首页 > 最新文献

能源化学最新文献

英文 中文
Reversible Mn2+/Mn4+ double-electron redox in P3-type layer-structured sodium-ion cathode p3型层状结构钠离子阴极中Mn2+/Mn4+可逆双电子氧化还原
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-11-08 DOI: 10.1016/j.jechem.2023.10.047
Jie Zeng , Jian Bao , Ya Zhang , Xun-Lu Li , Cui Ma , Rui-Jie Luo , Chong-Yu Du , Xuan Xu , Zhe Mei , Zhe Qian , Yong-Ning Zhou

The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability. Oxygen redox can contribute extra capacity to increase energy density, but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release. In this work, reversible Mn2+/Mn4+ redox is realized in a P3-Na0.65Li0.2Co0.05Mn0.75O2 cathode material with high specific capacity and structure stability via Co substitution. The contribution of oxygen redox is suppressed significantly by reversible Mn2+/Mn4+ redox without sacrificing capacity, thus reducing lattice oxygen release and improving the structure stability. Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5–4.5 V vs. Na+/Na even at 10 C and after long-term cycling. It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range. The synergistic contributions of Mn2+/Mn4+, Co2+/Co3+, and O2−/(On)2− redox in P3-Na0.65Li0.2Co0.05Mn0.75O2 lead to a high reversible capacity of 215.0 mA h g−1 at 0.1 C with considerable cycle stability. The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries.

层状结构正极材料中阳离子氧化还原和氧氧化还原之间的平衡是钠电池获得高能量密度和良好循环稳定性的重要问题。氧氧化还原可以提供额外的容量来增加能量密度,但会导致晶格不稳定和晶格氧滑动和氧释放引起的容量衰退。本研究通过Co取代,在具有高比容量和结构稳定的P3-Na0.65Li0.2Co0.05Mn0.75O2正极材料中实现了Mn2+/Mn4+的可逆氧化还原。可逆的Mn2+/Mn4+氧化还原在不牺牲容量的情况下显著抑制了氧氧化还原的贡献,从而减少了晶格氧释放,提高了结构的稳定性。同步加速器x射线技术表明,即使在10℃和长期循环后,P3相在1.5-4.5 V vs. Na+/Na的宽电压窗下也能很好地保持。Co/ mn离子的电荷补偿作用在4.2 V以下电压区域,o离子的电荷补偿作用在整个电压范围。在P3-Na0.65Li0.2Co0.05Mn0.75O2中,Mn2+/Mn4+、Co2+/Co3+和O2−/(On)2−氧化还原的协同作用使其在0.1℃下具有215.0 mA h g−1的高可逆容量,并具有良好的循环稳定性。该策略为可充电电池的高容量正极材料的设计开辟了新的机会。
{"title":"Reversible Mn2+/Mn4+ double-electron redox in P3-type layer-structured sodium-ion cathode","authors":"Jie Zeng ,&nbsp;Jian Bao ,&nbsp;Ya Zhang ,&nbsp;Xun-Lu Li ,&nbsp;Cui Ma ,&nbsp;Rui-Jie Luo ,&nbsp;Chong-Yu Du ,&nbsp;Xuan Xu ,&nbsp;Zhe Mei ,&nbsp;Zhe Qian ,&nbsp;Yong-Ning Zhou","doi":"10.1016/j.jechem.2023.10.047","DOIUrl":"10.1016/j.jechem.2023.10.047","url":null,"abstract":"<div><p><span>The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability. Oxygen redox can contribute extra capacity to increase energy density, but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release. In this work, reversible Mn</span><sup>2+</sup>/Mn<sup>4+</sup> redox is realized in a P3-Na<sub>0.65</sub>Li<sub>0.2</sub>Co<sub>0.05</sub>Mn<sub>0.75</sub>O<sub>2</sub> cathode material with high specific capacity and structure stability via Co substitution. The contribution of oxygen redox is suppressed significantly by reversible Mn<sup>2+</sup>/Mn<sup>4+</sup> redox without sacrificing capacity, thus reducing lattice oxygen release and improving the structure stability. Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5–4.5 V vs. Na<sup>+</sup>/Na even at 10 C and after long-term cycling. It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range. The synergistic contributions of Mn<sup>2+</sup>/Mn<sup>4+</sup>, Co<sup>2+</sup>/Co<sup>3+</sup>, and O<sup>2−</sup>/(O<em><sub>n</sub></em>)<sup>2−</sup> redox in P3-Na<sub>0.65</sub>Li<sub>0.2</sub>Co<sub>0.05</sub>Mn<sub>0.75</sub>O<sub>2</sub> lead to a high reversible capacity of 215.0 mA h g<sup>−1</sup> at 0.1 C with considerable cycle stability. The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 79-88"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 模板化合成出氧、出氢过渡金属磷化物电催化剂
IF 13.1 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-11-08 DOI: 10.1016/j.jechem.2023.10.044
Rose Anne Acedera , Alicia Theresse Dumlao , DJ Donn Matienzo , Maricor Divinagracia , Julie Anne Paraggua , Po-Ya Abel Chuang , Joey Ocon

Transition metal phosphides (TMPs) have been regarded as alternative hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts owing to their comparable activity to those of noble metal-based catalysts. TMPs have been produced in various morphologies, including hollow and porous nanostructures, which are features deemed desirable for electrocatalytic materials. Templated synthesis routes are often responsible for such morphologies. This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods. A comprehensive review of the structure–property–performance of TMP-based HER and OER catalysts prepared using different templates is presented. The discussion proceeds according to application, first by HER and further divided among the types of templates used—from hard templates, sacrificial templates, and soft templates to the emerging dynamic hydrogen bubble template. OER catalysts are then reviewed and grouped according to their morphology. Finally, prospective research directions for the synthesis of hollow and porous TMP-based catalysts, such as improvements on both activity and stability of TMPs, design of environmentally benign templates and processes, and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations, are suggested.

