首页 > 最新文献

Living Reviews in Solar Physics最新文献

英文 中文
Solar Force-free Magnetic Fields 无太阳力磁场
IF 20.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2012-09-20 DOI: 10.12942/lrsp-2012-5
Thomas Wiegelmann, Takashi Sakurai

The structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces like plasma pressure gradient and gravity can be neglected in the lowest order. This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields) or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relation between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundary conditions must be obtained from measurements of the magnetic field vector in the solar photosphere. This approach is currently of large interests, as accurate measurements of the photospheric field become available from ground-based (for example SOLIS) and space-born (for example Hinode and SDO) instruments. If we can obtain accurate force-free coronal magnetic field models we can calculate the free magnetic energy in the corona, a quantity which is important for the prediction of flares and coronal mass ejections. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma.

日冕的结构和动力学是由磁场控制的。在日冕的大多数区域,磁力是如此的占主导地位,以至于所有的非磁力,如等离子体压力梯度和重力,在最低的顺序上可以忽略不计。这个模型假设被称为无力场假设,因为洛伦兹力消失了。这可以通过电流消失(导致势场)或电流与磁力线共向来获得。首先,我们讨论一种数学上更简单的方法,即磁场和电流与一个全局常数成正比,即所谓的线性无力场近似。然而,在一般情况下,磁场和电流之间的关系是非线性的,只有在特殊情况下,如一维或二维构型,才能找到解析解。为了构建真实的三维非线性无力日冕磁场模型,需要进行复杂的数值计算,并且必须从太阳光球的磁场矢量测量中获得边界条件。由于地面(例如SOLIS)和空间(例如Hinode和SDO)仪器可以对光球场进行精确测量,因此这种方法目前具有很大的意义。如果我们能得到精确的无力日冕磁场模型,我们就能计算出日冕中的自由磁能,这是预测耀斑和日冕物质抛射的重要量。对磁力线三维结构的了解也有助于我们解释其他日冕观测,例如辐射日冕等离子体的EUV图像。
{"title":"Solar Force-free Magnetic Fields","authors":"Thomas Wiegelmann,&nbsp;Takashi Sakurai","doi":"10.12942/lrsp-2012-5","DOIUrl":"https://doi.org/10.12942/lrsp-2012-5","url":null,"abstract":"<p>The structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces like plasma pressure gradient and gravity can be neglected in the lowest order. This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields) or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relation between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundary conditions must be obtained from measurements of the magnetic field vector in the solar photosphere. This approach is currently of large interests, as accurate measurements of the photospheric field become available from ground-based (for example SOLIS) and space-born (for example Hinode and SDO) instruments. If we can obtain accurate force-free coronal magnetic field models we can calculate the free magnetic energy in the corona, a quantity which is important for the prediction of flares and coronal mass ejections. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"9 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2012-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4807230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 238
Solar Surface Magneto-Convection 太阳表面磁对流
IF 20.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2012-07-19 DOI: 10.12942/lrsp-2012-4
Robert F. Stein

We review the properties of solar magneto-convection in the top half of the convection zones scale heights (from 20 Mm below the visible surface to the surface, and then through the photosphere to the temperature minimum). Convection is a highly non-linear and nonlocal process, so it is best studied by numerical simulations. We focus on simulations that include sufficient detailed physics so that their results can be quantitatively compared with observations.

The solar surface is covered with magnetic features with spatial sizes ranging from unobservably small to hundreds of megameters. Three orders of magnitude more magnetic flux emerges in the quiet Sun than emerges in active regions. In this review we focus mainly on the properties of the quiet Sun magnetic field.

The Sun's magnetic field is produced by dynamo action throughout the convection zone, primarily by stretching and twisting in the turbulent downflows. Diverging convective upflows and magnetic buoyancy carry magnetic flux toward the surface and sweep the field into the surrounding downflow lanes where the field is dragged downward. The result is a hierarchy of undulating magnetic Ω- and U-loops of different sizes. New magnetic flux first appears at the surface in a mixed polarity random pattern and then collects into isolated unipolar regions due to underlying larger scale magnetic structures. Rising magnetic structures are not coherent, but develop a filamentary structure. Emerging magnetic flux alters the convection properties, producing larger, darker granules.

