首页 > 最新文献

Journal of the American Society for Mass Spectrometry最新文献

英文 中文
Design and Implementation of a Desorption Electro-flow Focusing Sprayer on an Orbitrap Mass Spectrometer for DESI Mass Spectrometry Imaging at High Spatial Resolution and at High Speed. 在轨道阱质谱仪上设计和实现解吸电流聚焦喷雾器,以实现高空间分辨率和高速 DESI 质谱成像。
IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-05 Epub Date: 2024-10-02 DOI: 10.1021/jasms.4c00341
Carl Frederik Marc Hansen, Lukas Dobrovolskis, Christian Janfelt

Since desorption electrospray ionization mass spectrometry (DESI-MS) was first presented in 2004, the fundamental design of the sprayer has undergone relatively minor modifications. This changed in 2022 when Takats and co-workers implemented the desorption electro-flow focusing (DEFFI) sprayer design by modifying the sprayer from a commercial DESI system, leading to significantly improved spatial resolution and robustness compared with the traditional DESI-MSI sprayer design. Here, we present the design of a new DEFFI sprayer that can be built from standard fittings and connectors in combination with an aluminum spray head that can be machined in most mechanic workshops. The new design represents a cost-efficient approach to improved DESI-MSI on mass spectrometers from all vendors, including high-resolution instruments such as Orbitraps and FT-ICR. The new DEFFI sprayer is demonstrated on a QExactive Orbitrap mass spectrometer, resulting in a massively improved ion yield compared with the classic DESI sprayer. The improved ion yield enables DESI-MSI at ion injection times down to 5 ms, allowing for DESI-MSI at a potentially very high speed. More importantly, the DEFFI sprayer delivers a more robust and focused spray, which is easier to use and requires less optimization. It provides high spatial resolution with limited effort compared with previous modifications of the traditional DESI design. Imaging of rat testis was performed at pixel sizes down to 12 μm, suggesting a spatial resolution of approximately 30 μm, which may have potential for further improvement.

自 2004 年首次提出解吸电喷雾电离质谱法(DESI-MS)以来,喷雾器的基本设计经历了相对较小的修改。这种情况在2022年发生了改变,当时Takats及其合作者通过修改商用DESI系统的喷雾器,实现了解吸电流聚焦(DEFFI)喷雾器的设计,与传统的DESI-MSI喷雾器设计相比,空间分辨率和稳健性得到了显著提高。在这里,我们介绍了一种新型 DEFFI 喷雾器的设计,这种喷雾器可以用标准配件和连接器与铝制喷头组合而成,而铝制喷头可以在大多数机械车间加工。新设计代表了在所有供应商的质谱仪(包括 Orbitraps 和 FT-ICR 等高分辨率仪器)上改进 DESI-MSI 的一种经济高效的方法。新型 DEFFI 喷雾器在 QExactive Orbitrap 质谱仪上进行了演示,与传统 DESI 喷雾器相比,离子产率大幅提高。离子产量的提高使DESI-MSI的离子注入时间缩短至5毫秒,从而实现了DESI-MSI的高速化。更重要的是,DEFFI 喷雾器提供了更坚固、更集中的喷雾,更易于使用,需要的优化也更少。与之前对传统 DESI 设计的修改相比,它能以有限的努力提供高空间分辨率。对大鼠睾丸的成像像素可低至 12 μm,表明空间分辨率约为 30 μm,有进一步提高的潜力。
{"title":"Design and Implementation of a Desorption Electro-flow Focusing Sprayer on an Orbitrap Mass Spectrometer for DESI Mass Spectrometry Imaging at High Spatial Resolution and at High Speed.","authors":"Carl Frederik Marc Hansen, Lukas Dobrovolskis, Christian Janfelt","doi":"10.1021/jasms.4c00341","DOIUrl":"10.1021/jasms.4c00341","url":null,"abstract":"<p><p>Since desorption electrospray ionization mass spectrometry (DESI-MS) was first presented in 2004, the fundamental design of the sprayer has undergone relatively minor modifications. This changed in 2022 when Takats and co-workers implemented the desorption electro-flow focusing (DEFFI) sprayer design by modifying the sprayer from a commercial DESI system, leading to significantly improved spatial resolution and robustness compared with the traditional DESI-MSI sprayer design. Here, we present the design of a new DEFFI sprayer that can be built from standard fittings and connectors in combination with an aluminum spray head that can be machined in most mechanic workshops. The new design represents a cost-efficient approach to improved DESI-MSI on mass spectrometers from all vendors, including high-resolution instruments such as Orbitraps and FT-ICR. The new DEFFI sprayer is demonstrated on a QExactive Orbitrap mass spectrometer, resulting in a massively improved ion yield compared with the classic DESI sprayer. The improved ion yield enables DESI-MSI at ion injection times down to 5 ms, allowing for DESI-MSI at a potentially very high speed. More importantly, the DEFFI sprayer delivers a more robust and focused spray, which is easier to use and requires less optimization. It provides high spatial resolution with limited effort compared with previous modifications of the traditional DESI design. Imaging of rat testis was performed at pixel sizes down to 12 μm, suggesting a spatial resolution of approximately 30 μm, which may have potential for further improvement.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"473-482"},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved LC-MS Detection of Opioids, Amphetamines, and Psychedelics Using TrEnDi.
IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-05 Epub Date: 2025-02-03 DOI: 10.1021/jasms.4c00382
Christian A Rosales, Noah A Lepinsky, Wondewossen Gebeyehu, Karl V Wasslen, Fraser Colquhoun, Benjamin B Warnes, Jasmine Chihabi, Jeffrey M Manthorpe, Jeffrey C Smith

