Pub Date : 2025-02-14DOI: 10.3103/S0884591325010052
I. G. Zakharov, L. F. Chernogor
Longitudinal, latitudinal, and altitudinal features of the zonal wind in the Northern Hemisphere under the influence of 27-day variations of solar activity (SA) were studied. The research aims to improve the accuracy of weather forecasts and deepening our knowledge about dynamic processes of the interaction of atmospheric layers. Zonal wind data by 5° latitude from the website https://psn.noaa.gov at the longitudes of Europe and North America from 15 altitude levels (from 1000 to 10 hPa) and SA data from the website https://www-app3.gfz-potsdam.de were used. Twenty high-amplitude 27-day SA cycles during the decline phase of the 23rd 11-year solar cycle from 2002 to 2004 were studied. The average 27-day wind changes for each latitude and altitude are calculated by the superposed epoch analysis separately for the winter and summer seasons. For the first time, 27-day latitudinal and altitudinal variations of zonal wind with an amplitude of ~8 m/s, capable of influencing the weather in the extratropical atmosphere, were established. Despite the significant difference in the background wind field in winter and summer, the response of the wind field to SA influence is similar for both seasons. The maximum wind changes occur in the southern part of the polar atmospheric cell and the northern part of the Ferrell cell (50°–70° N) and gradually decrease in magnitude to the south and north. Wind changes are many times smaller in the tropical troposphere. At the boundaries of the global circulation cells, the direction of disturbed wind changes to the opposite. Changes in the position of jet streams by more than 1° in latitude and changes in the size of atmospheric circulation cells are also observed. In terms of height, the largest changes in the wind at all latitudes occur in the upper troposphere. There is a close relationship between the magnitude of the perturbed wind and changes in the tropopause height. The impact is realized through two-way dynamic stratospheric-tropospheric interaction, primarily in the area of the polar night jet and polar front jet stream. The presence of significant wind changes for the summer season indicates an important role not only of planetary-scale Rossby waves but also of shorter-wavelength waves. At the same time, their upward propagation can be ensured by nonlinear interaction between them.
研究了太阳活动27天变化对北半球纬向风的纵向、纬向和纬向特征的影响。这项研究旨在提高天气预报的准确性,加深我们对大气各层相互作用动态过程的认识。使用了欧洲和北美经度15个海拔高度(1000至10 hPa)的5°纬向风资料https://psn.noaa.gov和来自https://www-app3.gfz-potsdam.de网站的SA资料。研究了2002 ~ 2004年第23个11年太阳活动周期衰退期的20个高振幅27 d SA周期。每个纬度和海拔的平均27天风变化是通过冬季和夏季的叠加年代分析分别计算出来的。首次建立了能够影响温带大气天气的~8 m/s纬向风的27 d纬向和高度变化。尽管冬季和夏季背景风场存在显著差异,但两个季节风场对SA影响的响应相似。最大的风变化发生在极大气单体的南部和Ferrell单体的北部(50°~ 70°N),并向南和向北逐渐减弱。在热带对流层,风的变化要小很多倍。在全球环流单元的边界,扰动风的方向改变为相反的方向。还观测到急流位置在纬度上的变化超过1°,以及大气环流单体大小的变化。就高度而言,所有纬度上风的最大变化发生在对流层上层。扰动风的大小与对流层顶高度的变化有密切的关系。这种影响是通过平流层-对流层的双向动态相互作用实现的,主要发生在极夜急流和极锋急流区域。夏季显著的风向变化表明,不仅行星尺度的罗斯比波,短波长的波也起着重要作用。同时,它们之间的非线性相互作用保证了它们的向上传播。
{"title":"Twenty-Seven-Day Zonal Wind Fluctuations in the Troposphere and Lower Stratosphere under the Influence of Solar Activity","authors":"I. G. Zakharov, L. F. Chernogor","doi":"10.3103/S0884591325010052","DOIUrl":"10.3103/S0884591325010052","url":null,"abstract":"<p>Longitudinal, latitudinal, and altitudinal features of the zonal wind in the Northern Hemisphere under the influence of 27-day variations of solar activity (SA) were studied. The research aims to improve the accuracy of weather forecasts and deepening our knowledge about dynamic processes of the interaction of atmospheric layers. Zonal wind data by 5° latitude from the website https://psn.noaa.gov at the longitudes of Europe and North America from 15 altitude levels (from 1000 to 10 hPa) and SA data from the website https://www-app3.gfz-potsdam.de were used. Twenty high-amplitude 27-day SA cycles during the decline phase of the 23rd 11-year solar cycle from 2002 to 2004 were studied. The average 27-day wind changes for each latitude and altitude are calculated by the superposed epoch analysis separately for the winter and summer seasons. For the first time, 27-day latitudinal and altitudinal variations of zonal wind with an amplitude of ~8 m/s, capable of influencing the weather in the extratropical atmosphere, were established. Despite the significant difference in the background wind field in winter and summer, the response of the wind field to SA influence is similar for both seasons. The maximum wind changes occur in the southern part of the polar atmospheric cell and the northern part of the Ferrell cell (50°–70° N) and gradually decrease in magnitude to the south and north. Wind changes are many times smaller in the tropical troposphere. At the boundaries of the global circulation cells, the direction of disturbed wind changes to the opposite. Changes in the position of jet streams by more than 1° in latitude and changes in the size of atmospheric circulation cells are also observed. In terms of height, the largest changes in the wind at all latitudes occur in the upper troposphere. There is a close relationship between the magnitude of the perturbed wind and changes in the tropopause height. The impact is realized through two-way dynamic stratospheric-tropospheric interaction, primarily in the area of the polar night jet and polar front jet stream. The presence of significant wind changes for the summer season indicates an important role not only of planetary-scale Rossby waves but also of shorter-wavelength waves. At the same time, their upward propagation can be ensured by nonlinear interaction between them.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"41 1","pages":"14 - 25"},"PeriodicalIF":0.5,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14DOI: 10.3103/S0884591325010040
V. A. Yushchenko, V. F. Gopka, A. V. Yushchenko, Ya. V. Pavlenko, A. V. Shavrina, F. Musaev, A. Demessinova