Strong field concentrations inhibit transverse plasma motions and, as a result, reduce convective heat transport toward the surface which cools. Being cooler, these magnetic field concentrations have a shorter scale height and become evacuated. The field becomes further compressed and can reach strengths in balance with the surrounding gas pressure. Because of their small internal density, photons escape from deeper in the atmosphere. Narrow evacuated field concentrations get heated from their hot sidewalls and become brighter than their surroundings. Wider magnetic concentrations are not heated so they become darker, forming pores and sunspots.

我们回顾了对流区的上半部分尺度高度(从可见表面以下20 Mm到表面,然后通过光球到温度最低)的太阳磁对流特性。对流是一个高度非线性和非局部的过程,因此最好通过数值模拟来研究。我们专注于模拟,包括足够详细的物理,以便他们的结果可以定量地与观测进行比较。太阳表面覆盖着空间大小从难以察觉的小到数百兆欧米的磁性特征。在安静的太阳中出现的磁通量比在活跃区域出现的磁通量多三个数量级。在这篇综述中,我们主要集中在安静的太阳磁场的性质。太阳的磁场是由整个对流区的发电机作用产生的,主要是由湍流下行流中的拉伸和扭曲产生的。发散的对流上升流和磁浮力将磁通量带到地表,并将磁场扫向周围的下行通道,在那里磁场被向下拖拽。结果是不同大小的波纹磁Ω和u形环的层次结构。新的磁通量首先以混合极性随机模式出现在表面,然后由于潜在的更大规模磁结构而聚集成孤立的单极区。上升磁结构不是连贯的,而是呈丝状结构。新产生的磁通量改变了对流特性,产生了更大、更暗的颗粒。强场浓度抑制等离子体的横向运动,从而减少向表面冷却的对流热传输。由于温度较低,这些磁场浓度具有较短的尺度高度并被疏散。油田被进一步压缩,可以达到与周围气体压力平衡的强度。由于其内部密度小,光子从大气层深处逃逸。狭窄的真空场集中从它们的热侧壁受热,变得比周围更亮。更大的磁场浓度没有被加热,所以它们变得更暗,形成孔隙和太阳黑子。
{"title":"Solar Surface Magneto-Convection","authors":"Robert F. Stein","doi":"10.12942/lrsp-2012-4","DOIUrl":"https://doi.org/10.12942/lrsp-2012-4","url":null,"abstract":"<p>We review the properties of solar magneto-convection in the top half of the convection zones scale heights (from 20 Mm below the visible surface to the surface, and then through the photosphere to the temperature minimum). Convection is a highly non-linear and nonlocal process, so it is best studied by numerical simulations. We focus on simulations that include sufficient detailed physics so that their results can be quantitatively compared with observations.</p><p>The solar surface is covered with magnetic features with spatial sizes ranging from unobservably small to hundreds of megameters. Three orders of magnitude more magnetic flux emerges in the quiet Sun than emerges in active regions. In this review we focus mainly on the properties of the quiet Sun magnetic field.</p><p>The Sun's magnetic field is produced by dynamo action throughout the convection zone, primarily by stretching and twisting in the turbulent downflows. Diverging convective upflows and magnetic buoyancy carry magnetic flux toward the surface and sweep the field into the surrounding downflow lanes where the field is dragged downward. The result is a hierarchy of undulating magnetic Ω- and <i>U</i>-loops of different sizes. New magnetic flux first appears at the surface in a mixed polarity random pattern and then collects into isolated unipolar regions due to underlying larger scale magnetic structures. Rising magnetic structures are not coherent, but develop a filamentary structure. Emerging magnetic flux alters the convection properties, producing larger, darker granules.</p><p>Strong field concentrations inhibit transverse plasma motions and, as a result, reduce convective heat transport toward the surface which cools. Being cooler, these magnetic field concentrations have a shorter scale height and become evacuated. The field becomes further compressed and can reach strengths in balance with the surrounding gas pressure. Because of their small internal density, photons escape from deeper in the atmosphere. Narrow evacuated field concentrations get heated from their hot sidewalls and become brighter than their surroundings. Wider magnetic concentrations are not heated so they become darker, forming pores and sunspots.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"9 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2012-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2012-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4749042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Observations of Cool-Star Magnetic Fields 冷星磁场的观测
IF 20.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2012-02-29 DOI: 10.12942/lrsp-2012-1
Ansgar Reiners