Substances of misuse are becoming increasingly difficult to analyze as unique methods of smuggling are adopted and due to the rapid emergence of new psychoactive substances, increasing the pool of compounds to characterize and identify. Technologies such as gas chromatography and liquid chromatography coupled to mass spectrometry (MS) represent the gold standard for accurate and robust analysis, with on-site ambient- and portable-MS systems providing rapid methods of drug screening and testing. For many samples containing residual analyte quantities, methods to improve sensitivity through chemical derivatization are critical for accurate determination. Herein, we demonstrate for the first time the use of trimethylation enhancement using diazomethane (TrEnDi) to improve the MS-based sensitivity of 13 different drugs of misuse. All analytes were successfully permethylated, with 11 demonstrating improved analytical characteristics from TrEnDi with MS sensitivity enhancements ranging from 1.2-fold to as high as 24.2-fold in the case of psilocybin, as well as increases in reversed-phase chromatographic retention for most species. Derivatization using 13C-isotopically labeled TrEnDi reagents were used to successfully resolve isobaric interference issues between three pairs of controlled substances. By using an unconventional aprotic solvent system for electrospray ionization, the benefit of a fixed-permanent positive charge was highlighted as TrEnDi-modified amphetamine was easily measured while unmodified was not detected. Finally, TrEnDi was employed to boost the sensitivity of morphine in a real urine matrix. Our results demonstrate a percent recovery of 103.1% and a sensitivity enhancement of 2.4-fold, demonstrating the versatility and applicability of TrEnDi to pre-existing analytical workflows for trace analysis.

