Pub Date : 2024-06-17DOI: 10.3103/S0884591324030024
L. F. Chernogor, M. Yu. Holub
A solar eclipse (SE) can cause disturbances in all subsystems of the Earth–atmosphere–ionosphere–magnetosphere system, including the geomagnetic field. Using the data obtained at 15 stations of the INTERMAGNET network, the temporal variations of all components of the geomagnetic field are analyzed. It is found that the SE has been accompanied by a disturbance of the X-, Y-, and Z-components. The largest disturbances have been detected for the X-component (south–north). There has been a steady tendency to increase the disturbance of the X-component with an increase in the area of the solar disk obscuration. The disturbance magnitude of the X-component level under the influence of the SE is calculated. It is believed that the main mechanism for generating the magnetic effect is the disturbance of the ionospheric current system at the heights of the dynamo region. The results of observations and calculations are in good agreement with each other. In addition to a stable aperiodic effect lasting approximately 100…180 min, an increase in the range of fluctuations in the geomagnetic field level has been observed during the SE. This may indicate the generation of quasi-periodic disturbances of the geomagnetic field in the range of atmospheric gravity waves.
摘要 日食可对地球-大气层-电离层-磁层系统的所有子系统(包括地磁场)造成扰动。本文利用 INTERMAGNET 网络 15 个站点获得的数据,分析了地磁场各组成部分的时间变化。结果发现,SE 伴随着 X、Y 和 Z 分量的扰动。X 分量(南-北)的扰动最大。随着日盘遮挡面积的增加,X分量的扰动也呈稳定上升趋势。计算了在 SE 影响下 X 分量水平的扰动幅度。据认为,产生磁效应的主要机制是对动力区高度的电离层电流系统的扰动。观测结果和计算结果非常吻合。除了持续约 100...180 分钟的稳定非周期性效应外,在 SE 期间还观测到地磁场水平波动范围增大。这可能表明在大气重力波范围内产生了地磁场准周期性扰动。
{"title":"Geomagnetic Effect of the Solar Eclipse of October 25, 2022, in Eurasia","authors":"L. F. Chernogor, M. Yu. Holub","doi":"10.3103/S0884591324030024","DOIUrl":"10.3103/S0884591324030024","url":null,"abstract":"<p>A solar eclipse (SE) can cause disturbances in all subsystems of the Earth–atmosphere–ionosphere–magnetosphere system, including the geomagnetic field. Using the data obtained at 15 stations of the INTERMAGNET network, the temporal variations of all components of the geomagnetic field are analyzed. It is found that the SE has been accompanied by a disturbance of the <i>X-</i>, <i>Y-</i>, and <i>Z-</i>components. The largest disturbances have been detected for the <i>X-</i>component (south–north). There has been a steady tendency to increase the disturbance of the <i>X-</i>component with an increase in the area of the solar disk obscuration. The disturbance magnitude of the <i>X-</i>component level under the influence of the SE is calculated. It is believed that the main mechanism for generating the magnetic effect is the disturbance of the ionospheric current system at the heights of the dynamo region. The results of observations and calculations are in good agreement with each other. In addition to a stable aperiodic effect lasting approximately 100…180 min, an increase in the range of fluctuations in the geomagnetic field level has been observed during the SE. This may indicate the generation of quasi-periodic disturbances of the geomagnetic field in the range of atmospheric gravity waves.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 3","pages":"117 - 137"},"PeriodicalIF":0.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.3103/S088459132402003X
Yu. I. Fedorov
Based on the cosmic ray transport equation, the propagation of charged high-energy particles in heliospheric magnetic fields is considered. The transport equation solution is found in the approximation of low anisotropy in the angular distribution of particles. The energy distribution of galactic cosmic rays at a heliopause is used as a boundary condition. The energy spectrum of cosmic rays in a local interstellar space is considered to be known due to the outstanding results of space missions (Pioneer, Voyager, PAMELA, AMS-02, etc.). The flux density of cosmic rays is calculated in the periods of different solar magnetic polarity. It is shown that the intensity of galactic cosmic rays in positive magnetic polarity periods is maximum near the helioequator. In the periods when the interplanetary magnetic field has a negative polarity, the intensity of cosmic rays decreases with increasing heliolatitude.