Cool stars like the Sun harbor convection zones capable of producing substantial surface magnetic fields leading to stellar magnetic activity. The influence of stellar parameters like rotation, radius, and age on cool-star magnetism, and the importance of the shear layer between a radiative core and the convective envelope for the generation of magnetic fields are keys for our understanding of low-mass stellar dynamos, the solar dynamo, and also for other large-scale and planetary dynamos. Our observational picture of cool-star magnetic fields has improved tremendously over the last years. Sophisticated methods were developed to search for the subtle effects of magnetism, which are difficult to detect particularly in cool stars. With an emphasis on the assumptions and capabilities of modern methods used to measure magnetism in cool stars, I review the different techniques available for magnetic field measurements. I collect the analyses on cool-star magnetic fields and try to compare results from different methods, and I review empirical evidence that led to our current picture of magnetic fields and their generation in cool stars and brown dwarfs.

像太阳这样的冷恒星拥有对流区,能够产生大量的表面磁场,导致恒星的磁场活动。恒星的自转、半径和年龄等参数对冷星磁性的影响,以及辐射核心和对流包膜之间的剪切层对磁场产生的重要性,是我们理解低质量恒星发电机、太阳发电机以及其他大型和行星发电机的关键。在过去的几年里,我们对冷星磁场的观测图像有了巨大的改进。人们开发了复杂的方法来寻找磁的微妙影响,这种影响很难探测到,尤其是在温度较低的恒星中。重点是用于测量冷恒星磁场的现代方法的假设和能力,我回顾了用于磁场测量的不同技术。我收集了对冷恒星磁场的分析,并试图比较不同方法的结果,我回顾了导致我们目前对冷恒星和褐矮星磁场及其产生的图像的经验证据。
{"title":"Observations of Cool-Star Magnetic Fields","authors":"Ansgar Reiners","doi":"10.12942/lrsp-2012-1","DOIUrl":"https://doi.org/10.12942/lrsp-2012-1","url":null,"abstract":"<p>Cool stars like the Sun harbor convection zones capable of producing substantial surface magnetic fields leading to stellar magnetic activity. The influence of stellar parameters like rotation, radius, and age on cool-star magnetism, and the importance of the shear layer between a radiative core and the convective envelope for the generation of magnetic fields are keys for our understanding of low-mass stellar dynamos, the solar dynamo, and also for other large-scale and planetary dynamos. Our observational picture of cool-star magnetic fields has improved tremendously over the last years. Sophisticated methods were developed to search for the subtle effects of magnetism, which are difficult to detect particularly in cool stars. With an emphasis on the assumptions and capabilities of modern methods used to measure magnetism in cool stars, I review the different techniques available for magnetic field measurements. I collect the analyses on cool-star magnetic fields and try to compare results from different methods, and I review empirical evidence that led to our current picture of magnetic fields and their generation in cool stars and brown dwarfs.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"9 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2012-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2012-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5111829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 146
Solar Flares: Magnetohydrodynamic Processes 太阳耀斑:磁流体动力学过程
IF 20.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2011-12-15 DOI: 10.12942/lrsp-2011-6
Kazunari Shibata, Tetsuya Magara

This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 1032 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