{"title":"Improved LC-MS Detection of Opioids, Amphetamines, and Psychedelics Using TrEnDi.","authors":"Christian A Rosales, Noah A Lepinsky, Wondewossen Gebeyehu, Karl V Wasslen, Fraser Colquhoun, Benjamin B Warnes, Jasmine Chihabi, Jeffrey M Manthorpe, Jeffrey C Smith","doi":"10.1021/jasms.4c00382","DOIUrl":"10.1021/jasms.4c00382","url":null,"abstract":"<p><p>Substances of misuse are becoming increasingly difficult to analyze as unique methods of smuggling are adopted and due to the rapid emergence of new psychoactive substances, increasing the pool of compounds to characterize and identify. Technologies such as gas chromatography and liquid chromatography coupled to mass spectrometry (MS) represent the gold standard for accurate and robust analysis, with on-site ambient- and portable-MS systems providing rapid methods of drug screening and testing. For many samples containing residual analyte quantities, methods to improve sensitivity through chemical derivatization are critical for accurate determination. Herein, we demonstrate for the first time the use of trimethylation enhancement using diazomethane (TrEnDi) to improve the MS-based sensitivity of 13 different drugs of misuse. All analytes were successfully permethylated, with 11 demonstrating improved analytical characteristics from TrEnDi with MS sensitivity enhancements ranging from 1.2-fold to as high as 24.2-fold in the case of psilocybin, as well as increases in reversed-phase chromatographic retention for most species. Derivatization using <sup>13</sup>C-isotopically labeled TrEnDi reagents were used to successfully resolve isobaric interference issues between three pairs of controlled substances. By using an unconventional aprotic solvent system for electrospray ionization, the benefit of a fixed-permanent positive charge was highlighted as TrEnDi-modified amphetamine was easily measured while unmodified was not detected. Finally, TrEnDi was employed to boost the sensitivity of morphine in a real urine matrix. Our results demonstrate a percent recovery of 103.1% and a sensitivity enhancement of 2.4-fold, demonstrating the versatility and applicability of TrEnDi to pre-existing analytical workflows for trace analysis.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"514-523"},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Bunching Ionizer for TOF Mass Spectrometers with Reduced Resources.
IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-05 Epub Date: 2025-02-10 DOI: 10.1021/jasms.4c00436
Oya Kawashima, Satoshi Kasahara, Yoshifumi Saito, Masafumi Hirahara, Kazushi Asamura, Shoichiro Yokota

In some types of mass spectrometers, such as time-of-flight mass spectrometers (TOF-MSs), it is necessary to control pulsed beams of ions. This can be easily accomplished by applying a pulsed voltage to the pusher electrode while the ionizer is continuously flowing ions. This method is preferred for its simplicity, although the ion utilization efficiency is not optimized. Here we employed another pulse-control method with a higher ion utilization rate, which is to bunch ions and kick them out instead of letting them stream. The benefit of this method is that higher sensitivity can be achieved; since the start of new ions cannot be allowed during TOF separation, it is highly advantageous to bunch ions that would otherwise be unusable. In this study, we used analytical and numerical methods to design a new bunching ionizer with reduced resources, adopting the principle of the electrostatic ion beam trap. The test model experimentally demonstrated the bunching performance with respect to the sample gas density and ion bunching time using gas samples and electron impact ionization. We also conducted an experiment connecting the newly developed bunching ionizer with a miniature TOF-MS. As a result, the sensitivity was improved by an order of magnitude compared to the case using a nonbunching ionizer. Since the device is capable of bunching ions with low voltage and power consumption, it will be possible to find applications in portable mass spectrometers with reduced resources.

在某些类型的质谱仪中,例如飞行时间质谱仪(TOF-MS),有必要控制脉冲离子束。在离子发生器持续产生离子流的同时,向推动电极施加脉冲电压,就能轻松实现这一目的。这种方法因其简便性而备受青睐,但离子利用效率却无法达到最佳。在这里,我们采用了另一种具有更高离子利用率的脉冲控制方法,即串联离子并将其踢出,而不是让其流动。这种方法的好处是可以获得更高的灵敏度;由于在 TOF 分离过程中不允许有新的离子产生,因此对那些无法利用的离子进行串联是非常有利的。在这项研究中,我们利用分析和数值方法,采用静电离子束阱的原理,设计了一种可减少资源的新型束离子器。测试模型利用气体样品和电子撞击电离,通过实验证明了与样品气体密度和离子束时间有关的束化性能。我们还将新开发的束离子器与微型 TOF-MS 连接起来进行了实验。结果,与使用非束离子器的情况相比,灵敏度提高了一个数量级。由于该装置能够在低电压和低功耗的条件下束缚离子,因此有可能在资源减少的便携式质谱仪中得到应用。
{"title":"Development of a Bunching Ionizer for TOF Mass Spectrometers with Reduced Resources.","authors":"Oya Kawashima, Satoshi Kasahara, Yoshifumi Saito, Masafumi Hirahara, Kazushi Asamura, Shoichiro Yokota","doi":"10.1021/jasms.4c00436","DOIUrl":"10.1021/jasms.4c00436","url":null,"abstract":"<p><p>In some types of mass spectrometers, such as time-of-flight mass spectrometers (TOF-MSs), it is necessary to control pulsed beams of ions. This can be easily accomplished by applying a pulsed voltage to the pusher electrode while the ionizer is continuously flowing ions. This method is preferred for its simplicity, although the ion utilization efficiency is not optimized. Here we employed another pulse-control method with a higher ion utilization rate, which is to bunch ions and kick them out instead of letting them stream. The benefit of this method is that higher sensitivity can be achieved; since the start of new ions cannot be allowed during TOF separation, it is highly advantageous to bunch ions that would otherwise be unusable. In this study, we used analytical and numerical methods to design a new bunching ionizer with reduced resources, adopting the principle of the electrostatic ion beam trap. The test model experimentally demonstrated the bunching performance with respect to the sample gas density and ion bunching time using gas samples and electron impact ionization. We also conducted an experiment connecting the newly developed bunching ionizer with a miniature TOF-MS. As a result, the sensitivity was improved by an order of magnitude compared to the case using a nonbunching ionizer. Since the device is capable of bunching ions with low voltage and power consumption, it will be possible to find applications in portable mass spectrometers with reduced resources.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"553-564"},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Highly Efficient and Automated Magnetic Bead Extraction Method Overcomes the Matrix Effect in LC-MS/MS Analysis of Human Serum Steroid Hormones.
IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-05 DOI: 10.1021/jasms.4c00338
Xiaoyi Yi, Xiaojing Huang, Yufeng Xiong, Yingsong Wu