{"title":"Propagation of Galactic Cosmic Rays in the Heliosphere during Minimum Solar Activity Periods","authors":"Yu. I. Fedorov","doi":"10.3103/S088459132402003X","DOIUrl":"10.3103/S088459132402003X","url":null,"abstract":"<p>Based on the cosmic ray transport equation, the propagation of charged high-energy particles in heliospheric magnetic fields is considered. The transport equation solution is found in the approximation of low anisotropy in the angular distribution of particles. The energy distribution of galactic cosmic rays at a heliopause is used as a boundary condition. The energy spectrum of cosmic rays in a local interstellar space is considered to be known due to the outstanding results of space missions (Pioneer, Voyager, PAMELA, AMS-02, etc.). The flux density of cosmic rays is calculated in the periods of different solar magnetic polarity. It is shown that the intensity of galactic cosmic rays in positive magnetic polarity periods is maximum near the helioequator. In the periods when the interplanetary magnetic field has a negative polarity, the intensity of cosmic rays decreases with increasing heliolatitude.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"64 - 76"},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.3103/S0884591324020053
Y. O. Klymenko, A. K. Fedorenko, E. I. Kryuchkov, S. V. Melnychuk, I. T. Zhuk
The entire spectrum of acoustic-gravity waves (AGWs), which can exist in an infinite isothermal atmosphere, is analyzed. The main attention in the study has been paid to those regions of the spectrum that are bandgaps for freely propagating waves. However, other types of waves that differ from the freely propagating AGWs in the way of propagation and in properties still may exist in these regions. Different types of bandgaps in the acoustic-gravity wave spectrum, which are found from the analysis of the dispersion equation obtained in the model of the infinite isothermal atmosphere, are studied. Classification of the types of bandgap regions in the AGW spectrum is proposed. The structure and the localization of the bandgaps relative to the regions of freely propagating waves and special points in the bandgaps of the AGW spectrum are studied using the corresponding spectral diagrams. In the bandgap region of type I, which separates the acoustic and gravity bands of freely propagating AGWs, horizontal waves with a purely imaginary value of the vertical wavenumber can exist. In the AGW spectrum, the possibility of the existence of special acoustic-gravity modes for which one of the perturbed quantities is zero has been considered and it is shown that they can exist only in the spectral bandgap of type I. A spectral bandgap in which vertical acoustic-gravity waves with a purely imaginary value of the horizontal wavenumber can exist was also analyzed. A spectral region in which the existence of acoustic-gravity waves is impossible but atmospheric oscillations may occur is also taken into consideration in this study. The properties of wave solutions in various types of spectral bandgaps, including the peculiarities of polarization ratios, are also analyzed. The theoretical analysis of spectral bandgap regions of AGWs can be used for the experimental search of new types of wave solutions in the atmosphere.
摘要 分析了可存在于无限等温大气中的声重力波(AGW)的整个频谱。研究的主要关注点是频谱中自由传播波的带隙区域。然而,在这些区域仍然可能存在其他类型的波,它们在传播方式和特性上与自由传播的 AGW 不同。通过分析在无限等温大气模型中得到的频散方程,我们研究了声重力波谱中的不同带隙类型。提出了声引力波频谱中带隙区域类型的分类。利用相应的光谱图研究了 AGW 光谱中相对于自由传播波区域和特殊带隙点的带隙结构和定位。在分隔自由传播 AGW 的声带和重力带的 I 型带隙区域中,可能存在垂直波数为纯虚值的水平波。在 AGW 频谱中,考虑了存在特殊声引力模式的可能性,其中一个扰动量为零,结果表明它们只能存在于 I 型频谱带隙中。本研究还考虑了不可能存在声引力波但可能发生大气振荡的频谱区域。还分析了各类光谱带隙中波解的特性,包括极化比的特殊性。对 AGW 光谱带隙区域的理论分析可用于在大气中寻找新型波解的实验。
{"title":"An Analysis of Bandgaps in the Spectrum of Acoustic-Gravity Waves in an Isothermal Atmosphere","authors":"Y. O. Klymenko, A. K. Fedorenko, E. I. Kryuchkov, S. V. Melnychuk, I. T. Zhuk","doi":"10.3103/S0884591324020053","DOIUrl":"10.3103/S0884591324020053","url":null,"abstract":"<p>The entire spectrum of acoustic-gravity waves (AGWs), which can exist in an infinite isothermal atmosphere, is analyzed. The main attention in the study has been paid to those regions of the spectrum that are bandgaps for freely propagating waves. However, other types of waves that differ from the freely propagating AGWs in the way of propagation and in properties still may exist in these regions. Different types of bandgaps in the acoustic-gravity wave spectrum, which are found from the analysis of the dispersion equation obtained in the model of the infinite isothermal atmosphere, are studied. Classification of the types of bandgap regions in the AGW spectrum is proposed. The structure and the localization of the bandgaps relative to the regions of freely propagating waves and special points in the bandgaps of the AGW spectrum are studied using the corresponding spectral diagrams. In the bandgap region of type I, which separates the acoustic and gravity bands of freely propagating AGWs, horizontal waves with a purely imaginary value of the vertical wavenumber can exist. In the AGW spectrum, the possibility of the existence of special acoustic-gravity modes for which one of the perturbed quantities is zero has been considered and it is shown that they can exist only in the spectral bandgap of type I. A spectral bandgap in which vertical acoustic-gravity waves with a purely imaginary value of the horizontal wavenumber can exist was also analyzed. A spectral region in which the existence of acoustic-gravity waves is impossible but atmospheric oscillations may occur is also taken into consideration in this study. The properties of wave solutions in various types of spectral bandgaps, including the peculiarities of polarization ratios, are also analyzed. The theoretical analysis of spectral bandgap regions of AGWs can be used for the experimental search of new types of wave solutions in the atmosphere.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"55 - 63"},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.3103/S0884591324020028