This study examines the absorption lines of promethium, a radioactive element with a short half-life, in the spectra of the magnetic peculiar star HD 25 354, which belongs to the spectral class A0Vp. It also determines the promethium abundance in the star’s atmosphere. The analysis utilized an archival spectrum of HD 25 354 from the ELODIE database, obtained in 1996, covering the wavelength range of 400.0–680.0 nm, with a spectral resolution of R = 42 000 and a signal-to-noise ratio (S/N) of 100, recorded at the 1.93-m telescope at the Haute-Provence Observatory. Additionally, spectra collected by F. Musaev in 2006, using the 2-m telescope at Terskol Peak Observatory, were analyzed. These spectra covered the wavelength range of 370.0–940.0 nm, with S/N = 200 and R = 60 000. The previously determined atmospheric parameters of the star (Teff = 12 800 K, log g = 4.15, Vmicro = 0.23 km/s) and the chemical composition of its elements were used to calculate a synthetic spectrum over a wide range. This synthetic spectrum generally gave a satisfactory approximation of the observed spectrum. By comparing the synthetic spectrum of HD 25 354 with the observed data, 11 lines of promethium were identified, and its abundance was determined. The promethium abundance was found to be consistent with the abundance levels of other lanthanides, with a value of log N = 5.8–5.9 on the hydrogen scale, where log N(H) = 12. According to literature data, the promethium abundance in the atmosphere of HR 465 (log N = 5.05) is also within the range of lanthanide abundance.
{"title":"Evaluating Promethium Abundance in the Atmospheres of Magnetically Peculiar Star HD 25 354","authors":"V. A. Yushchenko, V. F. Gopka, A. V. Yushchenko, Ya. V. Pavlenko, A. V. Shavrina, F. Musaev, A. Demessinova","doi":"10.3103/S0884591325010040","DOIUrl":"10.3103/S0884591325010040","url":null,"abstract":"<p>This study examines the absorption lines of promethium, a radioactive element with a short half-life, in the spectra of the magnetic peculiar star HD 25 354, which belongs to the spectral class A0Vp. It also determines the promethium abundance in the star’s atmosphere. The analysis utilized an archival spectrum of HD 25 354 from the ELODIE database, obtained in 1996, covering the wavelength range of 400.0–680.0 nm, with a spectral resolution of <i>R</i> = 42 000 and a signal-to-noise ratio (<i>S</i>/<i>N</i>) of 100, recorded at the 1.93-m telescope at the Haute-Provence Observatory. Additionally, spectra collected by F. Musaev in 2006, using the 2-m telescope at Terskol Peak Observatory, were analyzed. These spectra covered the wavelength range of 370.0–940.0 nm, with <i>S</i>/<i>N</i> = 200 and <i>R</i> = 60 000. The previously determined atmospheric parameters of the star (<i>T</i><sub>eff</sub> = 12 800 K, log <i>g</i> = 4.15, <i>V</i><sub>micro</sub> = 0.23 km/s) and the chemical composition of its elements were used to calculate a synthetic spectrum over a wide range. This synthetic spectrum generally gave a satisfactory approximation of the observed spectrum. By comparing the synthetic spectrum of HD 25 354 with the observed data, 11 lines of promethium were identified, and its abundance was determined. The promethium abundance was found to be consistent with the abundance levels of other lanthanides, with a value of log <i>N</i> = 5.8–5.9 on the hydrogen scale, where log <i>N</i>(H) = 12. According to literature data, the promethium abundance in the atmosphere of HR 465 (log <i>N</i> = 5.05) is also within the range of lanthanide abundance.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"41 1","pages":"26 - 33"},"PeriodicalIF":0.5,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-14DOI: 10.3103/S0884591325010039
L. F. Chernogor
The relevance of this study stems from the fact that, to date, there is no reliable and detailed explanation of the electromagnetic mechanism governing interactions between subsystems within the Earth (inner shells)–atmosphere–ionosphere–magnetosphere (EAIM) system. This mechanism can manifest itself under the action of high-energy sources of both natural and anthropogenic origins. Natural sources include weather fronts, thunderstorms, hurricanes (typhoons), volcanic eruptions, earthquakes, etc. All these natural processes may generate intense electromagnetic radiation in the VLF range (3–30 kHz). Such radiation is capable of interacting with the plasma in the lower ionosphere, triggering a series of secondary geophysical processes. This study presents the findings on the electromagnetic mechanism of subsystem interactions within the EAIM system, specifically focusing on the impact of intense electromagnetic radiation on the parameters of the lower ionosphere. A single lightning strike during the daytime can increase electron temperature by a factor of 60–44 at altitudes of 60–80 km, respectively. At night, a significant increase in electron temperature (by a factor of 60–50) can occur at altitudes of 80–95 km, respectively. This substantial electron heating results in the transparentization effect of the lower ionosphere plasma, leading to reduced electromagnetic radiation absorption at altitudes up to 80 km during the day. At night, however, the plasma exhibits a saturation effect at altitudes of 80–100 km, which is accompanied by an increase in electromagnetic radiation absorption. A single lightning strike does not cause a noticeable disturbance in electron density or the intensity of its fluctuations. However, it can produce minor (~0.01 nT) perturbations in the geomagnetic field and significant (~1 V/m) spikes in the vortex electric field. At a sufficiently high lightning frequency, noticeable disturbances in electron density and the intensity of its fluctuations may occur, potentially leading to the accumulation of disturbances N and (overline {Delta {{N}^{2}}} ). Significant perturbations in the parameters of the lower ionosphere can, in turn, generate secondary effects that propagate into the magnetosphere and magnetically conjugate regions.