本文概述了目前对太阳耀斑的理解,主要集中在磁流体动力学(MHD)过程负责产生耀斑。观测表明,耀斑是太阳大气中最具爆炸性的现象之一,在小时的时间尺度上释放出高达1032尔格的巨大能量。耀斑包括等离子体加热、物质抛射和产生高能粒子的粒子加速。产生耀斑的关键物理过程是:从太阳内部到太阳大气的磁场的出现(通量的出现),日冕中电流的局部增强(电流片的形成),以及电流的快速耗散(磁重联),导致冲击加热,质量抛射和粒子加速。当自由能以日冕电流(更准确地说是场向电流)的形式积累时,耀斑开始的演变是相当准静态的,而日冕电流的耗散进行得很快,产生各种影响低层大气(如色球层和光球层)的动态事件。耀斑表现出日冕电流的快速耗散,其理论模型是根据观测建立的,其中数值模拟被证明是再现耀斑随时间变化的非线性演化的有力工具。我们回顾了用于解释耀斑物理机制的模型,对上述关键过程进行了全面的解释。我们从耀斑的基本特性开始,然后进入耀斑的能量积累,释放和传输的细节,其中磁重联作为产生耀斑的中心引擎。
{"title":"Solar Flares: Magnetohydrodynamic Processes","authors":"Kazunari Shibata,&nbsp;Tetsuya Magara","doi":"10.12942/lrsp-2011-6","DOIUrl":"https://doi.org/10.12942/lrsp-2011-6","url":null,"abstract":"<p>This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10<sup>32</sup> erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"8 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2011-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4599514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 536
Sunspot Modeling: From Simplified Models to Radiative MHD Simulations 太阳黑子模拟:从简化模型到辐射MHD模拟
IF 20.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2011-12-01 DOI: 10.12942/lrsp-2011-3
Matthias Rempel, Rolf Schlichenmaier

We review our current understanding of sunspots from the scales of their fine structure to their large scale (global) structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, “gaps”, convective rolls), which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow). In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here, overturning convection is the central element responsible for energy transport, filamentation leading to fine structure, and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

我们回顾了目前对太阳黑子的认识,从它们的精细结构到它们的大尺度(全球)结构,包括它们的形成和衰变过程。最近,太阳黑子模型发生了巨大的变化。过去,太阳黑子结构的几个方面已经被静态MHD模型与参数化的能量输运处理。太阳黑子精细结构的模型在很大程度上依赖于对流和场几何形状的强假设(例如,通量管、“间隙”、对流卷),这些假设在一定程度上是由观测到的半影的丝状结构或解释维持半影亮度所需的大量能量传输的必要性所驱动的。然而,这些模型都不能自我一致地解释半影结构的所有方面(能量输运、灯丝、Evershed流)。近年来,三维辐射MHD模拟已经取得了巨大的进展,使得完整的太阳黑子模型具有足够的分辨率来捕捉太阳黑子的精细结构是可行的。在这里,翻转对流是负责能量传输、细丝形成精细结构和驱动强流出的核心因素。在更大的尺度上,这些模型也在解决太阳黑子的地下结构以及太阳黑子形成方面取得了进展。随着模拟能力的转变和高分辨率观测的最新进展,未来的研究将以观测和理论比较为指导。
{"title":"Sunspot Modeling: From Simplified Models to Radiative MHD Simulations","authors":"Matthias Rempel,&nbsp;Rolf Schlichenmaier","doi":"10.12942/lrsp-2011-3","DOIUrl":"https://doi.org/10.12942/lrsp-2011-3","url":null,"abstract":"<p>We review our current understanding of sunspots from the scales of their fine structure to their large scale (global) structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, “gaps”, convective rolls), which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow). In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here, overturning convection is the central element responsible for energy transport, filamentation leading to fine structure, and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"8 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2011-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4012890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 82
Solar Stereoscopy and Tomography 太阳立体成像和断层成像
IF 20.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2011-10-10 DOI: 10.12942/lrsp-2011-5
Markus J. Aschwanden

