Feng Wei, Wen Yang, Huiru Wang, Saijie Song, Yuxuan Ji, Zhong Chen, Yan Zhuang, Jianwu Dai and He Shen
Reactive oxygen species (ROS) are natural by-products of oxygen metabolism. As signaling molecules, ROS can regulate various physiological processes in the body. However excessive ROS may be a major cause of inflammatory diseases. In the field of neurological diseases, ROS cause neuronal apoptosis and neurodegeneration, which severely impede neuroregeneration. Currently, ROS-scavenging biomaterials are considered as a promising therapeutic strategy for neurological injuries due to their ability to scavenge excessive ROS at defects and modulate the oxidative stress microenvironment. This review provides an overview of the generation and sources of ROS, briefly describes the dangers of generating excessive ROS in nervous system diseases, and highlights the importance of scavenging excessive ROS for neuroregeneration. We have classified ROS-scavenging biomaterials into three categories based on the different mechanisms of ROS clearance. The applications of ROS-responsive biomaterials for neurological diseases, such as spinal cord injury, brain injury, and peripheral nerve injury, are also discussed. Our review contributes to the development of ROS-scavenging biomaterials in the field of neural regeneration.
{"title":"Reactive oxygen species-scavenging biomaterials for neural regenerative medicine","authors":"Feng Wei, Wen Yang, Huiru Wang, Saijie Song, Yuxuan Ji, Zhong Chen, Yan Zhuang, Jianwu Dai and He Shen","doi":"10.1039/D4BM01221F","DOIUrl":"10.1039/D4BM01221F","url":null,"abstract":"<p >Reactive oxygen species (ROS) are natural by-products of oxygen metabolism. As signaling molecules, ROS can regulate various physiological processes in the body. However excessive ROS may be a major cause of inflammatory diseases. In the field of neurological diseases, ROS cause neuronal apoptosis and neurodegeneration, which severely impede neuroregeneration. Currently, ROS-scavenging biomaterials are considered as a promising therapeutic strategy for neurological injuries due to their ability to scavenge excessive ROS at defects and modulate the oxidative stress microenvironment. This review provides an overview of the generation and sources of ROS, briefly describes the dangers of generating excessive ROS in nervous system diseases, and highlights the importance of scavenging excessive ROS for neuroregeneration. We have classified ROS-scavenging biomaterials into three categories based on the different mechanisms of ROS clearance. The applications of ROS-responsive biomaterials for neurological diseases, such as spinal cord injury, brain injury, and peripheral nerve injury, are also discussed. Our review contributes to the development of ROS-scavenging biomaterials in the field of neural regeneration.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 2","pages":" 343-363"},"PeriodicalIF":5.8,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Runquan Zheng, Ning Zhang, Songbo Mao, Jiawei Li, Xuesong Yan, Guichun Zhang, Yongxian Zhang and Xianhu Yue
Bone defects and congenital bone deficiencies are common clinical conditions. However, conventional non-degradable artificial materials often lead to serious complications, such as severe infections and material displacement. The emergence of tissue engineering and the organoid concept presents a promising approach for the repair of bone defects, facilitating physiological reconstruction while minimizing complications. Nevertheless, previous studies have not developed injectable organoids that incorporate fully mineralized and organic microenvironments to achieve rapid osteogenesis and convenient application in bone regeneration. Therefore, it is imperative to devise an effective strategy to address these challenges. This study first prepared injectable GL scaffolds with varying concentrations and identified the optimal GL concentration (0.8%) for osteogenesis through systematic evaluation of the osteogenic efficiency. Subsequently, 30% mixture of inorganic salts of native bone (NBIS) and extracellular matrix from the periosteum (pECM) was integrated into the optimal GL scaffold at a ratio of NBIS : pECM = 7 : 3 to create an injectable scaffold featuring biomimetic mineralized and organic microenvironments. This scaffold was further utilized for in vitro analysis of osteogenic mechanisms and injected subcutaneously into rabbits for only four weeks to assess its osteogenic efficacy in vivo. The results indicated that the incorporation of NBIS and pECM significantly enhanced the osteogenic efficacy by actively regulating ossification and ECM–receptor interaction signaling pathways, as well as upregulating RUNX2, ALP, COL1, and LAMA. This study introduces a promising injectable strategy for rapid osteogenesis using fully mineralized and organic biomimetic organoids.