{"title":"Electromagnetic Coupling of Geospheres: 1. Disturbances in the Lower Ionosphere","authors":"L. F. Chernogor","doi":"10.3103/S0884591325010039","DOIUrl":"10.3103/S0884591325010039","url":null,"abstract":"<p>The relevance of this study stems from the fact that, to date, there is no reliable and detailed explanation of the electromagnetic mechanism governing interactions between subsystems within the Earth (inner shells)–atmosphere–ionosphere–magnetosphere (EAIM) system. This mechanism can manifest itself under the action of high-energy sources of both natural and anthropogenic origins. Natural sources include weather fronts, thunderstorms, hurricanes (typhoons), volcanic eruptions, earthquakes, etc. All these natural processes may generate intense electromagnetic radiation in the VLF range (3–30 kHz). Such radiation is capable of interacting with the plasma in the lower ionosphere, triggering a series of secondary geophysical processes. This study presents the findings on the electromagnetic mechanism of subsystem interactions within the EAIM system, specifically focusing on the impact of intense electromagnetic radiation on the parameters of the lower ionosphere. A single lightning strike during the daytime can increase electron temperature by a factor of 60–44 at altitudes of 60–80 km, respectively. At night, a significant increase in electron temperature (by a factor of 60–50) can occur at altitudes of 80–95 km, respectively. This substantial electron heating results in the transparentization effect of the lower ionosphere plasma, leading to reduced electromagnetic radiation absorption at altitudes up to 80 km during the day. At night, however, the plasma exhibits a saturation effect at altitudes of 80–100 km, which is accompanied by an increase in electromagnetic radiation absorption. A single lightning strike does not cause a noticeable disturbance in electron density or the intensity of its fluctuations. However, it can produce minor (~0.01 nT) perturbations in the geomagnetic field and significant (~1 V/m) spikes in the vortex electric field. At a sufficiently high lightning frequency, noticeable disturbances in electron density and the intensity of its fluctuations may occur, potentially leading to the accumulation of disturbances <i>N</i> and <span>(overline {Delta {{N}^{2}}} )</span>. Significant perturbations in the parameters of the lower ionosphere can, in turn, generate secondary effects that propagate into the magnetosphere and magnetically conjugate regions.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"41 1","pages":"1 - 13"},"PeriodicalIF":0.5,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.3103/S0884591324060047
N. I. Lozitska, I. I. Yakovkin, V. G. Lozitsky, M. A. Hromov
Direct magnetic field measurements in sunspots by many spectral lines are important for elucidating the true magnitude and structure of the magnetic field at different levels of the solar atmosphere. Currently, magnetographic measurements are the most widespread, but such measurements mainly represent the longitudinal component of the magnetic field. In the sunspot umbra, such measurements give unreliable information and do not allow for determining the actual value of the module (absolute value) of the magnetic field. Such data can be obtained from spectral-polarization observations, thanks to which the magnetic field can be determined directly from Zeeman splitting, rather than as calibrated polarization in line profiles. The presented work presents the results of the study into the magnetic field in the sunspot on July 17, 2023, which was observed on the Echelle spectrograph of the horizontal solar telescope of the Astronomical Observatory of Taras Shevchenko National University of Kyiv. The I ± V profiles of ten photospheric lines of Fe I, Fe II, Ti I, and Ti II were analyzed in detail. The strongest magnetic field measured by the Fe I lines reaches 2600 G, and the difference in the measured intensities by these lines is sometimes at the level of 50–80%. The umbral lines of Ti I show, in general, the same magnetic fields as Fe I lines, while the lines of Fe II and Ti II show significantly weaker fields. Although the lateral field profile in the spot by most of the Fe I lines is smooth, quasi-Gaussian, one of the lines, namely Fe I λ 629.10 nm, shows a “dip” at 400–600 G in the sunspot umbra, which, most likely, is real. The obtained data probably indicate a combination of at least two effects: the dependence of measurements on the height of line formation in the solar atmosphere and the manifestation of Zeeman “saturation” in lines with different Lande factors. It also turned out that the umbral line of Ti I λ 630.38 nm shows somewhat stronger magnetic fields compared to non-umbral lines. The obtained data are planned to be used to clarify the general picture of the magnetic field in the spot by means of simulation.
