaojuan Qiu, Zihang Li, Jiaqi Xu, Bo Bi, Shiqiang Zhang, Xinyi Deng, Kaiyuan Liu, Shangbo Zhou, Qiang Wang and Jing Zhao

Natural products, which are compounds extracted and/or refined from plants and microbes in nature, have great potential for the discovery of therapeutic agents, especially for infectious diseases and cancer. In recent years, natural products have been reported to induce multiple cell death pathways to exhibit antitumor effects. Among them, pyroptosis is a unique programmed cell death (PCD) characterized by continuous cell membrane permeability and intracellular content leakage. According to the canonical and noncanonical pathways, the formation of gasdermin-N pores involves a variety of transcriptional targets and post-translational modifications. Thus, tailored control of PCD may facilitate dying cells with sufficient immunogenicity to activate the immune system to eliminate other tumor cells. Therefore, we summarized the currently reported natural products or their derivatives and their nano-drugs that induce pyroptosis-related signaling pathways. We reviewed six main categories of bioactive compounds extracted from natural products, including flavonoids, terpenoids, polyphenols, quinones, artemisinins, and alkaloids. Correspondingly, the underlying mechanisms of how these compounds and their derivatives engage in pyroptosis are also discussed. Moreover, the synergistic effect of natural bioactive compounds with other antitumor therapies is proposed as a novel therapeutic strategy for traditional chemotherapy, radiotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, hyperthermal therapy, and sonodynamic therapy. Consequently, we provide insights into natural products to develop a novel antitumor therapy or qualified adjuvant agents by inducing pyroptosis, which may eventually be applied clinically.

天然产物是从自然界中的植物和微生物中提取和/或提炼出来的化合物,在发现治疗药物,尤其是治疗传染病和癌症的药物方面具有巨大潜力。近年来,有报道称天然产物可诱导多种细胞死亡途径,从而发挥抗肿瘤作用。其中,热噬是一种独特的程序性细胞死亡(PCD),其特点是细胞膜持续通透性和细胞内成分泄漏。根据规范和非规范途径,gasdermin-N 孔的形成涉及多种转录靶标和翻译后修饰。因此,对 PCD 进行有针对性的控制可促进凋亡细胞具有足够的免疫原性,从而激活免疫系统消灭其他肿瘤细胞。因此,我们总结了目前已报道的能诱导与热休克相关的信号通路的天然产物或其衍生物及其纳米药物。我们综述了从天然产物中提取的六大类生物活性化合物,包括黄酮类、萜类、多酚类、醌类、青蒿素类和生物碱类。相应地,还讨论了这些化合物及其衍生物如何参与催化反应的内在机制。此外,我们还提出了天然生物活性化合物与其他抗肿瘤疗法的协同作用,作为传统化疗、放疗、化学动力疗法、光动力疗法、光热疗法、超热疗法和声动力疗法的一种新型治疗策略。因此,我们对天然产物进行了深入研究,以开发出一种新型的抗肿瘤疗法,或通过诱导热变态反应开发出合格的辅助药物,并最终应用于临床。
{"title":"Pyroptosis induced by natural products and their derivatives for cancer therapy","authors":"Yingfei Wen, You Li, Bin-bin Li, Peng Liu, Miaojuan Qiu, Zihang Li, Jiaqi Xu, Bo Bi, Shiqiang Zhang, Xinyi Deng, Kaiyuan Liu, Shangbo Zhou, Qiang Wang and Jing Zhao","doi":"10.1039/D4BM01023J","DOIUrl":"10.1039/D4BM01023J","url":null,"abstract":"<p >Natural products, which are compounds extracted and/or refined from plants and microbes in nature, have great potential for the discovery of therapeutic agents, especially for infectious diseases and cancer. In recent years, natural products have been reported to induce multiple cell death pathways to exhibit antitumor effects. Among them, pyroptosis is a unique programmed cell death (PCD) characterized by continuous cell membrane permeability and intracellular content leakage. According to the canonical and noncanonical pathways, the formation of gasdermin-N pores involves a variety of transcriptional targets and post-translational modifications. Thus, tailored control of PCD may facilitate dying cells with sufficient immunogenicity to activate the immune system to eliminate other tumor cells. Therefore, we summarized the currently reported natural products or their derivatives and their nano-drugs that induce pyroptosis-related signaling pathways. We reviewed six main categories of bioactive compounds extracted from natural products, including flavonoids, terpenoids, polyphenols, quinones, artemisinins, and alkaloids. Correspondingly, the underlying mechanisms of how these compounds and their derivatives engage in pyroptosis are also discussed. Moreover, the synergistic effect of natural bioactive compounds with other antitumor therapies is proposed as a novel therapeutic strategy for traditional chemotherapy, radiotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, hyperthermal therapy, and sonodynamic therapy. Consequently, we provide insights into natural products to develop a novel antitumor therapy or qualified adjuvant agents by inducing pyroptosis, which may eventually be applied clinically.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 22","pages":" 5656-5679"},"PeriodicalIF":5.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biomaterials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1