{"title":"Fast bone regeneration using injectable fully biomimetic organoids with biomineralized and organic microenvironments","authors":"Runquan Zheng, Ning Zhang, Songbo Mao, Jiawei Li, Xuesong Yan, Guichun Zhang, Yongxian Zhang and Xianhu Yue","doi":"10.1039/D4BM01181C","DOIUrl":"10.1039/D4BM01181C","url":null,"abstract":"<p >Bone defects and congenital bone deficiencies are common clinical conditions. However, conventional non-degradable artificial materials often lead to serious complications, such as severe infections and material displacement. The emergence of tissue engineering and the organoid concept presents a promising approach for the repair of bone defects, facilitating physiological reconstruction while minimizing complications. Nevertheless, previous studies have not developed injectable organoids that incorporate fully mineralized and organic microenvironments to achieve rapid osteogenesis and convenient application in bone regeneration. Therefore, it is imperative to devise an effective strategy to address these challenges. This study first prepared injectable GL scaffolds with varying concentrations and identified the optimal GL concentration (0.8%) for osteogenesis through systematic evaluation of the osteogenic efficiency. Subsequently, 30% mixture of inorganic salts of native bone (NBIS) and extracellular matrix from the periosteum (pECM) was integrated into the optimal GL scaffold at a ratio of NBIS : pECM = 7 : 3 to create an injectable scaffold featuring biomimetic mineralized and organic microenvironments. This scaffold was further utilized for <em>in vitro</em> analysis of osteogenic mechanisms and injected subcutaneously into rabbits for only four weeks to assess its osteogenic efficacy <em>in vivo</em>. The results indicated that the incorporation of NBIS and pECM significantly enhanced the osteogenic efficacy by actively regulating ossification and ECM–receptor interaction signaling pathways, as well as upregulating RUNX2, ALP, COL1, and LAMA. This study introduces a promising injectable strategy for rapid osteogenesis using fully mineralized and organic biomimetic organoids.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 2","pages":" 486-495"},"PeriodicalIF":5.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guojun Huang, Yiran He, Xiaocong Chen, Ting Yin, Aiqing Ma, Lizhen Zhu, Liqi Chen, Ruijing Liang, Pengfei Zhang, Hong Pan and Lintao Cai
Various oncolytic viruses (OVs) have been adopted as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-T cells against solid tumors. However, the therapeutic effect of OVs has been limited by pre-existing neutralizing antibodies and poor targeting delivery for systemic administration. Herein, we propose using bioorthogonal OV nanovesicles to boost the antitumor effects of CAR-T cells in solid tumors by reshaping the tumor microenvironment. Using a cell-membrane nanomimetic technique, we embedded artificial chemical ligands on cancer cell surfaces and then encapsulated lysoviral particles to obtain dual-targeted OV nanovesicles with bioorthogonal targeting and homologous recognition. OVs can be directly encapsulated into cancer cell nanovesicles and exhibit a liposome-like nanostructure, efficient loading, and excellent tumor-targeting capability. Encouragingly, OV nanovesicles efficiently induced tumor-cell apoptosis while sparing normal tissues and cells, thereby inhibiting tumor growth. Administration of viral nanovesicles effectively increased the secretion of anti-tumor cytokines such as IL-2, TNF-α and IFN-γ, and significantly promoted the infiltration and activation of CD8+CAR-T cells in tumors. Our data suggest that bioorthogonal OV nanovesicles hold great potential to overcome the limitations of CAR-T cells as monotherapies against solid tumors and, thus, drive the clinical application of combination therapy.