{"title":"Comparison of Direct Magnetic Field Measurements in a Sunspot by Ten Spectral Lines of Fe I, Fe II, Ti I, and Ti II","authors":"N. I. Lozitska, I. I. Yakovkin, V. G. Lozitsky, M. A. Hromov","doi":"10.3103/S0884591324060047","DOIUrl":"10.3103/S0884591324060047","url":null,"abstract":"<p>Direct magnetic field measurements in sunspots by many spectral lines are important for elucidating the true magnitude and structure of the magnetic field at different levels of the solar atmosphere. Currently, magnetographic measurements are the most widespread, but such measurements mainly represent the longitudinal component of the magnetic field. In the sunspot umbra, such measurements give unreliable information and do not allow for determining the actual value of the module (absolute value) of the magnetic field. Such data can be obtained from spectral-polarization observations, thanks to which the magnetic field can be determined directly from Zeeman splitting, rather than as calibrated polarization in line profiles. The presented work presents the results of the study into the magnetic field in the sunspot on July 17, 2023, which was observed on the Echelle spectrograph of the horizontal solar telescope of the Astronomical Observatory of Taras Shevchenko National University of Kyiv. The <i>I</i> ± <i>V</i> profiles of ten photospheric lines of Fe I, Fe II, Ti I, and Ti II were analyzed in detail. The strongest magnetic field measured by the Fe I lines reaches 2600 G, and the difference in the measured intensities by these lines is sometimes at the level of 50–80%. The umbral lines of Ti I show, in general, the same magnetic fields as Fe I lines, while the lines of Fe II and Ti II show significantly weaker fields. Although the lateral field profile in the spot by most of the Fe I lines is smooth, quasi-Gaussian, one of the lines, namely Fe I λ 629.10 nm, shows a “dip” at 400–600 G in the sunspot umbra, which, most likely, is real. The obtained data probably indicate a combination of at least two effects: the dependence of measurements on the height of line formation in the solar atmosphere and the manifestation of Zeeman “saturation” in lines with different Lande factors. It also turned out that the umbral line of Ti I λ 630.38 nm shows somewhat stronger magnetic fields compared to non-umbral lines. The obtained data are planned to be used to clarify the general picture of the magnetic field in the spot by means of simulation.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 6","pages":"337 - 344"},"PeriodicalIF":0.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.3103/S0884591324060023
L. F. Chernogor, M. Yu. Holub
Magnetic storm, ionospheric storm, atmospheric storm, and electrical storm are the components of a geospace storm resulting from a solar storm. In the literature, the main attention is paid to the analysis of severe and extreme geospace storms. It is these storms that have the greatest impact on the Earth–atmosphere–ionosphere–magnetosphere system. They are most dangerous for space-based and ground-based technological systems. Such storms have a significant impact on human well-being and health. Minor and moderate storms are much less studied than severe and extreme ones. There are good reasons to believe that such storms can have some impact on the systems and people. It is important that the frequency of occurrence of moderate storms is much greater than the frequency of occurrence of severe storms. All this determined the relevance of this work, which consists in the study of magnetic disturbances that arise during moderate geospace storms, which receive undeservedly little attention. The purpose of this paper is to analyze on a global scale the temporal variations of geomagnetic field components during moderate magnetic storms on April 28–29 and May 1–2, 2023. The latitudinal dependence of the geomagnetic field components temporal variations during two moderate magnetic storms in April–May 2023 and on reference days was analyzed on a global scale using the data of the global network of Intermagnet stations. The limits of fluctuations in the level of the geomagnetic field under quiet conditions and during moderate storms were estimated. The range of variations in the geomagnetic field level under quiet conditions decreased from 200–260 to 30–50 nT with decreasing geographic latitude. During the storms, these limits increased 1.3–2.1 times. The variations in the level of components at stations equidistant from the equator were close. This is true for both the Western and Eastern Hemispheres. The fluctuations of the geomagnetic field level at the stations operating approximately at the same latitude but in different hemispheres were also close.