We review stereoscopic and tomographic methods used in the solar corona, including ground-based and space-based measurements, using solar rotation or multiple spacecraft vantage points, in particular from the STEREO mission during 2007–2010. Stereoscopic and tomographic observations in the solar corona include large-scale structures, streamers, active regions, coronal loops, loop oscillations, acoustic waves in loops, erupting filaments and prominences, bright points, jets, plumes, flares, CME source regions, and CME-triggered global coronal waves. Applications in the solar interior (helioseismic tomography) and reconstruction and tracking of CMEs from the outer corona and into the heliosphere (interplanetary CMEs) are not included.

我们回顾了用于日冕的立体成像和层析成像方法,包括地基和天基测量,利用太阳旋转或多个航天器的有利位置,特别是2007-2010年STEREO任务。太阳日冕的立体和层析观测包括大尺度结构、流带、活动区、日冕环、日冕环振荡、日冕环中的声波、喷发细丝和日珥、亮点、喷流、羽流、耀斑、日冕物质抛射源区和日冕物质抛射引发的全球日冕波。不包括在太阳内部的应用(日震层析成像)和从外日冕到日球层的cme(行星际cme)的重建和跟踪。
{"title":"Solar Stereoscopy and Tomography","authors":"Markus J. Aschwanden","doi":"10.12942/lrsp-2011-5","DOIUrl":"https://doi.org/10.12942/lrsp-2011-5","url":null,"abstract":"<p>We review stereoscopic and tomographic methods used in the solar corona, including ground-based and space-based measurements, using solar rotation or multiple spacecraft vantage points, in particular from the STEREO mission during 2007–2010. Stereoscopic and tomographic observations in the solar corona include large-scale structures, streamers, active regions, coronal loops, loop oscillations, acoustic waves in loops, erupting filaments and prominences, bright points, jets, plumes, flares, CME source regions, and CME-triggered global coronal waves. Applications in the solar interior (helioseismic tomography) and reconstruction and tracking of CMEs from the outer corona and into the heliosphere (interplanetary CMEs) are not included.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"8 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2011-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4436398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Magnetic Structure of Sunspots 太阳黑子的磁结构
IF 20.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2011-09-09 DOI: 10.12942/lrsp-2011-4
Juan M. Borrero, Kiyoshi Ichimoto

In this review we give an overview about the current state-of-knowledge of the magnetic field in sunspots from an observational point of view. We start by offering a brief description of tools that are most commonly employed to infer the magnetic field in the solar atmosphere with emphasis in the photosphere of sunspots. We then address separately the global and local magnetic structure of sunspots, focusing on the implications of the current observations for the different sunspots models, energy transport mechanisms, extrapolations of the magnetic field towards the corona, and other issues.

本文从观测的角度综述了太阳黑子磁场的研究现状。我们首先简要介绍最常用来推断太阳大气磁场的工具,重点是太阳黑子的光球层。然后,我们分别讨论了太阳黑子的全球和局部磁结构,重点讨论了当前观测对不同太阳黑子模型的影响、能量传输机制、磁场对日冕的外推以及其他问题。
{"title":"Magnetic Structure of Sunspots","authors":"Juan M. Borrero,&nbsp;Kiyoshi Ichimoto","doi":"10.12942/lrsp-2011-4","DOIUrl":"https://doi.org/10.12942/lrsp-2011-4","url":null,"abstract":"<p>In this review we give an overview about the current state-of-knowledge of the magnetic field in sunspots from an observational point of view. We start by offering a brief description of tools that are most commonly employed to infer the magnetic field in the solar atmosphere with emphasis in the photosphere of sunspots. We then address separately the global and local magnetic structure of sunspots, focusing on the implications of the current observations for the different sunspots models, energy transport mechanisms, extrapolations of the magnetic field towards the corona, and other issues.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"8 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2011-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2011-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4406532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 151
Solar Adaptive Optics 太阳自适应光学
IF 20.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2011-06-10 DOI: 10.12942/lrsp-2011-2
Thomas R. Rimmele, Jose Marino

Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given.