L. F. Chernogor, Yu. B. Mylovanov
A solar eclipse (SE) leads to perturbations of all subsystems in the Earth–atmosphere–ionosphere–magnetosphere system and to perturbations of geophysical fields. Each SE leads to a whole series of physical and chemical processes occurring in the ionosphere. Along with common features, each SE has its own peculiarities with regard to these processes. These processes depend on the solar activity phase, time of the year, time of the day, geographic coordinates, atmospheric weather, space weather, magnitude of eclipse, etc. Therefore, studying these effects during each SE is an urgent task. The aim of this study is to describe the results of the analysis of the effects features of the SE which was observed shortly after sunrise on October 25, 2022 mainly at high latitudes. The data obtained from a network of space stations and navigation satellites moving over the region of partial SE were used for observations. It is found that the maximum decrease in the total electron content (TEC) in the ionosphere in these observations was 1.6–4.1 TECU, and its relative decrease reached 12–25%. The maximum decrease in the TEC was delayed 18–33 min in time with respect to the point in time when the maximum magnitude of the SE was reached. The duration of the response of the ionosphere to the SE was 120–180 min, which exceeded the eclipse duration.
摘要 日食会导致地球-大气层-电离层-磁层系统中所有子系统的扰动以及地球物理场的扰动。每个 SE 都会导致电离层发生一系列物理和化学过程。除了共同特征外,每个 SE 在这些过程方面都有自己的特点。这些过程取决于太阳活动阶段、一年中的时间、一天中的时间、地理坐标、大气气象、空间气象、日食大小等。因此,研究每个 SE 期间的这些影响是一项紧迫任务。本研究旨在描述对 2022 年 10 月 25 日日出后不久主要在高纬度地区观测到的 SE 的影响特征进行分析的结果。观测使用了在部分东南风区域上空移动的空间站和导航卫星网络获得的数据。观测发现,在这些观测中,电离层总电子含量(TEC)的最大降幅为 1.6-4.1 TECU,相对降幅达到 12-25%。相对于达到 SE 最大值的时间点,TEC 的最大降幅延迟了 18-33 分钟。电离层对 SE 的响应持续时间为 120-180 分钟,超过了日食持续时间。
{"title":"Features of Ionospheric Effects of the Solar Eclipse Occurred on the Morning of October 25, 2022","authors":"L. F. Chernogor, Yu. B. Mylovanov","doi":"10.3103/S0884591324020028","DOIUrl":"10.3103/S0884591324020028","url":null,"abstract":"<p>A solar eclipse (SE) leads to perturbations of all subsystems in the Earth–atmosphere–ionosphere–magnetosphere system and to perturbations of geophysical fields. Each SE leads to a whole series of physical and chemical processes occurring in the ionosphere. Along with common features, each SE has its own peculiarities with regard to these processes. These processes depend on the solar activity phase, time of the year, time of the day, geographic coordinates, atmospheric weather, space weather, magnitude of eclipse, etc. Therefore, studying these effects during each SE is an urgent task. The aim of this study is to describe the results of the analysis of the effects features of the SE which was observed shortly after sunrise on October 25, 2022 mainly at high latitudes. The data obtained from a network of space stations and navigation satellites moving over the region of partial SE were used for observations. It is found that the maximum decrease in the total electron content (TEC) in the ionosphere in these observations was 1.6–4.1 TECU, and its relative decrease reached 12–25%. The maximum decrease in the TEC was delayed 18–33 min in time with respect to the point in time when the maximum magnitude of the SE was reached. The duration of the response of the ionosphere to the SE was 120–180 min, which exceeded the eclipse duration.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"77 - 87"},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.3103/S0884591324020065
Vinay Kumar, Nitesh Kumar
In this study, we have examined the effects of small perturbations on the Coriolis force and centrifugal force in the photogravitational restricted four-body problem within the circular asteroid belt. We investigate the existence, parametric evolution, and stability of equilibrium points considering various parameters. Our findings reveal that a small perturbation in the centrifugal force significantly influences the location of equilibrium points, while a perturbation in the Coriolis force has no impact on their location. To illustrate the permissible region of motion for the infinitesimal mass relative to the Jacobi constant, we plot the zero-velocity curves. Furthermore, we conduct a comprehensive analysis to determine the influence of the Coriolis force ((alpha )) and centrifugal force ((beta )) on the geometry of the basins of convergence (BoCs). In order to quantify the unpredictability of the BoCs, we thoroughly study the basin entropy. Significantly, we have found the presence of unpredictable (fractal) regions in close proximity to the boundaries of the basins of convergence.