各种溶瘤病毒(OV)已被用作治疗工具,以提高嵌合抗原受体(CAR)-T 细胞对实体瘤的疗效。然而,OVs 的治疗效果一直受到预先存在的中和抗体和全身给药靶向性差的限制。在此,我们建议使用生物正交 OV 纳米颗粒,通过重塑肿瘤微环境来增强 CAR-T 细胞在实体瘤中的抗肿瘤效果。我们利用细胞膜纳米仿生技术,在癌细胞表面嵌入人工化学配体,然后包裹溶瘤病毒颗粒,获得具有生物正交靶向和同源识别的双靶向OV纳米颗粒。OV 可直接封装到癌细胞纳米囊泡中,并表现出类似脂质体的纳米结构、高效的负载能力和卓越的肿瘤靶向能力。令人鼓舞的是,OV 纳米颗粒能有效诱导肿瘤细胞凋亡,同时保护正常组织和细胞,从而抑制肿瘤生长。服用病毒纳米颗粒能有效增加 IL-2、TNF-α 和 IFN-γ 等抗肿瘤细胞因子的分泌,并显著促进 CD8+CAR-T 细胞在肿瘤中的浸润和活化。我们的数据表明,生物正交 OV 纳米颗粒在克服 CAR-T 细胞作为单一疗法治疗实体瘤的局限性方面具有巨大潜力,从而推动了联合疗法的临床应用。
{"title":"Bioorthogonal oncolytic-virus nanovesicles combined bio-immunotherapy with CAR-T cells for solid tumors†","authors":"Guojun Huang, Yiran He, Xiaocong Chen, Ting Yin, Aiqing Ma, Lizhen Zhu, Liqi Chen, Ruijing Liang, Pengfei Zhang, Hong Pan and Lintao Cai","doi":"10.1039/D4BM01305K","DOIUrl":"10.1039/D4BM01305K","url":null,"abstract":"<p >Various oncolytic viruses (OVs) have been adopted as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-T cells against solid tumors. However, the therapeutic effect of OVs has been limited by pre-existing neutralizing antibodies and poor targeting delivery for systemic administration. Herein, we propose using bioorthogonal OV nanovesicles to boost the antitumor effects of CAR-T cells in solid tumors by reshaping the tumor microenvironment. Using a cell-membrane nanomimetic technique, we embedded artificial chemical ligands on cancer cell surfaces and then encapsulated lysoviral particles to obtain dual-targeted OV nanovesicles with bioorthogonal targeting and homologous recognition. OVs can be directly encapsulated into cancer cell nanovesicles and exhibit a liposome-like nanostructure, efficient loading, and excellent tumor-targeting capability. Encouragingly, OV nanovesicles efficiently induced tumor-cell apoptosis while sparing normal tissues and cells, thereby inhibiting tumor growth. Administration of viral nanovesicles effectively increased the secretion of anti-tumor cytokines such as IL-2, TNF-α and IFN-γ, and significantly promoted the infiltration and activation of CD8<small><sup>+</sup></small>CAR-T cells in tumors. Our data suggest that bioorthogonal OV nanovesicles hold great potential to overcome the limitations of CAR-T cells as monotherapies against solid tumors and, thus, drive the clinical application of combination therapy.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 2","pages":" 457-465"},"PeriodicalIF":5.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/bm/d4bm01305k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Correction for ‘Bioactivity of cerium dioxide nanoparticles as a function of size and surface features’ by Veronika Sarnatskaya et al., Biomater. Sci., 2024, 12, 2689–2704, https://doi.org/10.1039/D3BM01900D.
对 Veronika Sarnatskaya 等人的 "Bioactivity of cerium dioxide nanoparticles as a function of size and surface features "的更正,Biomater.Sci.,2024,12,2689-2704,https://doi.org/10.1039/D3BM01900D。
{"title":"Correction: Bioactivity of cerium dioxide nanoparticles as a function of size and surface features","authors":"Veronika Sarnatskaya, Yuliia Shlapa, Denis Kolesnik, Olexandra Lykhova, Dmytro Klymchuk, Serhii Solopan, Svitlana Lyubchyk, Iuliia Golovynska, Junle Qu, Yurii Stepanov and Anatolii Belous","doi":"10.1039/D4BM90076F","DOIUrl":"10.1039/D4BM90076F","url":null,"abstract":"<p >Correction for ‘Bioactivity of cerium dioxide nanoparticles as a function of size and surface features’ by Veronika Sarnatskaya <em>et al.</em>, <em>Biomater. Sci.</em>, 2024, <strong>12</strong>, 2689–2704, https://doi.org/10.1039/D3BM01900D.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 1","pages":" 331-331"},"PeriodicalIF":5.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/bm/d4bm90076f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sweny Jain, Jay Bhatt, Sharad Gupta and Dhiraj Devidas Bhatia
Nanotechnology in stem cell medicine is an interdisciplinary field which has gained a lot of interest recently. This domain addresses key challenges associated with stem cell medicine such as cell isolation, targeted delivery, and tracking. Nanotechnology-based approaches, including magnetic cell sorting, fluorescent tagging, and drug or biomolecule conjugation for delivery, have enhanced precision in stem cell isolation and guided cell migration, increasing the therapeutic potential. Recent studies have focused on using nanomaterials and scaffolds to drive stem cell differentiation by activating specific molecular pathways, achieved through embedding biomolecules within the scaffold or through the scaffold's material composition and structure alone. These innovations hold promise in therapeutic applications across various diseases, including cancer stem cell targeting, neurodegenerative disorders, pre-eclampsia, cardiovascular conditions, and organoid development. This review examines recent advancements in the field, explores potential applications like biosensors and nanochips, and highlights the challenges and research gaps.