{"title":"Moderate Magnetic Storms on April 28–May 2, 2023","authors":"L. F. Chernogor, M. Yu. Holub","doi":"10.3103/S0884591324060023","DOIUrl":"10.3103/S0884591324060023","url":null,"abstract":"<p>Magnetic storm, ionospheric storm, atmospheric storm, and electrical storm are the components of a geospace storm resulting from a solar storm. In the literature, the main attention is paid to the analysis of severe and extreme geospace storms. It is these storms that have the greatest impact on the Earth–atmosphere–ionosphere–magnetosphere system. They are most dangerous for space-based and ground-based technological systems. Such storms have a significant impact on human well-being and health. Minor and moderate storms are much less studied than severe and extreme ones. There are good reasons to believe that such storms can have some impact on the systems and people. It is important that the frequency of occurrence of moderate storms is much greater than the frequency of occurrence of severe storms. All this determined the relevance of this work, which consists in the study of magnetic disturbances that arise during moderate geospace storms, which receive undeservedly little attention. The purpose of this paper is to analyze on a global scale the temporal variations of geomagnetic field components during moderate magnetic storms on April 28–29 and May 1–2, 2023. The latitudinal dependence of the geomagnetic field components temporal variations during two moderate magnetic storms in April–May 2023 and on reference days was analyzed on a global scale using the data of the global network of Intermagnet stations. The limits of fluctuations in the level of the geomagnetic field under quiet conditions and during moderate storms were estimated. The range of variations in the geomagnetic field level under quiet conditions decreased from 200–260 to 30–50 nT with decreasing geographic latitude. During the storms, these limits increased 1.3–2.1 times. The variations in the level of components at stations equidistant from the equator were close. This is true for both the Western and Eastern Hemispheres. The fluctuations of the geomagnetic field level at the stations operating approximately at the same latitude but in different hemispheres were also close.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 6","pages":"306 - 326"},"PeriodicalIF":0.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.3103/S0884591324060060
S. M. Osipov, M. I. Pishkalo
Based on observations conducted at the Ernest Gurtovenko Horizontal Solar Telescope, the height of the polar chromosphere of the Sun was determined for the period 2012–2023. The measurement was calculated as the difference between the positions of the maximum radial brightness gradients in the continuum and at the core of the Hα line. The results indicate that the height of the polar chromosphere is lower near the maximum of the solar cycle (approximately 4500 km, or 6.3″) and higher near the minimum of the cycle (approximately 5000 km, or 6.9″). The chromosphere’s height at the southern pole in 2012–2013 and, particularly, 2016–2017 was higher than at the northern pole. This north–south asymmetry is likely related to differences in the dynamics and magnitude of the polar magnetic fields during Solar Cycle 24. The findings demonstrate that the time changes in the chromosphere’s height closely correlate with sunspot numbers, the strength of the polar magnetic field, and chromospheric indices of solar activity. The correlation coefficient between the average annual height of the chromosphere and the smoothed relative sunspot number is –0.64 for the northern hemisphere and –0.75 for the southern hemisphere. The correlation coefficient between the average annual height of the chromosphere and the smoothed values of the polar magnetic field strength (based on data from the Wilcox Solar Observatory) is 0.86 for the northern hemisphere and 0.53 for the southern hemisphere (the latter value increases to 0.77). The correlation coefficient between the average annual height of the chromosphere and the chromospheric index IK2 reaches the highest values, 0.91, for the northern pole and 0.80 for the southern pole.
{"title":"Height of the Polar Chromosphere in 2012–2023 According to Observations with the Ernest Gurtovenko Telescope","authors":"S. M. Osipov, M. I. Pishkalo","doi":"10.3103/S0884591324060060","DOIUrl":"10.3103/S0884591324060060","url":null,"abstract":"<p>Based on observations conducted at the Ernest Gurtovenko Horizontal Solar Telescope, the height of the polar chromosphere of the Sun was determined for the period 2012–2023. The measurement was calculated as the difference between the positions of the maximum radial brightness gradients in the continuum and at the core of the H<sub>α</sub> line. The results indicate that the height of the polar chromosphere is lower near the maximum of the solar cycle (approximately 4500 km, or 6.3″) and higher near the minimum of the cycle (approximately 5000 km, or 6.9″). The chromosphere’s height at the southern pole in 2012–2013 and, particularly, 2016–2017 was higher than at the northern pole. This north–south asymmetry is likely related to differences in the dynamics and magnitude of the polar magnetic fields during Solar Cycle 24. The findings demonstrate that the time changes in the chromosphere’s height closely correlate with sunspot numbers, the strength of the polar magnetic field, and chromospheric indices of solar activity. The correlation coefficient between the average annual height of the chromosphere and the smoothed relative sunspot number is –0.64 for the northern hemisphere and –0.75 for the southern hemisphere. The correlation coefficient between the average annual height of the chromosphere and the smoothed values of the polar magnetic field strength (based on data from the Wilcox Solar Observatory) is 0.86 for the northern hemisphere and 0.53 for the southern hemisphere (the latter value increases to 0.77). The correlation coefficient between the average annual height of the chromosphere and the chromospheric index <i>I</i><sub>K2</sub> reaches the highest values, 0.91, for the northern pole and 0.80 for the southern pole.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 6","pages":"345 - 353"},"PeriodicalIF":0.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.3103/S0884591324060035
A. K. Fedorenko, E. I. Kryuchkov, A. D. Voitsekhovska, O. K. Cheremnykh, I. T. Zhuk
Wave disturbances from the solar terminator in the morning and evening hours were investigated using a ground-based network of very low frequency (VLF) radio stations. The data of measurements of the amplitudes of VLF radio signals on the GQD–A118 radio path with a transmitter in Great Britain (GQD, f = 22.1 kHz) and a receiving point in France (A118) were used. Amplitudes of radio signals change as a result of the propagation of atmospheric waves at the altitudes of localization of the upper wall of the Earth-ionosphere VLF waveguide. This makes it possible to use a network of VLF radio stations to monitor wave activity in the mesosphere (lower ionosphere). Based on the analysis of experimental data, it was established that pronounced periodic fluctuations in the amplitudes of radio signals are observed in the evening and in the morning for several hours after the passage of the solar terminator. Histograms of the distribution of these fluctuation periods for several months were constructed. The predominance of periods of radio signal fluctuations of 20–25 min was revealed both in the evening and in the morning hours. For the evening terminator, this result is consistent with our previous studies. The predominance of approximately the same wave periods in the morning was established for the first time. It is assumed that the observed fluctuations are caused by the propagation of acoustic-gravity waves (AGWs) from the solar terminator. The existence of a dominant period probably indicates that these perturbations represent a fundamental wave mode moving synchronously with the solar terminator.