{"title":"Investigating Attraction Zones in the Photogravitational Four-Body Problem: Effects of Asteroid Belt and Small Perturbations in Coriolis and Centrifugal Forces","authors":"Vinay Kumar, Nitesh Kumar","doi":"10.3103/S0884591324020065","DOIUrl":"10.3103/S0884591324020065","url":null,"abstract":"<p>In this study, we have examined the effects of small perturbations on the Coriolis force and centrifugal force in the photogravitational restricted four-body problem within the circular asteroid belt. We investigate the existence, parametric evolution, and stability of equilibrium points considering various parameters. Our findings reveal that a small perturbation in the centrifugal force significantly influences the location of equilibrium points, while a perturbation in the Coriolis force has no impact on their location. To illustrate the permissible region of motion for the infinitesimal mass relative to the Jacobi constant, we plot the zero-velocity curves. Furthermore, we conduct a comprehensive analysis to determine the influence of the Coriolis force (<span>(alpha )</span>) and centrifugal force (<span>(beta )</span>) on the geometry of the basins of convergence (BoCs). In order to quantify the unpredictability of the BoCs, we thoroughly study the basin entropy. Significantly, we have found the presence of unpredictable (fractal) regions in close proximity to the boundaries of the basins of convergence.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"88 - 104"},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.3103/S0884591324020041
Kaan Kaplan
Solar cycle 24 began in December 2008 and ended in December 2019. Maximum of solar cycle 24 occurred in April 2014. Magnetic field intensity has been reported via data from the Wilcox Solar Observatory. Sunspot numbers are reported via the data from WDC-SILSO, Royal Observatory of Belgium. Sunspot area distribution was determined using the data from the Max Planck Institute. Flare Index intensity is indicated, and the data recorded by the Kandilli Observatory at Bogazici University is presented. Hemisphere asymmetries in terms of sunspots and solar flare index are calculated. The number of solar flares that occur at the highest intensity (X-class) during this cycle are presented, the data for which from the NOAA/SWPC. The characteristics of Coronal Mass Ejections are given, as determined using the LASCO coronagraph operating on the SOHO mission. Solar radio flux distribution and comparison with previous cycles was studied using data from Space Weather Canada.
{"title":"The Characteristic Properties of Solar Activity in Solar Cycle 24","authors":"Kaan Kaplan","doi":"10.3103/S0884591324020041","DOIUrl":"10.3103/S0884591324020041","url":null,"abstract":"<p>Solar cycle 24 began in December 2008 and ended in December 2019. Maximum of solar cycle 24 occurred in April 2014. Magnetic field intensity has been reported via data from the Wilcox Solar Observatory. Sunspot numbers are reported via the data from WDC-SILSO, Royal Observatory of Belgium. Sunspot area distribution was determined using the data from the Max Planck Institute. Flare Index intensity is indicated, and the data recorded by the Kandilli Observatory at Bogazici University is presented. Hemisphere asymmetries in terms of sunspots and solar flare index are calculated. The number of solar flares that occur at the highest intensity (X-class) during this cycle are presented, the data for which from the NOAA/SWPC. The characteristics of Coronal Mass Ejections are given, as determined using the LASCO coronagraph operating on the SOHO mission. Solar radio flux distribution and comparison with previous cycles was studied using data from Space Weather Canada.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 2","pages":"105 - 115"},"PeriodicalIF":0.5,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.3103/S0884591324010045
A. K. Fedorenko, E. I. Kryuchkov, O. K. Cheremnykh, S. V. Melnychuk
The satellite observations of acoustic-gravity waves (AGW) in the polar atmosphere regions indicate that these waves are closely related with wind flows. This paper deals with the specific features of the propagation of acoustic-gravity waves in spatially inhomogeneous wind flows, wherein the velocity is slowly changed in the horizontal direction. A system of hydrodynamic equations taking into account the wind flow with spatial inhomogeneity is used for analysis. Unlike the system of equations written for a stationary medium (or a medium moving at a uniform velocity), the derived system contains the components describing the interaction of waves with a medium. It is shown that the effect of inhomogeneous background medium parameters can be separated from the effects of inertial forces by a special substitution of variables. An analytical expression describing the change in the amplitude of waves in a medium moving at a nonuniform velocity is derived. This expression contains two functional dependences: (1) the linear part, which is caused by the changes in the background parameters of a medium and independent of the propagation direction of waves with respect to the flow, and (2) the exponential part, which is related with inertial forces and characterizes the dependence of the amplitudes of acoustic-gravity waves on the direction of their propagation. The exponential part shows an increase in the amplitudes of waves in the headwind and a decrease in their amplitudes in the downwind. The derived theoretical dependence of the amplitudes of acoustic-gravity waves on the wind velocity is in good agreement with the data of the satellite observations of these waves in the polar atmosphere.