Profiling of steroid hormones is incredibly valuable in clinical settings for diagnosing endocrine disorders. However, the presence of matrix effects and labor-intensive manual work in LC-MS/MS analysis has hindered its routine application. In the present study, a highly efficient and automated magnetic bead extraction method was developed to address matrix effects and quantitatively profile 15 steroid hormones in human serum. Octadecyl (C18) and N-vinylpyrrolidone divinylbenzene (HLB) modified magnetic beads were compared for enriching steroids from human serum. Following enrichment, the beads were separated using a magnetic field; the matrix was cleaned, and the steroid hormones were eluted from the beads for LC-MS/MS analysis. This entire process of enrichment, cleanup, and elution was conducted automatically, making it simple, fast, and cost-effective. The results indicated that steroid hormones could be selectively enriched from human serum in just 1 min using C18 magnetic beads. The absolute matrix effect, evaluated as the relative response between human serum matrix and methanol solution, ranged from 89.2% to 113.1% for low levels, from 82.3% to 112.0% for medium levels, and from 91.7% to 111.0% for high levels. The intrabatch coefficients of variation (CVs) and interbatch CVs were between 3.1% and 13.4% and between 3.0% and 13.7%, respectively. Recoveries were between 87.6% and 114.3% for low levels, 94.0% and 105.0% for medium levels, and 91.9% and 111.7% for high levels. The clinical application was demonstrated by profiling steroid hormones in 160 pregnant women at various gestational weeks. The results suggested that the automated magnetic bead extraction method for LC-MS/MS could effectively address matrix effects in profiling steroid hormones. To our knowledge, this is the first automated magnetic bead extraction method for LC-MS/MS profiling of steroid hormones in clinical practice.

{"title":"A Highly Efficient and Automated Magnetic Bead Extraction Method Overcomes the Matrix Effect in LC-MS/MS Analysis of Human Serum Steroid Hormones.","authors":"Xiaoyi Yi, Xiaojing Huang, Yufeng Xiong, Yingsong Wu","doi":"10.1021/jasms.4c00338","DOIUrl":"https://doi.org/10.1021/jasms.4c00338","url":null,"abstract":"<p><p>Profiling of steroid hormones is incredibly valuable in clinical settings for diagnosing endocrine disorders. However, the presence of matrix effects and labor-intensive manual work in LC-MS/MS analysis has hindered its routine application. In the present study, a highly efficient and automated magnetic bead extraction method was developed to address matrix effects and quantitatively profile 15 steroid hormones in human serum. Octadecyl (C18) and <i>N</i>-vinylpyrrolidone divinylbenzene (HLB) modified magnetic beads were compared for enriching steroids from human serum. Following enrichment, the beads were separated using a magnetic field; the matrix was cleaned, and the steroid hormones were eluted from the beads for LC-MS/MS analysis. This entire process of enrichment, cleanup, and elution was conducted automatically, making it simple, fast, and cost-effective. The results indicated that steroid hormones could be selectively enriched from human serum in just 1 min using C18 magnetic beads. The absolute matrix effect, evaluated as the relative response between human serum matrix and methanol solution, ranged from 89.2% to 113.1% for low levels, from 82.3% to 112.0% for medium levels, and from 91.7% to 111.0% for high levels. The intrabatch coefficients of variation (CVs) and interbatch CVs were between 3.1% and 13.4% and between 3.0% and 13.7%, respectively. Recoveries were between 87.6% and 114.3% for low levels, 94.0% and 105.0% for medium levels, and 91.9% and 111.7% for high levels. The clinical application was demonstrated by profiling steroid hormones in 160 pregnant women at various gestational weeks. The results suggested that the automated magnetic bead extraction method for LC-MS/MS could effectively address matrix effects in profiling steroid hormones. To our knowledge, this is the first automated magnetic bead extraction method for LC-MS/MS profiling of steroid hormones in clinical practice.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Mitigation of Pyrolysis Products in Laser-Cut Paper for Paper Spray Mass Spectrometry.
IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-05 DOI: 10.1021/jasms.4c00499
Magnus Rydberg, Alexis Ochoa, Katherine Dayana Barrera Campos, Christine Skaggs, Ashur Rael, Nicholas Manicke