{"title":"Nanotechnology at the crossroads of stem cell medicine","authors":"Sweny Jain, Jay Bhatt, Sharad Gupta and Dhiraj Devidas Bhatia","doi":"10.1039/D4BM01257G","DOIUrl":"10.1039/D4BM01257G","url":null,"abstract":"<p >Nanotechnology in stem cell medicine is an interdisciplinary field which has gained a lot of interest recently. This domain addresses key challenges associated with stem cell medicine such as cell isolation, targeted delivery, and tracking. Nanotechnology-based approaches, including magnetic cell sorting, fluorescent tagging, and drug or biomolecule conjugation for delivery, have enhanced precision in stem cell isolation and guided cell migration, increasing the therapeutic potential. Recent studies have focused on using nanomaterials and scaffolds to drive stem cell differentiation by activating specific molecular pathways, achieved through embedding biomolecules within the scaffold or through the scaffold's material composition and structure alone. These innovations hold promise in therapeutic applications across various diseases, including cancer stem cell targeting, neurodegenerative disorders, pre-eclampsia, cardiovascular conditions, and organoid development. This review examines recent advancements in the field, explores potential applications like biosensors and nanochips, and highlights the challenges and research gaps.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 1","pages":" 161-178"},"PeriodicalIF":5.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most biological materials used in the body undergo protein adsorption, which alters their biological functions. Previously, we introduced surface-degradable hydrogels as adsorbed protein-removing surfaces. However, only a few surface renewals were possible because of the hydrophilic nature of the hydrogels, which accelerated their degradation. In this research, we introduced thermoresponsive properties of hydrogels for limited degradation for protein removal. Hydrogels were synthesized by the radical polymerization of N-isopropylacrylamide (NIPAAm), 2-methylene-1,3-dioxepane, and poly(ethylene glycol) monomethacrylate (PEGMA). The synthesized hydrogels demonstrated thermoresponsive behavior derived from poly(NIPAAm). At 10 °C, the hydrogels swelled and exhibited bulk degradation. After 2 h, the prepared hydrogels were degraded completely. However, at 37 °C, the hydrogels shrunk and showed surface degradation. After 7 h of degradation, the swelling ratio of the hydrogels changed marginally. The proteins adsorbed on the hydrogel surfaces were removed via surface degradation. However, the fluorescence intensity of adsorbed proteins increased on the hydrogel surfaces without degradable functions. In addition, the fluorescence intensity of adsorbed proteins increased in the hydrogels without PEG graft chains, suggesting that the prepared thermoresponsive hydrogels with PEG chains could be used as potential biomaterial surface coating materials, exhibiting regenerative low-fouling ability.