自适应光学(AO)已成为地基太阳望远镜不可或缺的工具。AO使地面观测者能够克服大气观测的不利影响,获得衍射有限的观测结果。在过去的十年中,自适应光学系统已经部署在主要的地面太阳望远镜上,并使地面太阳天文学重新焕发活力。太阳望远镜相对较小的孔径和明亮的光源使太阳AO在可见光波段成为可能,而大多数太阳观测仍然在可见光波段进行。太阳AO系统使地面太阳望远镜在相当一部分可用观测时间内能够对太阳进行衍射受限的观测,这些地面太阳望远镜通常比同等的空间天文台(如HINODE)具有更大的孔径。太阳能自适应光学已经取得了新的突破性的科学成果,而且这种趋势还在继续。新的大口径望远镜目前正在部署或正在建造中。在太阳AO的帮助下,这些望远镜将以前所未有的分辨率获得高度结构化和动态的太阳大气观测。本文综述了太阳能自适应光学技术,总结了近年来太阳能自适应光学领域的研究进展。展望了未来太阳能光电放大器的发展,包括多共轭光电放大器(MCAO)和地面光电放大器(GLAO)。
{"title":"Solar Adaptive Optics","authors":"Thomas R. Rimmele,&nbsp;Jose Marino","doi":"10.12942/lrsp-2011-2","DOIUrl":"https://doi.org/10.12942/lrsp-2011-2","url":null,"abstract":"<p>Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"8 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2011-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4423383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 163
Solar Cycle Prediction 太阳周期预测
IF 20.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2010-12-01 DOI: 10.12942/lrsp-2010-6
Kristóf Petrovay

A review of solar cycle prediction methods and their performance is given, including forecasts for cycle 24. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch) of an upcoming solar maximum no later than right after the start of the given cycle.

Prediction methods form three main groups. Precursor methods rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. Their implicit assumption is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. Extrapolation methods, in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time and, therefore, it lends itself to analysis and forecasting by time series methods. Finally, instead of an analysis of observational data alone, model based predictions use physically (more or less) consistent dynamo models in their attempts to predict solar activity.

In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. Nevertheless, most precursor methods overpredicted cycle 23, while some extrapolation methods may still be worth further study. Model based forecasts have not yet had a chance to prove their skills. One method that has yielded predictions consistently in the right range during the past few solar cycles is that of K. Schatten et al., whose approach is mainly based on the polar field precursor.

The incipient cycle 24 will probably mark the end of the Modern Maximum, with the Sun switching to a state of less strong activity. It will therefore be an important testbed for cycle prediction methods and, by inference, for our understanding of the solar dynamo.