Paper spray mass spectrometry (PS-MS) often employs laser cutting to prepare paper substrates, potentially inducing localized thermal decomposition of the cellulose backbone. This work investigates how cellulose pyrolysis products and inherent background molecules within the paper affect PS-MS signal quality and evaluates paper pretreatment methods to enhance performance. Comparative analyses of laser-cut and razor-cut paper using mass spectrometry and ultraviolet-visible spectroscopy (UV-vis) showed significant differences. Laser-cut paper exhibited elevated MS blank signals and higher absorbance in the 200-400 nm UV region, indicating increased chemical abundance and complexity. Gas chromatography-mass spectrometry (GC-MS) identified over 20 residual compounds on laser-cut paper absent in razor-cut samples, half of which were identified as known cellulose pyrolysis products. Washing the paper substrates with methanol, water, or dilute nitric acid significantly reduced both pyrolysis products and background molecules, with water showing the most improvement. Analyses of morphine, fentanyl, methamphetamine, voriconazole, and fluconazole showed no reduction in the signal after washing, with fentanyl and methamphetamine exhibiting a significantly increased MS signal, regardless of the cutting method. This work reveals that while pyrolysis products from laser cutting contribute to increased chemical noise, inherent background molecules in the paper also play a significant role. A simple water wash mitigates both issues, potentially improving the overall PS-MS performance for a range of analytes.

{"title":"Identification and Mitigation of Pyrolysis Products in Laser-Cut Paper for Paper Spray Mass Spectrometry.","authors":"Magnus Rydberg, Alexis Ochoa, Katherine Dayana Barrera Campos, Christine Skaggs, Ashur Rael, Nicholas Manicke","doi":"10.1021/jasms.4c00499","DOIUrl":"https://doi.org/10.1021/jasms.4c00499","url":null,"abstract":"<p><p>Paper spray mass spectrometry (PS-MS) often employs laser cutting to prepare paper substrates, potentially inducing localized thermal decomposition of the cellulose backbone. This work investigates how cellulose pyrolysis products and inherent background molecules within the paper affect PS-MS signal quality and evaluates paper pretreatment methods to enhance performance. Comparative analyses of laser-cut and razor-cut paper using mass spectrometry and ultraviolet-visible spectroscopy (UV-vis) showed significant differences. Laser-cut paper exhibited elevated MS blank signals and higher absorbance in the 200-400 nm UV region, indicating increased chemical abundance and complexity. Gas chromatography-mass spectrometry (GC-MS) identified over 20 residual compounds on laser-cut paper absent in razor-cut samples, half of which were identified as known cellulose pyrolysis products. Washing the paper substrates with methanol, water, or dilute nitric acid significantly reduced both pyrolysis products and background molecules, with water showing the most improvement. Analyses of morphine, fentanyl, methamphetamine, voriconazole, and fluconazole showed no reduction in the signal after washing, with fentanyl and methamphetamine exhibiting a significantly increased MS signal, regardless of the cutting method. This work reveals that while pyrolysis products from laser cutting contribute to increased chemical noise, inherent background molecules in the paper also play a significant role. A simple water wash mitigates both issues, potentially improving the overall PS-MS performance for a range of analytes.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Quantification of Neuraminidase Activity by MALDI-TOF MS via On-Target Labeling of Its Substrate and Product.
IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-05 Epub Date: 2025-02-08 DOI: 10.1021/jasms.4c00446
Jiarui Li, Xi Lin, Hao Wang, Nan Zhao, Xinhua Guo