{"title":"Thermoresponsive degradable hydrogels with renewable surfaces for protein removal†","authors":"Syuuhei Komatsu, Naoki Kamei and Akihiko Kikuchi","doi":"10.1039/D4BM01383B","DOIUrl":"10.1039/D4BM01383B","url":null,"abstract":"<p >Most biological materials used in the body undergo protein adsorption, which alters their biological functions. Previously, we introduced surface-degradable hydrogels as adsorbed protein-removing surfaces. However, only a few surface renewals were possible because of the hydrophilic nature of the hydrogels, which accelerated their degradation. In this research, we introduced thermoresponsive properties of hydrogels for limited degradation for protein removal. Hydrogels were synthesized by the radical polymerization of <em>N</em>-isopropylacrylamide (NIPAAm), 2-methylene-1,3-dioxepane, and poly(ethylene glycol) monomethacrylate (PEGMA). The synthesized hydrogels demonstrated thermoresponsive behavior derived from poly(NIPAAm). At 10 °C, the hydrogels swelled and exhibited bulk degradation. After 2 h, the prepared hydrogels were degraded completely. However, at 37 °C, the hydrogels shrunk and showed surface degradation. After 7 h of degradation, the swelling ratio of the hydrogels changed marginally. The proteins adsorbed on the hydrogel surfaces were removed <em>via</em> surface degradation. However, the fluorescence intensity of adsorbed proteins increased on the hydrogel surfaces without degradable functions. In addition, the fluorescence intensity of adsorbed proteins increased in the hydrogels without PEG graft chains, suggesting that the prepared thermoresponsive hydrogels with PEG chains could be used as potential biomaterial surface coating materials, exhibiting regenerative low-fouling ability.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 1","pages":" 324-329"},"PeriodicalIF":5.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/bm/d4bm01383b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Riccardo Rizzo, Dylan M. Barber, Jackson K. Wilt, Alexander J. Ainscough and Jennifer A. Lewis
Light-based patterning of synthetic and biological hydrogels enables precise spatial and temporal control over the formation of chemical bonds. However, photoinitiators are typically used to generate free radicals, which are detrimental to human cells. Here, we report a photoinitiator- and radical-free method based on ortho-nitrobenzyl alcohol (oNBA) photolysis, which gives rise to highly reactive nitroso and benzaldehyde groups. Synthetic hydrogel and pristine protein networks can rapidly form in the presence of these photo-generated reactive species. Thiol -oNBA bonds yield dynamic hydrogel networks (DHNs) via N-semimercaptal linkages that exhibit thixotropy, stress relaxation, and on-demand reversible gel-to-liquid transitions, while amine-oNBA bonds can be exploited to crosslink pristine proteins, such as gelatin and fibrinogen, by targeting their primary amines. Since this approach does not require incorporation of photoreactive moieties along the backbone, the resulting crosslinked proteins are well suited for bioadhesives. Our photoinitiator-free platform provides a versatile approach for rapidly creating synthetic and biological hydrogels for applications ranging from tissue engineering to biomedical devices.
{"title":"Photoinitiator-free light-mediated crosslinking of dynamic polymer and pristine protein networks†","authors":"Riccardo Rizzo, Dylan M. Barber, Jackson K. Wilt, Alexander J. Ainscough and Jennifer A. Lewis","doi":"10.1039/D4BM00849A","DOIUrl":"10.1039/D4BM00849A","url":null,"abstract":"<p >Light-based patterning of synthetic and biological hydrogels enables precise spatial and temporal control over the formation of chemical bonds. However, photoinitiators are typically used to generate free radicals, which are detrimental to human cells. Here, we report a photoinitiator- and radical-free method based on <em>ortho</em>-nitrobenzyl alcohol (<em>o</em>NBA) photolysis, which gives rise to highly reactive nitroso and benzaldehyde groups. Synthetic hydrogel and pristine protein networks can rapidly form in the presence of these photo-generated reactive species. Thiol -<em>o</em>NBA bonds yield dynamic hydrogel networks (DHNs) <em>via N</em>-semimercaptal linkages that exhibit thixotropy, stress relaxation, and on-demand reversible gel-to-liquid transitions, while amine-<em>o</em>NBA bonds can be exploited to crosslink pristine proteins, such as gelatin and fibrinogen, by targeting their primary amines. Since this approach does not require incorporation of photoreactive moieties along the backbone, the resulting crosslinked proteins are well suited for bioadhesives. Our photoinitiator-free platform provides a versatile approach for rapidly creating synthetic and biological hydrogels for applications ranging from tissue engineering to biomedical devices.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 1","pages":" 210-222"},"PeriodicalIF":5.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiaolin Chen, Kang Wu, Jinrong Yao, Zhengzhong Shao and Xin Chen
Silk fibroin is a naturally abundant biomaterial renowned for its excellent biocompatibility and biodegradability, making it a promising candidate for biomedical applications like wound dressings. However, traditional silk fibroin materials often lack sufficient mechanical strength, adhesion, and the ability to modulate inflammation and oxidative stress—factors crucial for effective wound healing. To address these limitations, regenerated silk fibroin/magnesium ion [RSF/Mg(II)] composite films were developed by incorporating Mg(II) ions into RSF solutions. These films were characterized using Raman spectroscopy, mechanical testing, and biocompatibility assessments, and their wound-healing efficacy was evaluated in a mouse skin defect model. The RSF/Mg(II) composite films exhibited superior adhesion, higher transparency, and enhanced mechanical flexibility compared to pristine RSF films. They also demonstrated anti-inflammatory and antioxidative properties, effectively reducing cell apoptosis and reactive oxygen species levels in vitro. In vivo, the RSF/Mg Mg(II) composite films significantly accelerated wound healing in mice, improving epidermal thickness, collagen deposition, and promoting blood vessel formation. This study highlights the potential of RSF/Mg(II) composite films as advanced wound dressings with improved biocompatibility and biological activity, offering valuable insights for the development of Mg(II) ion-based biomaterials in wound healing and tissue regeneration applications.