{"title":"Propagation of Acoustic-Gravity Waves in Inhomogeneous Wind Flows of the Polar Atmosphere","authors":"A. K. Fedorenko, E. I. Kryuchkov, O. K. Cheremnykh, S. V. Melnychuk","doi":"10.3103/S0884591324010045","DOIUrl":"10.3103/S0884591324010045","url":null,"abstract":"<p>The satellite observations of acoustic-gravity waves (AGW) in the polar atmosphere regions indicate that these waves are closely related with wind flows. This paper deals with the specific features of the propagation of acoustic-gravity waves in spatially inhomogeneous wind flows, wherein the velocity is slowly changed in the horizontal direction. A system of hydrodynamic equations taking into account the wind flow with spatial inhomogeneity is used for analysis. Unlike the system of equations written for a stationary medium (or a medium moving at a uniform velocity), the derived system contains the components describing the interaction of waves with a medium. It is shown that the effect of inhomogeneous background medium parameters can be separated from the effects of inertial forces by a special substitution of variables. An analytical expression describing the change in the amplitude of waves in a medium moving at a nonuniform velocity is derived. This expression contains two functional dependences: (1) the linear part, which is caused by the changes in the background parameters of a medium and independent of the propagation direction of waves with respect to the flow, and (2) the exponential part, which is related with inertial forces and characterizes the dependence of the amplitudes of acoustic-gravity waves on the direction of their propagation. The exponential part shows an increase in the amplitudes of waves in the headwind and a decrease in their amplitudes in the downwind. The derived theoretical dependence of the amplitudes of acoustic-gravity waves on the wind velocity is in good agreement with the data of the satellite observations of these waves in the polar atmosphere.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 1","pages":"15 - 23"},"PeriodicalIF":0.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.3103/S0884591324010069
R. I. Kostik
The results of spectropolarimetric and filter observations of a faculae region located near the solar disc center in the Fe I 1564.3, Fe I 1565.8, Ba II 455.4, and Ca II H 396.8 nm lines are discussed. The observation data are obtained using the German vacuum tower telescope of Observatorio del Teide (Tenerife, Spain). Observations of the faculae region are made simultaneously in the three spectral regions: spectropolarimetric observations of the I, Q, U, and V Stokes parameters of two neutral iron lines Fe I 1564.8 and Fe I 1565.2 nm with a time resolution of 6 min 50 s; filter observations in 37 sections of the profile of the ionized barium Ba II 455.4 nm line with a time resolution of 25.6 s; and filter observations only in the center of the ionized calcium Ca II H 396.8 nm line with a time resolution of 4.9 s. The following observation data are studied: (1) the power of the magnetic field at the altitude of the formation of a continuous spectrum near the Fe I 1564.8 and Fe I 1565.2 nm lines (h ≈ −100 km); (2) wave velocities at fourteen altitude levels in the atmosphere of the Sun, at which radiation in the Ba II 455.4 nm spectral line is formed (h ≈ 0−650 km), and calculated phase shifts Φ(V,V) between fluctuations of velocity V in the photosphere at the height of radiation formation in the center of this line (h ≈ 650 km) and velocity fluctuations at the other thirteen altitude levels; and (3) the faculae contrast at the altitude of formation of the Ca II H 396.8 nm line center (h ≈ 1600 km). The following two trends are shown: (1) The power of velocity fluctuations greatly varies depending on the frequency of oscillations with a change in the altitude in the atmosphere of the Sun. At the altitudes ranging from 0 to 300 km, the maximum oscillation power occurs at a frequency of 3.5 mHz. Another maximum occurs near a frequency of 4.5 mHz at the altitude level of h = 650 km, and the maximum oscillation power at a frequency of approximately 1.5 mHz is quite noticeable at an altitude of h = 1600 km. (2) The contrast in the center of the Ca II H 396.8 nm line (h = 650 km) does not monotonically increase with an increase in the intensity of the photospheric magnetic field, as might be expected from general considerations. At large magnetic fields (B > 140 mT), this dependence becomes inverse.