综述了太阳周期预测方法及其性能,包括太阳周期24的预报。本文对太阳周期预测问题中与发电机理论有关的几个方面进行了综述。审查的范围进一步局限于预测不迟于给定周期开始后即将到来的太阳极大期的振幅(以及可选的历元)的问题。预测方法主要分为三类。前兆方法依靠某一特定时间太阳活动或磁力的测量值来预测下一次太阳活动极大期的振幅。他们隐含的假设是,每一个编号的太阳活动周期本身都是一个一致的单位,而太阳活动似乎是由一系列相互关联不那么紧密的单个周期组成的。相反,外推方法的前提是,产生太阳黑子数记录的物理过程在统计上是均匀的,即其变化的数学规律在任何时间点都是相同的,因此,它适合于用时间序列方法进行分析和预测。最后,模型预测不是单独分析观测数据,而是使用物理上(或多或少)一致的发电机模型来试图预测太阳活动。在最近几个太阳活动周期的总体表现中,前体方法明显优于外推方法。然而,大多数前驱方法都高估了23周期,而一些外推方法仍值得进一步研究。基于模型的预测还没有机会证明它们的技能。在过去的几个太阳活动周期中,K. Schatten等人的预测结果始终在正确的范围内,这是一种方法,其方法主要基于极地磁场前体。太阳活动周期的开始很可能标志着现代极大期的结束,太阳活动将转向一种不那么强烈的状态。因此,它将成为周期预测方法的重要试验台,并通过推断,为我们对太阳能发电机的理解提供了一个重要的试验台。
{"title":"Solar Cycle Prediction","authors":"Kristóf Petrovay","doi":"10.12942/lrsp-2010-6","DOIUrl":"https://doi.org/10.12942/lrsp-2010-6","url":null,"abstract":"<p>A review of solar cycle prediction methods and their performance is given, including forecasts for cycle 24. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch) of an upcoming solar maximum no later than right after the start of the given cycle.</p><p>Prediction methods form three main groups. <i>Precursor methods</i> rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. Their implicit assumption is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. <i>Extrapolation methods</i>, in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time and, therefore, it lends itself to analysis and forecasting by time series methods. Finally, instead of an analysis of observational data alone, <i>model based predictions</i> use physically (more or less) consistent dynamo models in their attempts to predict solar activity.</p><p>In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. Nevertheless, most precursor methods overpredicted cycle 23, while some extrapolation methods may still be worth further study. Model based forecasts have not yet had a chance to prove their skills. One method that has yielded predictions consistently in the right range during the past few solar cycles is that of K. Schatten <i>et al.</i>, whose approach is mainly based on the polar field precursor.</p><p>The incipient cycle 24 will probably mark the end of the Modern Maximum, with the Sun switching to a state of less strong activity. It will therefore be an important testbed for cycle prediction methods and, by inference, for our understanding of the solar dynamo.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"7 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2010-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4010223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 233
The Solar Cycle 太阳周期
IF 20.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2010-12-01 DOI: 10.12942/lrsp-2010-1
David H. Hathaway

The Solar Cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. We examine a number of other solar activity indicators including the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores that vary in association with the sunspots. We examine the characteristics of individual solar cycles including their maxima and minima, cycle periods and amplitudes, cycle shape, and the nature of active latitudes, hemispheres, and longitudes. We examine long-term variability including the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double peaked maxima. We conclude with an examination of prediction techniques for the solar cycle.

回顾了太阳周期。太阳活动的11年周期的特点是太阳黑子的数量和表面积的上升和下降。我们研究了许多其他的太阳活动指标,包括10.7 cm射电通量、太阳总辐照度、磁场、耀斑和日冕物质抛射、地磁活动、银河系宇宙射线通量以及与太阳黑子相关的树木年轮和冰芯中的放射性同位素。我们研究了单个太阳周期的特征,包括它们的最大值和最小值,周期周期和振幅,周期形状,以及活动纬度,半球和经度的性质。我们研究了长期变率,包括蒙德极小期、格莱斯伯格周期和格内维舍夫-奥尔规则。短期变率包括154天周期、准两年变化和双峰最大值。最后,我们对太阳周期的预测技术进行了考察。
{"title":"The Solar Cycle","authors":"David H. Hathaway","doi":"10.12942/lrsp-2010-1","DOIUrl":"https://doi.org/10.12942/lrsp-2010-1","url":null,"abstract":"<p>The Solar Cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. We examine a number of other solar activity indicators including the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores that vary in association with the sunspots. We examine the characteristics of individual solar cycles including their maxima and minima, cycle periods and amplitudes, cycle shape, and the nature of active latitudes, hemispheres, and longitudes. We examine long-term variability including the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double peaked maxima. We conclude with an examination of prediction techniques for the solar cycle.</p>","PeriodicalId":687,"journal":{"name":"Living Reviews in Solar Physics","volume":"7 1","pages":""},"PeriodicalIF":20.9,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12942/lrsp-2010-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4011866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 94
期刊
Living Reviews in Solar Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1