{"title":"Adhesive silk fibroin/magnesium composite films and their application for removable wound dressing†","authors":"Qiaolin Chen, Kang Wu, Jinrong Yao, Zhengzhong Shao and Xin Chen","doi":"10.1039/D4BM01411A","DOIUrl":"10.1039/D4BM01411A","url":null,"abstract":"<p >Silk fibroin is a naturally abundant biomaterial renowned for its excellent biocompatibility and biodegradability, making it a promising candidate for biomedical applications like wound dressings. However, traditional silk fibroin materials often lack sufficient mechanical strength, adhesion, and the ability to modulate inflammation and oxidative stress—factors crucial for effective wound healing. To address these limitations, regenerated silk fibroin/magnesium ion [RSF/Mg(<small>II</small>)] composite films were developed by incorporating Mg(<small>II</small>) ions into RSF solutions. These films were characterized using Raman spectroscopy, mechanical testing, and biocompatibility assessments, and their wound-healing efficacy was evaluated in a mouse skin defect model. The RSF/Mg(<small>II</small>) composite films exhibited superior adhesion, higher transparency, and enhanced mechanical flexibility compared to pristine RSF films. They also demonstrated anti-inflammatory and antioxidative properties, effectively reducing cell apoptosis and reactive oxygen species levels <em>in vitro</em>. <em>In vivo</em>, the RSF/Mg Mg(<small>II</small>) composite films significantly accelerated wound healing in mice, improving epidermal thickness, collagen deposition, and promoting blood vessel formation. This study highlights the potential of RSF/Mg(<small>II</small>) composite films as advanced wound dressings with improved biocompatibility and biological activity, offering valuable insights for the development of Mg(<small>II</small>) ion-based biomaterials in wound healing and tissue regeneration applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 1","pages":" 287-298"},"PeriodicalIF":5.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Hao, Haixia Ji, Li Gao, Zhican Qu, Yinghu Zhao, Jiahui Chen, Xintao Wang, Xiaokai Ma, Guangyu Zhang and Taotao Zhang
The popularity of medicinal plants, which have a unique system and are mostly used in compound form for the prevention and treatment of a wide range of diseases, is growing worldwide. In recent years, with advances in chemical separation and structural analysis techniques, many of the major bioactive molecules of medicinal plants have been identified. However, the active ingredients in medicinal plants often possess chemical characteristics, including poor water solubility, stability and bioavailability, which limit their therapeutic applications. To address this problem, self-assembly of small molecules from medicinal food sources provides a new strategy. Driven by various types of acting forces, medicinal small molecules with modifiable groups, multiple sites of action, hydrophobic side chains, and rigid backbones with self-assembly properties are able to form various supramolecular network hydrogels, nanoparticles, micelles, and other self-assemblies. This review first summarizes the forms of self-assemblies such as supramolecular network hydrogels, nanoparticles, and micelles at the level of the action site, and discusses the recent studies on the active ingredients in medicinal plants that can be used for self-assembly, in addition to summarizing the advantages of self-assemblies for a variety of disease applications, including wound healing, antitumor, anticancer, and diabetes mellitus. Finally, the problems of self-assemblers and the possible directions for future development are presented. We firmly believe that self-assemblers have the potential to develop effective compounds from drug-food homologous plants, providing valuable information for drug research and new strategies and perspectives for the modernization of Chinese medicine.
