Hesperidin, a flavanone, exhibits antioxidant, anti-inflammatory, and anti-amyloidogenic properties, making it a promising candidate for the treatment of Alzheimer's disease. The hesperidin possesses poor solubility, and its oral bioavailability is < 20%. Therefore, hesperidin cochleates (HC) were prepared using the trapping method of calcium ions into preformed liposomes to improve oral bioavailability. The HC formulation was statistically optimized by applying a 3-level factorial design. Optimum cochleates were observed, with an average particle size of 398.9 nm, a zeta potential of -39.1 mV, and an entrapment efficiency of 92.2%, respectively. The in vitro release of hesperidin from cochleates (Batch 15) was 97% in phosphate buffer at pH 7.4 after 24 h. The HC formulation exhibited a 1% release at a gastric pH of 1.2, indicating its stability in the stomach, allowing the formulation to reach the absorption site. In Wistar rats, a comparative pharmacokinetic study was conducted between hesperidin liposomes and HC. Hesperidin concentration was 2.21-fold higher in plasma and 1.2-fold higher in the brain after cochleates administration than in the liposomal formulation and more than 25-fold greater than plain API. Thus, cochleates may be superior oral carriers for hesperidin, improving its oral bioavailability for the treatment of Alzheimer's disease.