利用甚低频(VLF)无线电台的地面网络研究了早晨和晚上太阳黄昏时的波扰动。利用在英国的发射机(GQD, f = 22.1 kHz)和法国的接收点(A118)对GQD - A118无线电路径上的VLF无线电信号幅度的测量数据。由于大气波在地球电离层VLF波导上壁定位高度处的传播,无线电信号的振幅发生了变化。这使得利用VLF无线电台网络监测中间层(较低电离层)的波活动成为可能。根据对实验数据的分析,确定了在太阳终端线通过后的几个小时内,在傍晚和早晨观测到无线电信号幅度的明显周期性波动。构建了几个月波动周期的直方图。20-25分钟的无线电信号波动周期在傍晚和早晨均占主导地位。对于傍晚结束点,这一结果与我们之前的研究结果一致。第一次确定了在早晨具有近似相同波周期的优势。假设观测到的波动是由来自太阳终端的声重力波(AGWs)传播引起的。主导周期的存在可能表明,这些扰动代表了与太阳终端机同步移动的基本波模式。
{"title":"Wave Atmospheric Disturbances from the Solar Terminator in the Morning and Evening Hours Based on Measurements of Amplitudes of VLF Radio Signals","authors":"A. K. Fedorenko, E. I. Kryuchkov, A. D. Voitsekhovska, O. K. Cheremnykh, I. T. Zhuk","doi":"10.3103/S0884591324060035","DOIUrl":"10.3103/S0884591324060035","url":null,"abstract":"<p>Wave disturbances from the solar terminator in the morning and evening hours were investigated using a ground-based network of very low frequency (VLF) radio stations. The data of measurements of the amplitudes of VLF radio signals on the GQD–A118 radio path with a transmitter in Great Britain (GQD, <i>f</i> = 22.1 kHz) and a receiving point in France (A118) were used. Amplitudes of radio signals change as a result of the propagation of atmospheric waves at the altitudes of localization of the upper wall of the Earth-ionosphere VLF waveguide. This makes it possible to use a network of VLF radio stations to monitor wave activity in the mesosphere (lower ionosphere). Based on the analysis of experimental data, it was established that pronounced periodic fluctuations in the amplitudes of radio signals are observed in the evening and in the morning for several hours after the passage of the solar terminator. Histograms of the distribution of these fluctuation periods for several months were constructed. The predominance of periods of radio signal fluctuations of 20–25 min was revealed both in the evening and in the morning hours. For the evening terminator, this result is consistent with our previous studies. The predominance of approximately the same wave periods in the morning was established for the first time. It is assumed that the observed fluctuations are caused by the propagation of acoustic-gravity waves (AGWs) from the solar terminator. The existence of a dominant period probably indicates that these perturbations represent a fundamental wave mode moving synchronously with the solar terminator.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 6","pages":"295 - 305"},"PeriodicalIF":0.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.3103/S0884591324060059
S. G. Mamedov, Z. F. Aliyeva, Z. A. Samedov
The study of MHD waves in coronal structures is of great importance in coronal seismology. The study of these waves makes it possible to reveal the physical structure and heating mechanism of the solar corona. It is of great interest to calculate the line profile in the emission spectrum of a magneto-sonic wave for various physical parameters, calculate the energy flux and compare them with observations. In this paper, the profiles of the FeIX λ171Å line in the emission spectrum of slow magneto-acoustic waves propagating in coronal loops are calculated for cases of an optically thin layer and the change in density. The line profiles were calculated for the following parameter values: wave velocity amplitude ({{upsilon }_{0}}) = 10 km/s, coronal loop width 2000 and 5000 km, wavelength Λ = 20 000 and 50 000 km, Doppler width Δλd = 0.01 Å, and at values of the angle of the line of sight and at different phases of the wave. The energy flux density is 622.5 erg/(cm2 s). The calculated values of the energy flux density strongly depend on the angle of the line of sight and on the phase of the wave and range from zero at large values of θ to ~4 × 103 erg/(cm2 s), the values of Doppler velocities ({{upsilon }_{{text{d}}}}) and velocities of non-thermal movements ({{upsilon }_{{{text{nt}}}}}) at small values of θ have a maximum value of ~13 km/s and decrease almost to zero at large values of θ. At different values of the angle of the line of sight, the asymmetry is almost not noticeable. An interesting result is that the values of the calculated (observed) energy flux can be both much less and much more than the true value: from almost zero at small values of θ. These values depend not only on the angle of the line of sight, but also on the width of the coronal loop and the wavelength.