{"title":"Self-assembled carrier-free formulations based on medicinal and food active ingredients","authors":"Yuan Hao, Haixia Ji, Li Gao, Zhican Qu, Yinghu Zhao, Jiahui Chen, Xintao Wang, Xiaokai Ma, Guangyu Zhang and Taotao Zhang","doi":"10.1039/D4BM00893F","DOIUrl":"10.1039/D4BM00893F","url":null,"abstract":"<p >The popularity of medicinal plants, which have a unique system and are mostly used in compound form for the prevention and treatment of a wide range of diseases, is growing worldwide. In recent years, with advances in chemical separation and structural analysis techniques, many of the major bioactive molecules of medicinal plants have been identified. However, the active ingredients in medicinal plants often possess chemical characteristics, including poor water solubility, stability and bioavailability, which limit their therapeutic applications. To address this problem, self-assembly of small molecules from medicinal food sources provides a new strategy. Driven by various types of acting forces, medicinal small molecules with modifiable groups, multiple sites of action, hydrophobic side chains, and rigid backbones with self-assembly properties are able to form various supramolecular network hydrogels, nanoparticles, micelles, and other self-assemblies. This review first summarizes the forms of self-assemblies such as supramolecular network hydrogels, nanoparticles, and micelles at the level of the action site, and discusses the recent studies on the active ingredients in medicinal plants that can be used for self-assembly, in addition to summarizing the advantages of self-assemblies for a variety of disease applications, including wound healing, antitumor, anticancer, and diabetes mellitus. Finally, the problems of self-assemblers and the possible directions for future development are presented. We firmly believe that self-assemblers have the potential to develop effective compounds from drug-food homologous plants, providing valuable information for drug research and new strategies and perspectives for the modernization of Chinese medicine.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 24","pages":" 6253-6273"},"PeriodicalIF":5.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The failure to treat deep skin wounds can result in significant complications, and the limitations of current clinical treatments highlight the pressing need for the development of new deep wound healing materials. In this study, a series of three-dimensional structured PLCL/ADM composite aerogels were fabricated by electrospinning and subsequently characterized for their microstructure, compression mechanics, exudate absorption, and hemostatic properties. Additionally, the growth of HSFs and HUVECs, which are involved in wound repair, was observed in the aerogels. The composite aerogel was subsequently employed in wound repair experiments on rat full-thickness skin with the objective of observing the wound healing rate and examining histological utilizing H&E, Masson, CD31, and COL-I staining. The findings indicated that the PLCL/ADM composite aerogel with a 10% concentration exhibited uniform pore size distribution, a good three-dimensional structure, and compression properties comparable to those of human skin, which could effectively absorb exudate and exert hemostatic effect. In vivo experiment results demonstrated that the aerogel exhibited superior efficacy to conventional oil-gauze overlay therapy and ADM aerogel in promoting wound healing and could facilitate rapid, high-quality in situ repair of deep wounds, thereby offering a novel approach for skin tissue engineering and clinical wound treatment.
{"title":"Three-dimensional structured PLCL/ADM bioactive aerogel for rapid repair of full-thickness skin defects†","authors":"Xuchao Ning, Runjia Wang, Na Liu, Yong You, Yawen Wang, Jing Wang, Yuanfei Wang, Zhenyu Chen, Haiguang Zhao and Tong Wu","doi":"10.1039/D4BM01214C","DOIUrl":"10.1039/D4BM01214C","url":null,"abstract":"<p >The failure to treat deep skin wounds can result in significant complications, and the limitations of current clinical treatments highlight the pressing need for the development of new deep wound healing materials. In this study, a series of three-dimensional structured PLCL/ADM composite aerogels were fabricated by electrospinning and subsequently characterized for their microstructure, compression mechanics, exudate absorption, and hemostatic properties. Additionally, the growth of HSFs and HUVECs, which are involved in wound repair, was observed in the aerogels. The composite aerogel was subsequently employed in wound repair experiments on rat full-thickness skin with the objective of observing the wound healing rate and examining histological utilizing H&E, Masson, CD31, and COL-I staining. The findings indicated that the PLCL/ADM composite aerogel with a 10% concentration exhibited uniform pore size distribution, a good three-dimensional structure, and compression properties comparable to those of human skin, which could effectively absorb exudate and exert hemostatic effect. <em>In vivo</em> experiment results demonstrated that the aerogel exhibited superior efficacy to conventional oil-gauze overlay therapy and ADM aerogel in promoting wound healing and could facilitate rapid, high-quality <em>in situ</em> repair of deep wounds, thereby offering a novel approach for skin tissue engineering and clinical wound treatment.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 24","pages":" 6325-6337"},"PeriodicalIF":5.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}