摘要 讨论了对位于太阳圆盘中心附近的一个面区在 Fe I 1564.3、Fe I 1565.8、Ba II 455.4 和 Ca II H 396.8 nm 线段进行的分光比容和滤光片观测的结果。观测数据是利用特内里费特德天文台(Observatorio del Teide,西班牙)的德国真空塔望远镜获得的。对面区的观测是在三个光谱区同时进行的:对两条中性铁线 Fe I 1564.8 和 Fe I 1565.2 nm 的 I、Q、U 和 V 斯多克斯参数进行分光测极法观测,时间分辨率为 6 分 50 秒;对电离钡 Ba II 455.4 nm 线的 37 个剖面进行滤波观测,时间分辨率为 6 分 50 秒。研究了以下观测数据:(1) 在 Fe I 1564.8 和 Fe I 1565.2 nm 附近形成连续光谱高度的磁场功率;(2) 在 Fe I 1564.8 和 Fe I 1565.2 nm 附近形成连续光谱高度的磁场功率;(3) 在 Fe I 1564.8 和 Fe I 1565.2 nm 附近形成连续光谱高度的磁场功率。8 和 Fe I 1565.2 nm 线附近形成连续光谱的高度处的磁场功率(h ≈ -100 km);(2)太阳大气中 14 个高度层的波速,在这 14 个高度层中,Ba II 455.4 nm 光谱线形成高度(h ≈ 0-650 km)的波速,以及计算出的该光谱线中心辐射形成高度(h ≈ 650 km)光球速度 V 波动与其他 13 个高度层速度波动之间的相移 Φ(V,V);以及 (3) Ca II H 396.8 nm 光谱线中心形成高度(h ≈ 1600 km)的面对比。显示了以下两个趋势:(1) 随着太阳大气层高度的变化,速度波动的功率随振荡频率的不同而变化很大。在 0 至 300 千米的高度范围内,最大振荡功率出现在 3.5 毫赫兹的频率上。另一个最大值出现在 h = 650 千米高度的 4.5 毫赫兹附近,而在 h = 1600 千米高度时,频率约为 1.5 毫赫兹的最大振荡功率非常明显。(2) Ca II H 396.8 nm 线中心(h = 650 千米)的对比度并不像一般预期的那样随着光球层磁场强度的增加而单调增加。在大磁场(B > 140 mT)下,这种依赖关系变成了反比。
{"title":"Solar Faculae and Flocculent Flows: Spectropolarimetric and Filter Observations in the Fe I, Ba II, and Ca II Lines","authors":"R. I. Kostik","doi":"10.3103/S0884591324010069","DOIUrl":"10.3103/S0884591324010069","url":null,"abstract":"<p>The results of spectropolarimetric and filter observations of a faculae region located near the solar disc center in the Fe I 1564.3, Fe I 1565.8, Ba II 455.4, and Ca II H 396.8 nm lines are discussed. The observation data are obtained using the German vacuum tower telescope of Observatorio del Teide (Tenerife, Spain). Observations of the faculae region are made simultaneously in the three spectral regions: spectropolarimetric observations of the <i>I</i>, <i>Q</i>, <i>U</i>, and <i>V</i> Stokes parameters of two neutral iron lines Fe I 1564.8 and Fe I 1565.2 nm with a time resolution of 6 min 50 s; filter observations in 37 sections of the profile of the ionized barium Ba II 455.4 nm line with a time resolution of 25.6 s; and filter observations only in the center of the ionized calcium Ca II H 396.8 nm line with a time resolution of 4.9 s. The following observation data are studied: (1) the power of the magnetic field at the altitude of the formation of a continuous spectrum near the Fe I 1564.8 and Fe I 1565.2 nm lines (<i>h</i> ≈ −100 km); (2) wave velocities at fourteen altitude levels in the atmosphere of the Sun, at which radiation in the Ba II 455.4 nm spectral line is formed (<i>h</i> ≈ 0−650 km), and calculated phase shifts Φ(V,V) between fluctuations of velocity V in the photosphere at the height of radiation formation in the center of this line (<i>h</i> ≈ 650 km) and velocity fluctuations at the other thirteen altitude levels; and (3) the faculae contrast at the altitude of formation of the Ca II H 396.8 nm line center (<i>h</i> ≈ 1600 km). The following two trends are shown: (1) The power of velocity fluctuations greatly varies depending on the frequency of oscillations with a change in the altitude in the atmosphere of the Sun. At the altitudes ranging from 0 to 300 km, the maximum oscillation power occurs at a frequency of 3.5 mHz. Another maximum occurs near a frequency of 4.5 mHz at the altitude level of <i>h</i> = 650 km, and the maximum oscillation power at a frequency of approximately 1.5 mHz is quite noticeable at an altitude of <i>h</i> = 1600 km. (2) The contrast in the center of the Ca II H 396.8 nm line (<i>h</i> = 650 km) does not monotonically increase with an increase in the intensity of the photospheric magnetic field, as might be expected from general considerations. At large magnetic fields (<i>B</i> > 140 mT), this dependence becomes inverse.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 1","pages":"40 - 46"},"PeriodicalIF":0.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.3103/S0884591324010021
O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchkov, Y. O. Klymenko, I. T. Zhuk