过渡金属磷化物(TMPs)由于具有与贵金属基催化剂相当的活性,被认为是析氢反应(HER)和析氧反应(OER)的替代催化剂。TMPs具有多种形态,包括中空和多孔纳米结构,这是电催化材料所需要的特征。模板化的合成路径通常是造成这种形态的原因。本文综述了模板法合成tmp基OER和HER催化剂的最新进展和存在的挑战。综述了不同模板制备的tmp基HER和OER催化剂的结构性能。根据应用进行讨论,首先由HER进行讨论,并进一步划分使用的模板类型-从硬模板,牺牲模板和软模板到新兴的动态氢泡模板。然后对OER催化剂进行审查,并根据其形态进行分组。最后,展望了空心多孔TMPs催化剂合成的未来研究方向,如提高TMPs的活性和稳定性,设计环境友好型模板和工艺,以及通过先进的材料表征技术和理论计算分析反应机理。
{"title":"Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions","authors":"Rose Anne Acedera ,&nbsp;Alicia Theresse Dumlao ,&nbsp;DJ Donn Matienzo ,&nbsp;Maricor Divinagracia ,&nbsp;Julie Anne Paraggua ,&nbsp;Po-Ya Abel Chuang ,&nbsp;Joey Ocon","doi":"10.1016/j.jechem.2023.10.044","DOIUrl":"10.1016/j.jechem.2023.10.044","url":null,"abstract":"<div><p>Transition metal phosphides (TMPs) have been regarded as alternative hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts owing to their comparable activity to those of noble metal-based catalysts. TMPs have been produced in various morphologies, including hollow and porous nanostructures, which are features deemed desirable for electrocatalytic materials. Templated synthesis routes are often responsible for such morphologies. This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods. A comprehensive review of the structure–property–performance of TMP-based HER and OER catalysts prepared using different templates is presented. The discussion proceeds according to application, first by HER and further divided among the types of templates used—from hard templates, sacrificial templates, and soft templates to the emerging dynamic hydrogen bubble template. OER catalysts are then reviewed and grouped according to their morphology. Finally, prospective research directions for the synthesis of hollow and porous TMP-based catalysts, such as improvements on both activity and stability of TMPs, design of environmentally benign templates and processes, and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations, are suggested.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 646-669"},"PeriodicalIF":13.1,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing BiVO4 photoanode performance by insertion of an epitaxial BiFeO3 ferroelectric layer 通过插入外延BiFeO3铁电层提高BiVO4光阳极性能
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-11-07 DOI: 10.1016/j.jechem.2023.10.041
Haejin Jang , Yejoon Kim , Hojoong Choi , Jiwoong Yang , Yoonsung Jung , Sungkyun Choi , Donghyeon Lee , Ho Won Jang , Sanghan Lee

BiVO4 (BVO) is a promising material as the photoanode for use in photoelectrochemical applications. However, the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance. To address this, various modifications have been attempted, including the use of ferroelectric materials. Ferroelectric materials can form a permanent polarization within the layer, enhancing the separation and transport of photo-excited electron-hole pairs. In this study, we propose a novel approach by depositing an epitaxial BiFeO3 (BFO) thin film underneath the BVO thin film (BVO/BFO) to harness the ferroelectric property of BFO. The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination. As a result, the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density (0.65 mA cm−2) at 1.23 VRHE under the illumination compared to the bare BVO photoanodes (0.18 mA cm−2), which is consistent with the increase of the applied bias photon-to-current conversion efficiencies (ABPE) and the result of electrochemical impedance spectroscopy (EIS) analysis. These results can be attributed to the self-polarization exhibited by the inserted BFO thin film, which promoted the charge separation and transfer efficiency of the BVO photoanodes.