Neuraminidase (NA) is a kind of glycoside hydrolase enzyme, functioning to remove terminal sialic acid (Sia) from glycans which are located on the cell surface. NA plays an essential role in cell interactions with ligands, microbes, and other cells during physiological and pathological processes. Additionally, NA is a major target for developing anti-influenza drugs and influenza vaccines. Herein, a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) based method to quantify NA activity is demonstrated for the first time. A reactive matrix 2-hydrazinoquinoline (2-HQ) is used to on-target label the natural substrate (3-sialyllactose, 3'-SL) and its enzymatic product (Sia). The derivatization enhances the ionization efficiency of 3'-SL and Sia, especially in negative ion detection mode. Moreover, the lactose ion signals and noise are significantly suppressed. Consequently, NA activity in influenza vaccines has been successfully quantified by comparing the relative intensity of 2-HQ derivatized Sia and 3'-SL in the absence of an additional internal standard. Moreover, the inhibition efficiencies of NA inhibitors have also been measured. Due to its operating simplicity, high-throughput capacity, and quantification accuracy, the proposed method has potential to be applied for the detection of different kinds of NA activity to reveal the role of NA in immunity, vaccine, and infection processes.

{"title":"Rapid Quantification of Neuraminidase Activity by MALDI-TOF MS via On-Target Labeling of Its Substrate and Product.","authors":"Jiarui Li, Xi Lin, Hao Wang, Nan Zhao, Xinhua Guo","doi":"10.1021/jasms.4c00446","DOIUrl":"10.1021/jasms.4c00446","url":null,"abstract":"<p><p>Neuraminidase (NA) is a kind of glycoside hydrolase enzyme, functioning to remove terminal sialic acid (Sia) from glycans which are located on the cell surface. NA plays an essential role in cell interactions with ligands, microbes, and other cells during physiological and pathological processes. Additionally, NA is a major target for developing anti-influenza drugs and influenza vaccines. Herein, a matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) based method to quantify NA activity is demonstrated for the first time. A reactive matrix 2-hydrazinoquinoline (2-HQ) is used to on-target label the natural substrate (3-sialyllactose, 3'-SL) and its enzymatic product (Sia). The derivatization enhances the ionization efficiency of 3'-SL and Sia, especially in negative ion detection mode. Moreover, the lactose ion signals and noise are significantly suppressed. Consequently, NA activity in influenza vaccines has been successfully quantified by comparing the relative intensity of 2-HQ derivatized Sia and 3'-SL in the absence of an additional internal standard. Moreover, the inhibition efficiencies of NA inhibitors have also been measured. Due to its operating simplicity, high-throughput capacity, and quantification accuracy, the proposed method has potential to be applied for the detection of different kinds of NA activity to reveal the role of NA in immunity, vaccine, and infection processes.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"573-578"},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What Drives the Vehicle Mechanism? Protonation Isomer Interconversion of Arylamine Derivatives Probed with Solvent-Mediated Kinetics.
IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-05 Epub Date: 2025-02-12 DOI: 10.1021/jasms.4c00470
Boris Ucur, Oisin J Shiels, Alan T Maccarone, Stephen J Blanksby, Adam J Trevitt