The results of the authors’ studies of acoustic-gravity waves (AGW) in the upper Earth’s atmosphere for recent years are presented. The work was generally aimed at the development of theoretical AGW models taking into account the real atmosphere properties and the verification of these models by spacecraft measurement data. The possibility of the existence of new evanescent acoustic-gravity wave types was theoretically shown; in particular, a previously unknown inelastic mode and a family of evanescent pseudo-modes were revealed. The possibility of observing evanescent modes on the Sun and in the Earth’s atmosphere was analyzed. The specific features of the propagation of acoustic-gravity waves at the interface between two isothermal half-spaces with different temperatures depending on their spectral parameters and the temperature jump magnitude at the interface were studied. The peculiarities of the interaction of acoustic-gravity waves with spatially inhomogeneous atmospheric flows were also investigated. The observed effects resulting from such interaction were analyzed to reveal the wave propagation azimuths, the change in their amplitudes, and the effect of blocking in the counterflow. The effect of vertical nonisothermicity on the propagation of acoustic-gravity waves, including the modification of acoustic and gravitational regions depending on the temperature, was studied. Based on the modified Navier-Stokes and heat-transfer equations, the effect of attenuation on the propagation of acoustic-gravity waves in the atmosphere was analyzed. The specific features of the viscous attenuation of different evanescent AGW types in the atmosphere were considered. The rotation of the atmosphere was shown to result in the modification of the continuous spectrum of evanescent AGWs with frequencies exceeding the Coriolis parameter.
{"title":"Developing the Models of Acoustic-Gravity Waves in the Upper Atmosphere (Review)","authors":"O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchkov, Y. O. Klymenko, I. T. Zhuk","doi":"10.3103/S0884591324010021","DOIUrl":"10.3103/S0884591324010021","url":null,"abstract":"<p>The results of the authors’ studies of acoustic-gravity waves (AGW) in the upper Earth’s atmosphere for recent years are presented. The work was generally aimed at the development of theoretical AGW models taking into account the real atmosphere properties and the verification of these models by spacecraft measurement data. The possibility of the existence of new evanescent acoustic-gravity wave types was theoretically shown; in particular, a previously unknown inelastic mode and a family of evanescent pseudo-modes were revealed. The possibility of observing evanescent modes on the Sun and in the Earth’s atmosphere was analyzed. The specific features of the propagation of acoustic-gravity waves at the interface between two isothermal half-spaces with different temperatures depending on their spectral parameters and the temperature jump magnitude at the interface were studied. The peculiarities of the interaction of acoustic-gravity waves with spatially inhomogeneous atmospheric flows were also investigated. The observed effects resulting from such interaction were analyzed to reveal the wave propagation azimuths, the change in their amplitudes, and the effect of blocking in the counterflow. The effect of vertical nonisothermicity on the propagation of acoustic-gravity waves, including the modification of acoustic and gravitational regions depending on the temperature, was studied. Based on the modified Navier-Stokes and heat-transfer equations, the effect of attenuation on the propagation of acoustic-gravity waves in the atmosphere was analyzed. The specific features of the viscous attenuation of different evanescent AGW types in the atmosphere were considered. The rotation of the atmosphere was shown to result in the modification of the continuous spectrum of evanescent AGWs with frequencies exceeding the Coriolis parameter.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 1","pages":"1 - 14"},"PeriodicalIF":0.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.3103/S0884591324010033
L. F. Chernogor
Comprehensive simulation of a number of main processes induced in all geospheres by the fall and explosion of the Kyiv meteoroid on April 19, 2023, have been conducted. Magnetic, electrical, electromagnetic, ionospheric, and seismic effects and the effects of acoustic gravity waves have been assessed. The magnetic effect of the ionospheric currents and the current in the wake of the meteoroid could be considerably large (approximately 0.4–0.7 nT). Owing to the capture of electrons in the atmospheric gravity wave field, the magnetic effect can reach the levels of 0.6–6 nT. Under the influence of an external electric field, a transient current pulse with a current strength of