BiVO4 (BVO)是一种很有前途的光电阳极材料。然而,BVO的高电荷复合和慢电荷转移一直是实现理想光电性能的障碍。为了解决这个问题,已经尝试了各种修改,包括使用铁电材料。铁电材料可以在层内形成永久极化,增强光激发电子-空穴对的分离和输运。在这项研究中,我们提出了一种新的方法,通过在BVO薄膜(BVO/BFO)下沉积外延BiFeO3 (BFO)薄膜来利用BFO的铁电特性。所插入的BFO薄膜的自极化同时作为缓冲层增强电荷输运和空穴阻塞层减少电荷复合。结果表明,在1.23 VRHE下,BVO/BFO光阳极的光电流密度(0.65 mA cm−2)比裸BVO光阳极(0.18 mA cm−2)高3.5倍以上,这与施加偏置光子-电流转换效率(ABPE)的提高和电化学阻抗谱(EIS)分析结果一致。这些结果可以归因于插入的BFO薄膜表现出的自极化,促进了BVO光阳极的电荷分离和转移效率。
{"title":"Enhancing BiVO4 photoanode performance by insertion of an epitaxial BiFeO3 ferroelectric layer","authors":"Haejin Jang ,&nbsp;Yejoon Kim ,&nbsp;Hojoong Choi ,&nbsp;Jiwoong Yang ,&nbsp;Yoonsung Jung ,&nbsp;Sungkyun Choi ,&nbsp;Donghyeon Lee ,&nbsp;Ho Won Jang ,&nbsp;Sanghan Lee","doi":"10.1016/j.jechem.2023.10.041","DOIUrl":"10.1016/j.jechem.2023.10.041","url":null,"abstract":"<div><p>BiVO<sub>4</sub> (BVO) is a promising material as the photoanode for use in photoelectrochemical applications. However, the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance. To address this, various modifications have been attempted, including the use of ferroelectric materials. Ferroelectric materials can form a permanent polarization within the layer, enhancing the separation and transport of photo-excited electron-hole pairs. In this study, we propose a novel approach by depositing an epitaxial BiFeO<sub>3</sub> (BFO) thin film underneath the BVO thin film (BVO/BFO) to harness the ferroelectric property of BFO. The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination. As a result, the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density (0.65 mA cm<sup>−2</sup>) at 1.23 V<sub>RHE</sub> under the illumination compared to the bare BVO photoanodes (0.18 mA cm<sup>−2</sup>), which is consistent with the increase of the applied bias photon-to-current conversion efficiencies (ABPE) and the result of electrochemical impedance spectroscopy (EIS) analysis. These results can be attributed to the self-polarization exhibited by the inserted BFO thin film, which promoted the charge separation and transfer efficiency of the BVO photoanodes.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 71-78"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135510409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress of self-supported air electrodes for flexible Zn-air batteries 柔性锌空气电池自支撑空气电极研究进展
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-11-07 DOI: 10.1016/j.jechem.2023.10.038
Chen Xu , Yanli Niu , Vonika Ka-Man Au , Shuaiqi Gong , Xuan Liu , Jianying Wang , Deli Wu , Zuofeng Chen

Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes, and thus there has recently been rapid development in flexible electronic energy storage devices. Among them, flexible solid-state zinc-air batteries have received widespread attention because of their high energy density, good safety, and stability. Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries, and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process, reduced interfacial resistance, accelerated electron transfer, and good flexibility. This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts. Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts, a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow. Finally, the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.

智能可穿戴设备被认为是继智能手机和智能家居之后的下一个主流技术产品,因此近年来柔性电子储能设备得到了快速发展。其中,柔性固态锌空气电池因其能量密度高、安全性好、稳定性好而受到广泛关注。高效的双功能氧电催化剂是开发柔性固态锌空气电池的首要考虑因素,而自支撑式空气阴极因其制造工艺简化、界面阻力降低、电子转移加速和柔韧性好等优点而成为强有力的候选材料。本文综述了纳米阵列双功能氧电催化剂的设计与构建的研究进展。从锌空气电池的结构、基本原理和双功能氧电催化剂的设计策略出发,详细讨论了碳基和金属基自支撑空气阴极及其在柔性锌空气电池中的应用。最后,讨论了柔性锌空气电池发展面临的挑战和机遇。
{"title":"Recent progress of self-supported air electrodes for flexible Zn-air batteries","authors":"Chen Xu ,&nbsp;Yanli Niu ,&nbsp;Vonika Ka-Man Au ,&nbsp;Shuaiqi Gong ,&nbsp;Xuan Liu ,&nbsp;Jianying Wang ,&nbsp;Deli Wu ,&nbsp;Zuofeng Chen","doi":"10.1016/j.jechem.2023.10.038","DOIUrl":"10.1016/j.jechem.2023.10.038","url":null,"abstract":"<div><p>Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes, and thus there has recently been rapid development in flexible electronic energy storage devices. Among them, flexible solid-state zinc-air batteries have received widespread attention because of their high energy density, good safety, and stability. Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries, and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process, reduced interfacial resistance, accelerated electron transfer, and good flexibility. This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts. Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts, a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow. Finally, the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 110-136"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135509696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable multi-electron reaction stimulated by W doping VS4 for enhancing magnesium storage performance W掺杂VS4激发稳定多电子反应,提高镁储存性能
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-11-07 DOI: 10.1016/j.jechem.2023.10.042
Yuxin Tian , Jiankang Chen , Guofeng Wang , Bing Sun , Alan Meng , Lei Wang , Guicun Li , Jianfeng Huang , Shiqi Ding , Zhenjiang Li