Reactions with mobile protons occur under electrospray ionization (ESI) in many applications of mass spectrometry. Understanding how protonation isomers (protomers) form and how molecular structure influences protomer interconversion provides fundamental insight into ESI mechanisms, which can then be exploited to rationalize ion mobility and ion activation processes for robust analyte detection. Using ten arylamine protomer systems, this paper establishes the key substrate properties that influence protomer isomerism. Protomers from ten arylamines are separated by differential ion mobility spectrometry (DMS) mass spectrometry and identified by characteristic collision-induced dissociation mass spectra. These assignments are further rationalized using quantum chemical calculations (M06-2X/6-31G(2df,p)). Based on these assignments, mobility-selected protomers are then allowed to react with methanol vapor under atmospheric and reduced pressure conditions (2.5 mTorr, 300 K). The latter enabled measurements of the second-order rate coefficients for methanol-catalyzed protomer isomerization, which span 3.9 × 10-11-2 × 10-13 cm3 molecule-1 s-1. Double-hybrid quantum chemical calculations (DSD-PBEP86-D3(BJ)/aug-cc-pVDZ) show that the direction of proton transfer is controlled by protomer relative stability, whereas reaction rates are controlled by a key transition state that separates the protonation sites. Computational exploration of a larger substituted-arylamine test-set shows that the protomer proton affinity generally correlates with energy of the key transition state. Applying the Bell-Evans-Polanyi principle to this reaction set highlights that outliers in the predictive model correspond to transition states with significant displacements along the reaction coordinate. This archetype system of derivatized arylamines provides a foundation to understand how substrate functionalization influences protomer isomerism for ions during ESI and predicts protonation isomer distributions.

{"title":"What Drives the Vehicle Mechanism? Protonation Isomer Interconversion of Arylamine Derivatives Probed with Solvent-Mediated Kinetics.","authors":"Boris Ucur, Oisin J Shiels, Alan T Maccarone, Stephen J Blanksby, Adam J Trevitt","doi":"10.1021/jasms.4c00470","DOIUrl":"10.1021/jasms.4c00470","url":null,"abstract":"<p><p>Reactions with mobile protons occur under electrospray ionization (ESI) in many applications of mass spectrometry. Understanding how protonation isomers (protomers) form and how molecular structure influences protomer interconversion provides fundamental insight into ESI mechanisms, which can then be exploited to rationalize ion mobility and ion activation processes for robust analyte detection. Using ten arylamine protomer systems, this paper establishes the key substrate properties that influence protomer isomerism. Protomers from ten arylamines are separated by differential ion mobility spectrometry (DMS) mass spectrometry and identified by characteristic collision-induced dissociation mass spectra. These assignments are further rationalized using quantum chemical calculations (M06-2X/6-31G(2df,p)). Based on these assignments, mobility-selected protomers are then allowed to react with methanol vapor under atmospheric and reduced pressure conditions (2.5 mTorr, 300 K). The latter enabled measurements of the second-order rate coefficients for methanol-catalyzed protomer isomerization, which span 3.9 × 10<sup>-11</sup>-2 × 10<sup>-13</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>. Double-hybrid quantum chemical calculations (DSD-PBEP86-D3(BJ)/aug-cc-pVDZ) show that the direction of proton transfer is controlled by protomer relative stability, whereas reaction rates are controlled by a key transition state that separates the protonation sites. Computational exploration of a larger substituted-arylamine test-set shows that the protomer proton affinity generally correlates with energy of the key transition state. Applying the Bell-Evans-Polanyi principle to this reaction set highlights that outliers in the predictive model correspond to transition states with significant displacements along the reaction coordinate. This archetype system of derivatized arylamines provides a foundation to understand how substrate functionalization influences protomer isomerism for ions during ESI and predicts protonation isomer distributions.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"601-612"},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to "Advancing the Prediction of MS/MS Spectra Using Machine Learning".
IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-05 Epub Date: 2025-01-28 DOI: 10.1021/jasms.5c00001
Julia Nguyen, Richard Overstreet, Ethan King, Danielle Ciesielski
{"title":"Correction to \"Advancing the Prediction of MS/MS Spectra Using Machine Learning\".","authors":"Julia Nguyen, Richard Overstreet, Ethan King, Danielle Ciesielski","doi":"10.1021/jasms.5c00001","DOIUrl":"10.1021/jasms.5c00001","url":null,"abstract":"","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"627"},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling Readily Ionized and Robust Anionic Species: A Gateway to Enhanced Ionization Efficiency in ESI-MS Analysis.
IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-05 Epub Date: 2025-02-13 DOI: 10.1021/jasms.4c00400
Benjamin B Warnes, Jasmine Chihabi, Jeffrey M Manthorpe