{"title":"Sensitivity of the Fe IX λ171 Line Profile to Slow Magneto-Acoustic Waves Propagating in a Solar Coronal Loop","authors":"S. G. Mamedov, Z. F. Aliyeva, Z. A. Samedov","doi":"10.3103/S0884591324060059","DOIUrl":"10.3103/S0884591324060059","url":null,"abstract":"<p>The study of MHD waves in coronal structures is of great importance in coronal seismology. The study of these waves makes it possible to reveal the physical structure and heating mechanism of the solar corona. It is of great interest to calculate the line profile in the emission spectrum of a magneto-sonic wave for various physical parameters, calculate the energy flux and compare them with observations. In this paper, the profiles of the FeIX λ171Å line in the emission spectrum of slow magneto-acoustic waves propagating in coronal loops are calculated for cases of an optically thin layer and the change in density. The line profiles were calculated for the following parameter values: wave velocity amplitude <span>({{upsilon }_{0}})</span> = 10 km/s, coronal loop width 2000 and 5000 km, wavelength Λ = 20 000 and 50 000 km, Doppler width Δλ<sub>d</sub> = 0.01 Å, and at values of the angle of the line of sight and at different phases of the wave. The energy flux density is 622.5 erg/(cm<sup>2</sup> s). The calculated values of the energy flux density strongly depend on the angle of the line of sight and on the phase of the wave and range from zero at large values of θ to ~4 × 10<sup>3</sup> erg/(cm<sup>2</sup> s), the values of Doppler velocities <span>({{upsilon }_{{text{d}}}})</span> and velocities of non-thermal movements <span>({{upsilon }_{{{text{nt}}}}})</span> at small values of θ have a maximum value of ~13 km/s and decrease almost to zero at large values of θ. At different values of the angle of the line of sight, the asymmetry is almost not noticeable. An interesting result is that the values of the calculated (observed) energy flux can be both much less and much more than the true value: from almost zero at small values of θ. These values depend not only on the angle of the line of sight, but also on the width of the coronal loop and the wavelength.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 6","pages":"327 - 336"},"PeriodicalIF":0.5,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.3103/S0884591324050040
M. N. Pasechnik
<p>The results of the spectral observation analysis in the H<sub>α</sub> line of a site of active region NOAA 11 024, which has been in the main phase of development given its sharply increased activity, are discussed. The studied site (its length is 10 Mm) has been located in the region of a new serpentine magnetic flow emergence. An arch filament system (AFS) has been formed on it, under which an Ellerman bomb (EB) emerged and developed, and a pore formed at a distance of approximately 7.2 Mm from the EB. The evolution of the AFS is studied, and the formation and development of all H<sub>α</sub>-ejections that formed in its magnetic loops during the observations are investigated. Spectral data with high spatial (approximately 1″) and temporal (approximately 3 s) resolution were obtained with the THEMIS French–Italian solar telescope (Tenerife, Spain) on July 4, 2009. The observation time is 20 min (to 9:52–10:11 UT). We use the spectral region that contains the central part of the H<sub>α</sub> chromospheric line. In all spectra, H<sub>α</sub> ejections (surges) are visible both in the long wavelength and short wavelength wings of the absorption line. The changes in the Stokes <i>I</i> profiles shape are studied, which are very diverse and appreciably different from the profile for the undisturbed chromosphere. Depending on whether the ejection moved to the upward direction or to the downward one, the profile component corresponding to it is projected onto the blue or red line wing. Substantially broadened and dual lobed profiles appear close to the end of the observations, which indicates that both downward and upward plasma flows exist nearby. It is found that surges can be comprised of several jets that are formed during successive and periodic magnetic reconnections. Doppler shifts of the profile components are used to calculate the line-of-sight velocities (<i>V</i><sub>los</sub>) of chromospheric matter in surges. The changes in the <i>V</i><sub>los</sub> along the cross section of the surge jets at the place of their maximum intensity are analyzed. The <i>V</i><sub>los</sub> of jets are different and probably depend on the magnetic field structure in the surge and the surrounding environment. The direction of jet movement is also different, since it depends on the phase of surge development. Most of the curves of <i>V</i><sub>los</sub> changes consist of several segments. This indicates that the large jets are composed of several smaller jets, i.e., they had a fibrous structure. The flows of ascending and descending surges often occur simultaneously and coincide in time with the increase of the EB brightness. A vortex motion of the plasma is observed in one of the surges for approximately 3 min, as evidenced by the inclined dark streaks in the spectra. At the instant of the greatest brightness of the EB, there are seven surges in the studied site of AR, and the plasma moves downward with <i>V</i><sub>los</sub> up to 77 km/s in three of t
{"title":"A Spectral Study of Active Region Site with an Ellerman Bomb and Hα Ejections: Chromosphere. Arch Filament System","authors":"M. N. Pasechnik","doi":"10.3103/S0884591324050040","DOIUrl":"10.3103/S0884591324050040","url":null,"abstract":"<p>The results of the spectral observation analysis in the H<sub>α</sub> line of a site of active region NOAA 11 024, which has been in the main phase of development given its sharply increased activity, are discussed. The studied site (its length is 10 Mm) has been located in the region of a new serpentine magnetic flow emergence. An arch filament system (AFS) has been formed on it, under which an Ellerman bomb (EB) emerged and developed, and a pore formed at a distance of approximately 7.2 Mm from the EB. The evolution of the AFS is studied, and the formation and development of all H<sub>α</sub>-ejections that formed in its magnetic loops during the observations are investigated. Spectral data with high spatial (approximately 1″) and temporal (approximately 3 s) resolution were obtained with the THEMIS French–Italian solar telescope (Tenerife, Spain) on July 4, 2009. The observation time is 