Rechargeable magnesium batteries (RMBs) hold promise for offering higher volumetric energy density and safety features, attracting increasing research interest as the next post lithium-ion batteries. Developing high performance cathode material by inducing multi-electron reaction process as well as maintaining structural stability is the key to the development and application of RMBs. Herein, multi-electron reaction occurred in VS4 by simple W doping strategy. W doping induces valence of partial V as V2+ and V3+ in VS4 structure, and then stimulates electrochemical reaction involving multi-electrons in 0.5% W-V-S. The flower-like microsphere morphology as well as rich S vacancies is also modulated by W doping to neutralize structure change in such multi-electron reaction process. The fabricated 0.5% W-V-S delivers higher specific capacity (149.3 mA h g−1 at 50 mA g−1, which is 1.6 times higher than that of VS4), superior rate capability (76 mA h g−1 at 1000 mA g−1), and stable cycling performance (1500 cycles with capacity retention ratio of 93.8%). Besides that, pesudocapaticance-like contribution analysis as well as galvanostatic intermittent titration technique (GITT) further confirms the enhanced Mg2+ storage kinetics during such multi-electron involved electrochemical reaction process. Such discovery provides new insights into the designing of multi-electron reaction process in cathode as well as neutralizing structural change during such reaction for realizing superior electrochemical performance in energy storage devices.

可充电镁电池(RMBs)有望提供更高的体积能量密度和安全性,作为下一个锂离子电池,吸引了越来越多的研究兴趣。通过诱导多电子反应过程和保持结构稳定性来开发高性能正极材料是阴极材料发展和应用的关键。通过简单的W掺杂策略,在VS4中发生了多电子反应。W掺杂在VS4结构中诱导部分V的价态为V2+和V3+,在0.5% W-V- s中激发多电子的电化学反应。在多电子反应过程中,W掺杂还可以调制花状微球形态和丰富的S空位,以中和结构变化。制备的0.5% W-V-S具有更高的比容量(50 mA g - 1时为149.3 mA h g - 1,是VS4的1.6倍),优越的倍率能力(1000 mA g - 1时为76 mA h g - 1)和稳定的循环性能(1500次循环,容量保持率为93.8%)。此外,准电容样贡献分析和恒流间歇滴定技术(git)进一步证实了这种多电子参与的电化学反应过程中Mg2+的储存动力学增强。这一发现为阴极多电子反应过程的设计以及中和反应过程中的结构变化,实现储能器件优异的电化学性能提供了新的思路。
{"title":"Stable multi-electron reaction stimulated by W doping VS4 for enhancing magnesium storage performance","authors":"Yuxin Tian ,&nbsp;Jiankang Chen ,&nbsp;Guofeng Wang ,&nbsp;Bing Sun ,&nbsp;Alan Meng ,&nbsp;Lei Wang ,&nbsp;Guicun Li ,&nbsp;Jianfeng Huang ,&nbsp;Shiqi Ding ,&nbsp;Zhenjiang Li","doi":"10.1016/j.jechem.2023.10.042","DOIUrl":"10.1016/j.jechem.2023.10.042","url":null,"abstract":"<div><p>Rechargeable magnesium batteries (RMBs) hold promise for offering higher volumetric energy density and safety features, attracting increasing research interest as the next post lithium-ion batteries. Developing high performance cathode material by inducing multi-electron reaction process as well as maintaining structural stability is the key to the development and application of RMBs. Herein, multi-electron reaction occurred in VS<sub>4</sub> by simple W doping strategy. W doping induces valence of partial V as V<sup>2+</sup> and V<sup>3+</sup> in VS<sub>4</sub> structure, and then stimulates electrochemical reaction involving multi-electrons in 0.5% W-V-S. The flower-like microsphere morphology as well as rich S vacancies is also modulated by W doping to neutralize structure change in such multi-electron reaction process. The fabricated 0.5% W-V-S delivers higher specific capacity (149.3 mA h g<sup>−1</sup> at 50 mA g<sup>−1</sup>, which is 1.6 times higher than that of VS<sub>4</sub>), superior rate capability (76 mA h g<sup>−1</sup> at 1000 mA g<sup>−1</sup>), and stable cycling performance (1500 cycles with capacity retention ratio of 93.8%). Besides that, pesudocapaticance-like contribution analysis as well as galvanostatic intermittent titration technique (GITT) further confirms the enhanced Mg<sup>2+</sup> storage kinetics during such multi-electron involved electrochemical reaction process. Such discovery provides new insights into the designing of multi-electron reaction process in cathode as well as neutralizing structural change during such reaction for realizing superior electrochemical performance in energy storage devices.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 89-98"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135509701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells 内掺杂协同控制后界面和本体缺陷,实现高效柔性CZTSSe太阳能电池
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-11-03 DOI: 10.1016/j.jechem.2023.10.034
Quanzhen Sun , Yifan Li , Caixia Zhang , Shunli Du , Weihao Xie , Jionghua Wu , Qiao Zheng , Hui Deng , Shuying Cheng

Focusing on the low open circuit voltage (VOC) and fill factor (FF) in flexible Cu2ZnSn(S,Se)4 (CZTSSe) solar cells, indium (In) ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface and passivate deep level defects in CZTSSe bulk concurrently for improving the performance of flexible device. The results show that In doping effectively inhibits the formation of secondary phase (Cu(S,Se)2) and VSn defects. Further studies demonstrate that the barrier height at the back interface is decreased and the deep level defects (CuSn defects) in CZTSSe bulk are passivated. Moreover, the carrier concentration is increased and the VOC deficit (VOC,def) is decreased significantly due to In doping. Finally, the flexible CZTSSe solar cell with 10.01% power conversion efficiency (PCE) has been obtained. The synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new thought for the fabrication of efficient flexible kesterite-based solar cells.