Electrospray ionization mass spectrometry has long been a prevalent ionization method in the analysis of low volatility molecules with biological, environmental, and industrial relevance. To address analytical challenges associated with molecules suffering from low ionization efficiencies (IEs), chemical derivatization (CD) strategies have been developed and are frequently adopted into workflows. However, only a minute number of CD techniques have been developed for negative polarity. To address this disparity, we evaluated 27 anions based on three criteria: (1) IE relative to a sodium dodecyl sulfate (11 + Na+) internal standard; (2) stability to collision induced dissociation; (3) diagnostic tandem mass spectrometry behavior. Highly fluorous ions exhibiting weakly coordinating and hydrophobic properties displayed enhanced IE. Trifluoromethanesulfonyl-containing ions proved to be unexpectedly labile, while tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (23) and bis(nonafluoro-1-butane)sulfonimidate (25) were determined to be of optimal IE of 332% ± 25% and 939% ± 92%, respectively, and in tandem MS exhibited survival yields of 100% ± 0% and 72.6% ± 0.8% at -50 eV. 23 and 25 were also comparable in IE across several solvents, and combinations thereof, that are ubiquitous in liquid chromatography. Various salts of 25 were evaluated for cation effects, where the IE of 25 ranged from 939% ± 92% to 3195% ± 145% across K+, NH4+, Na+, and H+. Compared to tetra-n-butylammonium, tetra-n-butylphosphonium, and (4-methylphenyl)diphenylsulfonium cations, 25 displayed signal enhancements ranging from 136% ± 6% to 181% ± 14%, thereby making it an optimal candidate for CD development.

{"title":"Unveiling Readily Ionized and Robust Anionic Species: A Gateway to Enhanced Ionization Efficiency in ESI-MS Analysis.","authors":"Benjamin B Warnes, Jasmine Chihabi, Jeffrey M Manthorpe","doi":"10.1021/jasms.4c00400","DOIUrl":"10.1021/jasms.4c00400","url":null,"abstract":"<p><p>Electrospray ionization mass spectrometry has long been a prevalent ionization method in the analysis of low volatility molecules with biological, environmental, and industrial relevance. To address analytical challenges associated with molecules suffering from low ionization efficiencies (IEs), chemical derivatization (CD) strategies have been developed and are frequently adopted into workflows. However, only a minute number of CD techniques have been developed for negative polarity. To address this disparity, we evaluated 27 anions based on three criteria: (1) IE relative to a sodium dodecyl sulfate (<b>11</b> + Na<sup>+</sup>) internal standard; (2) stability to collision induced dissociation; (3) diagnostic tandem mass spectrometry behavior. Highly fluorous ions exhibiting weakly coordinating and hydrophobic properties displayed enhanced IE. Trifluoromethanesulfonyl-containing ions proved to be unexpectedly labile, while tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (<b>23</b>) and bis(nonafluoro-1-butane)sulfonimidate (<b>25</b>) were determined to be of optimal IE of 332% ± 25% and 939% ± 92%, respectively, and in tandem MS exhibited survival yields of 100% ± 0% and 72.6% ± 0.8% at -50 eV. <b>23</b> and <b>25</b> were also comparable in IE across several solvents, and combinations thereof, that are ubiquitous in liquid chromatography. Various salts of <b>25</b> were evaluated for cation effects, where the IE of <b>25</b> ranged from 939% ± 92% to 3195% ± 145% across K<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, Na<sup>+</sup>, and H<sup>+</sup>. Compared to tetra-<i>n</i>-butylammonium, tetra-<i>n</i>-butylphosphonium, and (4-methylphenyl)diphenylsulfonium cations, <b>25</b> displayed signal enhancements ranging from 136% ± 6% to 181% ± 14%, thereby making it an optimal candidate for CD development.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"524-533"},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143405092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Faces of Mass Spectrometry/Amanda Hummon.
IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-04 DOI: 10.1021/jasms.5c00052
Anne Brenner, J D Brookbank
{"title":"Faces of Mass Spectrometry/Amanda Hummon.","authors":"Anne Brenner, J D Brookbank","doi":"10.1021/jasms.5c00052","DOIUrl":"https://doi.org/10.1021/jasms.5c00052","url":null,"abstract":"","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the American Society for Mass Spectrometry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1