up to approximately 102–103 A can arise. The electrostatic effect can be accompanied by the accumulation of an electric charge of approximately 1–6 mC, which produces the electric field strength of approximately 10 MV/m. The flow of the electric current in the meteoroid wake can give rise to generation of an electromagnetic pulse in the 10–100 kHz band with an electric field strength in the range of 1–10 V/m. The electromagnetic effect of infrasound could be substantial (approximately 0.6–6 V/m and approximately 2–20 nT). The absorption of the shock wave at the ionospheric dynamo region altitudes (approximately 100–150 km) can generate secondary atmospheric gravity waves with a relative amplitude of approximately 0.1%. The fall of the meteoroid produced a plasma wake not only in the lower atmosphere but also in the upper atmosphere at altitudes of not less than 1000 km. The possibility of the appearance of an electrophonic effect is unlikely. The possibilities of generating the ion and magnetic sound by infrasound and generating gradient drift and drift dissipative instabilities seem to be unlikely as well. The magnetic, electrical, and electromagnetic effects dealt with in this study partially fill up gaps in the theory of physical effects produced by meteoroids in the Earth–atmosphere–ionosphere–magnetosphere system. The magnitudes of magnetic, electrical, electromagnetic, ionospheric, and acoustic effects are significant. The magnitude of the earthquake caused by the meteoroid explosion did not exceed one. The mean rate of recurrence of the fall of celestial bodies similar to the Kyiv meteoroid equals 32.3 yr–1, i.e., one event in 11 days.
{"title":"Physical Effects of the Kyiv Meteoroid: 3","authors":"L. F. Chernogor","doi":"10.3103/S0884591324010033","DOIUrl":"10.3103/S0884591324010033","url":null,"abstract":"<p>Comprehensive simulation of a number of main processes induced in all geospheres by the fall and explosion of the Kyiv meteoroid on April 19, 2023, have been conducted. Magnetic, electrical, electromagnetic, ionospheric, and seismic effects and the effects of acoustic gravity waves have been assessed. The magnetic effect of the ionospheric currents and the current in the wake of the meteoroid could be considerably large (approximately 0.4–0.7 nT). Owing to the capture of electrons in the atmospheric gravity wave field, the magnetic effect can reach the levels of 0.6–6 nT. Under the influence of an external electric field, a transient current pulse with a current strength of up to approximately 10<sup>2</sup>–10<sup>3</sup> A can arise. The electrostatic effect can be accompanied by the accumulation of an electric charge of approximately 1–6 mC, which produces the electric field strength of approximately 10 MV/m. The flow of the electric current in the meteoroid wake can give rise to generation of an electromagnetic pulse in the 10–100 kHz band with an electric field strength in the range of 1–10 V/m. The electromagnetic effect of infrasound could be substantial (approximately 0.6–6 V/m and approximately 2–20 nT). The absorption of the shock wave at the ionospheric dynamo region altitudes (approximately 100–150 km) can generate secondary atmospheric gravity waves with a relative amplitude of approximately 0.1%. The fall of the meteoroid produced a plasma wake not only in the lower atmosphere but also in the upper atmosphere at altitudes of not less than 1000 km. The possibility of the appearance of an electrophonic effect is unlikely. The possibilities of generating the ion and magnetic sound by infrasound and generating gradient drift and drift dissipative instabilities seem to be unlikely as well. The magnetic, electrical, and electromagnetic effects dealt with in this study partially fill up gaps in the theory of physical effects produced by meteoroids in the Earth–atmosphere–ionosphere–magnetosphere system. The magnitudes of magnetic, electrical, electromagnetic, ionospheric, and acoustic effects are significant. The magnitude of the earthquake caused by the meteoroid explosion did not exceed one. The mean rate of recurrence of the fall of celestial bodies similar to the Kyiv meteoroid equals 32.3 yr<sup>–1</sup>, i.e., one event in 11 days.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"40 1","pages":"24 - 39"},"PeriodicalIF":0.5,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}