针对柔性Cu2ZnSn(S,Se)4 (CZTSSe)太阳能电池的低开路电压(VOC)和低填充因子(FF)问题,在靠近Mo箔的CZTSSe吸收层中引入铟(in)离子,对CZTSSe的背界面进行修饰,同时钝化CZTSSe体中的深层缺陷,从而提高柔性器件的性能。结果表明,In的掺杂有效抑制了二次相(Cu(S,Se)2)和VSn缺陷的形成。进一步的研究表明,后界面的势垒高度降低,CZTSSe块体中的深层缺陷(CuSn缺陷)钝化。此外,由于掺杂了In,载流子浓度增加,VOC亏缺(VOC,def)显著降低。最后获得了功率转换效率(PCE)为10.01%的柔性CZTSSe太阳能电池。通过掺入铟实现界面改性和本体缺陷钝化的协同策略,为制备高效柔性kester酸基太阳能电池提供了新的思路。
{"title":"In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells","authors":"Quanzhen Sun ,&nbsp;Yifan Li ,&nbsp;Caixia Zhang ,&nbsp;Shunli Du ,&nbsp;Weihao Xie ,&nbsp;Jionghua Wu ,&nbsp;Qiao Zheng ,&nbsp;Hui Deng ,&nbsp;Shuying Cheng","doi":"10.1016/j.jechem.2023.10.034","DOIUrl":"https://doi.org/10.1016/j.jechem.2023.10.034","url":null,"abstract":"<div><p>Focusing on the low open circuit voltage (<em>V</em><sub>OC</sub>) and fill factor (FF) in flexible Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) solar cells, indium (In) ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface and passivate deep level defects in CZTSSe bulk concurrently for improving the performance of flexible device. The results show that In doping effectively inhibits the formation of secondary phase (Cu(S,Se)<sub>2</sub>) and V<sub>Sn</sub> defects. Further studies demonstrate that the barrier height at the back interface is decreased and the deep level defects (Cu<sub>Sn</sub> defects) in CZTSSe bulk are passivated. Moreover, the carrier concentration is increased and the <em>V</em><sub>OC</sub> deficit (<em>V</em><sub>OC,def</sub>) is decreased significantly due to In doping. Finally, the flexible CZTSSe solar cell with 10.01% power conversion efficiency (PCE) has been obtained. The synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new thought for the fabrication of efficient flexible kesterite-based solar cells.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 10-17"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92234651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Insights into ionic association boosting water oxidation activity and dynamic stability 离子结合促进水氧化活性和动态稳定性的见解
1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-11-03 DOI: 10.1016/j.jechem.2023.10.036
Zanling Huang , Shuqi Zhu , Yuan Duan , Chaoran Pi , Xuming Zhang , Abebe Reda Woldu , Jing-Xin Jian , Paul K. Chu , Qing-Xiao Tong , Liangsheng Hu , Xiangdong Yao

There have been reports about Fe ions boosting oxygen evolution reaction (OER) activity of Ni-based catalysts in alkaline conditions, while the origin and reason for the enhancement remains elusive. Herein, we attempt to identify the activity improvement and discover that Ni sites act as a host to attract Fe(III) to form Fe(Ni)(III) binary centres, which serve as the dynamic sites to promote OER activity and stability by cyclical formation of intermediates (Fe(III) → Fe(Ni)(III) → Fe(Ni)–OH → Fe(Ni)–O → Fe(Ni)OOH → Fe(III)) at the electrode/electrolyte interface to emit O2. Additionally, some ions (Co(II), Ni(II), and Cr(III)) can also be the active sites to catalyze the OER process on a variety of electrodes. The Fe(III)-catalyzed overall water-splitting electrolyzer comprising bare Ni foam as the anode and Pt/Ni-Mo as the cathode demonstrates robust stability for 1600 h at 1000 mA cm−2@∼1.75 V. The results provide insights into the ion-catalyzed effects boosting OER performance.