20 min (to 9:52–10:11 UT). We use the spectral region that contains the central part of the H<sub>α</sub> chromospheric line. In all spectra, H<sub>α</sub> ejections (surges) are visible both in the long wavelength and short wavelength wings of the absorption line. The changes in the Stokes <i>I</i> profiles shape are studied, which are very diverse and appreciably different from the profile for the undisturbed chromosphere. Depending on whether the ejection moved to the upward direction or to the downward one, the profile component corresponding to it is projected onto the blue or red line wing. Substantially broadened and dual lobed profiles appear close to the end of the observations, which indicates that both downward and upward plasma flows exist nearby. It is found that surges can be comprised of several jets that are formed during successive and periodic magnetic reconnections. Doppler shifts of the profile components are used to calculate the line-of-sight velocities (<i>V</i><sub>los</sub>) of chromospheric matter in surges. The changes in the <i>V</i><sub>los</sub> along the cross section of the surge jets at the place of their maximum intensity are analyzed. The <i>V</i><sub>los</sub> of jets are different and probably depend on the magnetic field structure in the surge and the surrounding environment. The direction of jet movement is also different, since it depends on the phase of surge development. Most of the curves of <i>V</i><sub>los</sub> changes consist of several segments. This indicates that the large jets are composed of several smaller jets, i.e., they had a fibrous structure. The flows of ascending and descending surges often occur simultaneously and coincide in time with the increase of the EB brightness. A vortex motion of the plasma is observed in one of the surges for approximately 3 min, as evidenced by the inclined dark streaks in the spectra. At the instant of the greatest brightness of the EB, there are seven surges in the studied site of AR, and the plasma moves downward with <i>V</i><sub>los</sub> up to 77 km/s in three of t","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 5","pages":"269 - 288"},"PeriodicalIF":0.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.3103/S0884591324050027
O. K. Cheremnykh, S. O. Cheremnykh, V. M. Lashkin, A. K. Fedorenko
Nonlinear equations called the Stenflo equations are usually used for the analytical description of the propagation of internal gravity waves in the Earth’s upper atmosphere. Solutions in the form of dipole vortices, tripole vortices, and vortex chains are previously obtained by these equations. The Stenflo equations also describe rogue waves, breathers, and dark solitons. If disturbances cease to be small, then their profiles are usually deformed, and, presumably, they cannot be considered plane waves. This study shows that this is not always the case for internal gravity waves and that these waves can propagate as plane waves even with large amplitudes. An exact solution of the system of nonlinear Stenflo equations for internal gravity waves that contain nonlinear terms in the form of Poisson brackets is given. The solution is obtained in the form of plane waves with arbitrary amplitude. To find a solution, the original system of equations is transformed. It is split into equations for the stream and vorticity functions as well as equations for the perturbed density. To solve the obtained equations, the procedure of the successive zeroing of Poisson brackets is applied. As a result, linear equations that allow one to find the accurate analytical solutions for internal gravity waves in the form of plane waves with arbitrary amplitude are obtained. By solving these linear equations in two different ways, we have analytically found expressions for the perturbed quantities and the dispersion equation. The nonlinear equations obtained for the current, vorticity, and perturbed density functions can be used to find other nonlinear solutions. The given solutions in the form of plane waves with arbitrary amplitude may be of interest for the analysis of the propagation of internal gravity waves in the Earth’s atmosphere and the interpretation of experimental data.
{"title":"Plane Internal Gravity Waves with Arbitrary Amplitude","authors":"O. K. Cheremnykh, S. O. Cheremnykh, V. M. Lashkin, A. K. Fedorenko","doi":"10.3103/S0884591324050027","DOIUrl":"10.3103/S0884591324050027","url":null,"abstract":"<p>Nonlinear equations called the Stenflo equations are usually used for the analytical description of the propagation of internal gravity waves in the Earth’s upper atmosphere. Solutions in the form of dipole vortices, tripole vortices, and vortex chains are previously obtained by these equations. The Stenflo equations also describe rogue waves, breathers, and dark solitons. If disturbances cease to be small, then their profiles are usually deformed, and, presumably, they cannot be considered plane waves. This study shows that this is not always the case for internal gravity waves and that these waves can propagate as plane waves even with large amplitudes. An exact solution of the system of nonlinear Stenflo equations for internal gravity waves that contain nonlinear terms in the form of Poisson brackets is given. The solution is obtained in the form of plane waves with arbitrary amplitude. To find a solution, the original system of equations is transformed. It is split into equations for the stream and vorticity functions as well as equations for the perturbed density. To solve the obtained equations, the procedure of the successive zeroing of Poisson brackets is applied. As a result, linear equations that allow one to find the accurate analytical solutions for internal gravity waves in the form of plane waves with arbitrary amplitude are obtained. By solving these linear equations in two different ways, we have analytically found expressions for the perturbed quantities and the dispersion equation. The nonlinear equations obtained for the current, vorticity, and perturbed density functions can be used to find other nonlinear solutions. The given solutions in the form of plane waves with arbitrary amplitude may be of interest for the analysis of the propagation of internal gravity waves in the Earth’s atmosphere and the interpretation of experimental data.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 5","pages":"289 - 294"},"PeriodicalIF":0.5,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}