在碱性条件下,铁离子对镍基催化剂的析氧反应(OER)活性有促进作用,但其机理和原因尚不清楚。在此,我们试图确定活性的改善,并发现Ni位点作为宿主吸引Fe(III)形成Fe(Ni)(III)二元中心,这是通过在电极/电解质界面上循环形成中间体(Fe(III)→Fe(Ni)(III)→Fe(Ni) -OH→Fe(Ni) -O→Fe(Ni)OOH→Fe(III))来促进OER活性和稳定性的动态位点。此外,一些离子(Co(II)、Ni(II)和Cr(III))也可以在各种电极上作为催化OER过程的活性位点。由裸泡沫镍作为阳极,Pt/Ni- mo作为阴极的Fe(III)催化的整体水分解电解槽在1000 mA cm−2@ ~ 1.75 V下表现出1600小时的强劲稳定性。该结果为离子催化效应提高OER性能提供了见解。
{"title":"Insights into ionic association boosting water oxidation activity and dynamic stability","authors":"Zanling Huang ,&nbsp;Shuqi Zhu ,&nbsp;Yuan Duan ,&nbsp;Chaoran Pi ,&nbsp;Xuming Zhang ,&nbsp;Abebe Reda Woldu ,&nbsp;Jing-Xin Jian ,&nbsp;Paul K. Chu ,&nbsp;Qing-Xiao Tong ,&nbsp;Liangsheng Hu ,&nbsp;Xiangdong Yao","doi":"10.1016/j.jechem.2023.10.036","DOIUrl":"10.1016/j.jechem.2023.10.036","url":null,"abstract":"<div><p>There have been reports about Fe ions boosting oxygen evolution reaction (OER) activity of Ni-based catalysts in alkaline conditions, while the origin and reason for the enhancement remains elusive. Herein, we attempt to identify the activity improvement and discover that Ni sites act as a host to attract Fe(III) to form Fe(Ni)(III) binary centres, which serve as the dynamic sites to promote OER activity and stability by cyclical formation of intermediates (Fe(III) → Fe(Ni)(III) → Fe(Ni)–OH → Fe(Ni)–O → Fe(Ni)OOH → Fe(III)) at the electrode/electrolyte interface to emit O<sub>2</sub>. Additionally, some ions (Co(II), Ni(II), and Cr(III)) can also be the active sites to catalyze the OER process on a variety of electrodes. The Fe(III)-catalyzed overall water-splitting electrolyzer comprising bare Ni foam as the anode and Pt/Ni-Mo as the cathode demonstrates robust stability for 1600 h at 1000 mA cm<sup>−2</sup>@∼1.75 V. The results provide insights into the ion-catalyzed effects boosting OER performance.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 99-109"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135411316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical synthesis of trimetallic nickel-iron-copper nanoparticles via potential-cycling for high current density anion exchange membrane water-splitting applications 电势循环电化学合成三金属镍铁铜纳米颗粒在大电流密度阴离子交换膜水分解中的应用
IF 13.1 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-11-03 DOI: 10.1016/j.jechem.2023.10.033
Ziqi Zhang, Sheng Wan, Hanbo Wang, Jinghan He, Ruige Zhang, Yuhang Qi, Haiyan Lu

Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels. Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to obtain high-purity hydrogen. Nevertheless, electrocatalysts used in the process are fabricated using conventional wet chemical synthesis methods, such as sol–gel, hydrothermal, or surfactant-assisted approaches, which often necessitate intricate pretreatment procedures and are vulnerable to post-treatment contamination. Therefore, this study introduces a streamlined and environmentally conscious one-step potential-cycling approach to generate a highly efficient trimetallic nickel-iron-copper electrocatalyst in situ on nickel foam. The synthesized material exhibited remarkable performance, requiring a mere 476 mV to drive electrochemical water splitting at 100 mA cm−2 current density in alkaline solution. Furthermore, this material was integrated into an anion exchange membrane water-splitting device and achieved an exceptionally high current density of 1 A cm−2 at a low cell voltage of 2.13 V, outperforming the noble-metal benchmark (2.51 V). Additionally, ex situ characterizations were employed to detect transformations in the active sites during the catalytic process, revealing the structural transformations and providing inspiration for further design of electrocatalysts.

氢以其高能量密度和环境兼容性而闻名,是一种有前途的化石燃料替代品。利用可再生能源的碱水电解已成为获得高纯度氢的一种手段。然而,该工艺中使用的电催化剂是使用传统的湿化学合成方法制造的,例如溶胶-凝胶,水热或表面活性剂辅助方法,这些方法通常需要复杂的预处理程序,并且容易受到后处理污染。因此,本研究引入了一种流线型的、环保的一步电位循环方法,在泡沫镍上原位生成高效的三金属镍-铁-铜电催化剂。在碱性溶液中,在100 mA cm−2电流密度下,仅需要476 mV就能驱动电化学水分解。此外,将该材料集成到阴离子交换膜水分解装置中,在2.13 V的低电池电压下获得了1 A cm−2的超高电流密度,优于贵金属基准(2.51 V)。此外,采用非原位表征来检测催化过程中活性位点的转变,揭示了结构转变,为进一步设计电催化剂提供了灵感。
{"title":"Electrochemical synthesis of trimetallic nickel-iron-copper nanoparticles via potential-cycling for high current density anion exchange membrane water-splitting applications","authors":"Ziqi Zhang,&nbsp;Sheng Wan,&nbsp;Hanbo Wang,&nbsp;Jinghan He,&nbsp;Ruige Zhang,&nbsp;Yuhang Qi,&nbsp;Haiyan Lu","doi":"10.1016/j.jechem.2023.10.033","DOIUrl":"10.1016/j.jechem.2023.10.033","url":null,"abstract":"<div><p>Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels. Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to obtain high-purity hydrogen. Nevertheless, electrocatalysts used in the process are fabricated using conventional wet chemical synthesis methods, such as sol–gel, hydrothermal, or surfactant-assisted approaches, which often necessitate intricate pretreatment procedures and are vulnerable to post-treatment contamination. Therefore, this study introduces a streamlined and environmentally conscious one-step potential-cycling approach to generate a highly efficient trimetallic nickel-iron-copper electrocatalyst in situ on nickel foam. The synthesized material exhibited remarkable performance, requiring a mere 476 mV to drive electrochemical water splitting at 100 mA cm<sup>−2</sup><span> current density in alkaline solution. Furthermore, this material was integrated into an anion exchange membrane water-splitting device and achieved an exceptionally high current density of 1 A cm</span><sup>−2</sup> at a low cell voltage of 2.13 V, outperforming the noble-metal benchmark (2.51 V). Additionally, ex situ characterizations were employed to detect transformations in the active sites during the catalytic process, revealing the structural transformations and providing inspiration for further design of electrocatalysts.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 535-542"},"PeriodicalIF":13.1,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135410121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An aqueous BiI3-Zn battery with dual mechanisms of Zn2+ (de)intercalation and I−/I2 redox 具有Zn2+ (de)插层和I−/I2氧化还原双重机理的BiI3-Zn水溶液电池
IF 13.1 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-11-03 DOI: 10.1016/j.jechem.2023.10.035
Qi Deng , Fangzhong Liu , Xiongwei Wu , Changzhu Li , Weibin Zhou , Bei Long

The development of aqueous battery with dual mechanisms is now arousing more and more interest. The dual mechanisms of Zn2+ (de)intercalation and I/I2 redox bring unexpected effects. Herein, differing from previous studies using ZnI2 additive, this work designs an aqueous BiI3-Zn battery with self-supplied I. Ex situ tests reveal the conversion of BiI3 into Bi (discharge) and BiOI (charge) at the 1st cycle and the dissolved I in electrolyte. The active I species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product. Furthermore, the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species, proven by experimental and theoretical studies. Accordingly, the well-designed BiI3-Zn battery delivers a high reversible capacity of 182 mA h g−1 at 0.2 A g−1, an excellent rate capability with 88 mA h g−1 at 10 A g−1, and an impressive cyclability with 63% capacity retention over 20 K cycles at 10 A g−1. An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm−2. Moreover, a flexible quasi-solid-state BiI3-Zn battery exhibits satisfactory battery performances. This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.

双机理水电池的发展越来越引起人们的关注。Zn2+ (de)插层和I−/I2氧化还原的双重机制带来了意想不到的效果。在此,与以往使用ni - 2添加剂的研究不同,本研究设计了一种具有自供I -的BiI3-Zn水电池。非原位测试表明,在第一次循环时,BiI3转化为Bi(放电)和BiOI(充电),并溶解在电解质中。活性I−物质提高了电极的比容量和放电中压,促进了Zn枝晶和副产物的生成。此外,通过实验和理论研究证明,多孔硬碳可以提高材料的电子/离子电导率和吸附碘类物质。因此,设计良好的BiI3-Zn电池在0.2 a g - 1时具有182 mA h g - 1的高可逆容量,在10 a g - 1时具有88 mA h g - 1的出色倍率能力,并且在10 a g - 1时具有令人印象深刻的可循环性,在20 K循环中具有63%的容量保持率。即使在6 mg cm−2的高质量负载下,也获得了优异的电化学性能。此外,柔性准固态BiI3-Zn电池表现出令人满意的电池性能。本研究为设计高性能双机构水电池提供了新的思路。
{"title":"An aqueous BiI3-Zn battery with dual mechanisms of Zn2+ (de)intercalation and I−/I2 redox","authors":"Qi Deng ,&nbsp;Fangzhong Liu ,&nbsp;Xiongwei Wu ,&nbsp;Changzhu Li ,&nbsp;Weibin Zhou ,&nbsp;Bei Long","doi":"10.1016/j.jechem.2023.10.035","DOIUrl":"10.1016/j.jechem.2023.10.035","url":null,"abstract":"<div><p>The development of aqueous battery with dual mechanisms is now arousing more and more interest. The dual mechanisms of Zn<sup>2+</sup> (de)intercalation and I<sup>−</sup>/I<sub>2</sub> redox bring unexpected effects. Herein, differing from previous studies using ZnI<sub>2</sub> additive, this work designs an aqueous BiI<sub>3</sub>-Zn battery with self-supplied I<sup>−</sup>. Ex situ tests reveal the conversion of BiI<sub>3</sub> into Bi (discharge) and BiOI (charge) at the 1st cycle and the dissolved I<sup>−</sup> in electrolyte. The active I<sup>−</sup> species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product. Furthermore, the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species, proven by experimental and theoretical studies. Accordingly, the well-designed BiI<sub>3</sub>-Zn battery delivers a high reversible capacity of 182 mA h g<sup>−1</sup> at 0.2 A g<sup>−1</sup>, an excellent rate capability with 88 mA h g<sup>−1</sup> at 10 A g<sup>−1</sup>, and an impressive cyclability with 63% capacity retention over 20 K cycles at 10 A g<sup>−1</sup>. An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm<sup>−2</sup>. Moreover, a flexible quasi-solid-state BiI<sub>3</sub>-Zn battery exhibits satisfactory battery performances. This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 670-678"},"PeriodicalIF":13.1,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135410127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric orbital hybridization in Zn-doped antiperovskite Cu1−xZnxNMn3 enables highly efficient electrocatalytic hydrogen production 锌掺杂的反钙钛矿Cu1-xZnxNMn3的不对称轨道杂化实现了高效的电催化制氢
IF 13.1 1区 化学 Q1 CHEMISTRY, APPLIED Pub Date : 2023-11-03 DOI: 10.1016/j.jechem.2023.10.027
Yuxiang Yan , Yuxin Cao , Zhichao Wang , Ka Wang , Hengdong Ren , Shaoqi Zhang , Yi Wang , Jian Chen , Yong Zhou , Lizhe Liu , Jun Dai , Xinglong Wu

Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction (HER) catalysts is a key factor for developing energy conversion technologies. Currently, antiperovskite nitride CuNMn3 has garnered significant interest due to its remarkable properties such as negative/zero thermal expansion and magnetocaloric effects. However, when utilized as hydrogen evolution catalysts, it encounters large challenge resulting from excessively strong/weak interactions with adsorbed H on Mn/Cu active sites, which leads to low HER activity. In this study, we introduce an asymmetric orbital hybridization strategy in Zn-doped Cu1−xZnxNMn3 by leveraging the localization of Zn electronic states to reconfigure the electronic structures of Cu and Mn, thereby reducing the energy barrier for water dissociation and optimizing Cu and Mn active sites for hydrogen adsorption and H2 production. Electrochemical evaluations reveal that Cu0.85Zn0.15NMn3 with x  = 0.15 demonstrates exceptional electrocatalytic activity in alkaline electrolytes. A low overpotential of 52 mV at 10 mA cm−2 and outstanding stability over a 150-h test period are achieved, surpassing commercial Pt/C. This research offers a novel strategy for enhancing HER performance by modulating asymmetric hybridization of electron orbitals between multiple metal atoms within a material structure.

合理设计高效、稳定的富土碱性析氢反应催化剂是发展能量转化技术的关键因素。目前,反钙钛矿氮化物CuNMn3由于其显著的性能,如负/零热膨胀和磁热效应而引起了人们的极大兴趣。然而,当用作析氢催化剂时,由于与Mn/Cu活性位点上吸附的H相互作用太强/弱,导致析氢反应(HER)活性较低,面临很大的挑战。在本研究中,我们引入了一种不对称轨道杂化策略,利用Zn电子态的局域化来重新配置Cu和Mn的电子结构,从而降低了水解离的能量屏障,优化了Cu和Mn吸附氢和产氢的活性位点。电化学评价表明,当x = 0.15时,Cu0.85Zn0.15NMn3在碱性电解质中表现出优异的电催化活性。在10 mA cm - 2下具有52 mV的低过电位,并且在150小时的测试周期内具有出色的稳定性,超过了商用Pt/C。本研究提供了一种通过调节材料结构中多个金属原子之间电子轨道的不对称杂化来提高HER性能的新策略。
{"title":"Asymmetric orbital hybridization in Zn-doped antiperovskite Cu1−xZnxNMn3 enables highly efficient electrocatalytic hydrogen production","authors":"Yuxiang Yan ,&nbsp;Yuxin Cao ,&nbsp;Zhichao Wang ,&nbsp;Ka Wang ,&nbsp;Hengdong Ren ,&nbsp;Shaoqi Zhang ,&nbsp;Yi Wang ,&nbsp;Jian Chen ,&nbsp;Yong Zhou ,&nbsp;Lizhe Liu ,&nbsp;Jun Dai ,&nbsp;Xinglong Wu","doi":"10.1016/j.jechem.2023.10.027","DOIUrl":"10.1016/j.jechem.2023.10.027","url":null,"abstract":"<div><p>Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction (HER) catalysts is a key factor for developing energy conversion technologies. Currently, antiperovskite nitride CuNMn<sub>3</sub> has garnered significant interest due to its remarkable properties such as negative/zero thermal expansion and magnetocaloric effects. However, when utilized as hydrogen evolution catalysts, it encounters large challenge resulting from excessively strong/weak interactions with adsorbed H on Mn/Cu active sites, which leads to low HER activity. In this study, we introduce an asymmetric orbital hybridization strategy in Zn-doped Cu<sub>1−<em>x</em></sub>Zn<sub><em>x</em></sub>NMn<sub>3</sub> by leveraging the localization of Zn electronic states to reconfigure the electronic structures of Cu and Mn, thereby reducing the energy barrier for water dissociation and optimizing Cu and Mn active sites for hydrogen adsorption and H<sub>2</sub> production. Electrochemical evaluations reveal that Cu<sub>0.85</sub>Zn<sub>0.15</sub>NMn<sub>3</sub> with <em>x</em>  = 0.15 demonstrates exceptional electrocatalytic activity in alkaline electrolytes. A low overpotential of 52 mV at 10 mA cm<sup>−2</sup> and outstanding stability over a 150-h test period are achieved, surpassing commercial Pt/C. This research offers a novel strategy for enhancing HER performance by modulating asymmetric hybridization of electron orbitals between multiple metal atoms within a material structure.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 304-312"},"PeriodicalIF":13.1,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135411313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
能源化学
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1