首页 > 最新文献

AAPS PharmSciTech最新文献

英文 中文
Microemulsions Improve the Cutaneous Co-Localization of Lipoic Acid and Quercetin and Antioxidant Effects in Cutaneous Cells and Tissue
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-26 DOI: 10.1208/s12249-025-03062-2
Mariana de Sousa Silva, Julia S. Passos, Regina G. Daré, Jessica R. Nunes, Patricia P. Adriani, Luciana B. Lopes

Quercetin and α-lipoic acid are antioxidants with potential applications in the treatment of various skin conditions, such as wounds and chemoprevention of skin cancer. To enable their effective topical co-delivery and co-localization in the tissue, we developed microemulsions (ME). The selected ME (ME-50) formed a stable system with a mean droplet size of 134.4 ± 17.9 nm, increasing to 224.9 ± 19.9 nm upon antioxidants co-incorporation. The ME preserved the antioxidant capacities of the molecules, with DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay showing an IC50 of 6.2 ± 0.1 µg/mL, similar to the solution. Skin penetration studies revealed a 2.4-fold increase in quercetin (Q) accumulation in the stratum corneum and a 3.5-fold increase in the delivery to viable epidermis and dermis (ED) after a 12 h-treatment with the ME compared to control solutions; α-lipoic acid (LA) penetration improved up to 1.9-fold in ED upon ME incorporation. Treatment with Q + LA co-loaded ME enhanced the antioxidant activity in the stratum corneum and ED by 1.3-fold and 2.0-fold, respectively, compared to solutions. Treatment with the ME for 24 h also reduced oxidative species levels by 55% in H2O2-exposed keratinocytes compared to the control (untreated) cells. Taken together, these results suggest that ME-50 is a promising delivery system for enhancing the cutaneous co-delivery of quercetin and α-lipoic acid and the antioxidant effects in the tissue, offering a potential topical treatment for oxidative stress-related skin conditions.

Graphical Abstract

{"title":"Microemulsions Improve the Cutaneous Co-Localization of Lipoic Acid and Quercetin and Antioxidant Effects in Cutaneous Cells and Tissue","authors":"Mariana de Sousa Silva,&nbsp;Julia S. Passos,&nbsp;Regina G. Daré,&nbsp;Jessica R. Nunes,&nbsp;Patricia P. Adriani,&nbsp;Luciana B. Lopes","doi":"10.1208/s12249-025-03062-2","DOIUrl":"10.1208/s12249-025-03062-2","url":null,"abstract":"<div><p>Quercetin and α-lipoic acid are antioxidants with potential applications in the treatment of various skin conditions, such as wounds and chemoprevention of skin cancer. To enable their effective topical co-delivery and co-localization in the tissue, we developed microemulsions (ME). The selected ME (ME-50) formed a stable system with a mean droplet size of 134.4 ± 17.9 nm, increasing to 224.9 ± 19.9 nm upon antioxidants co-incorporation. The ME preserved the antioxidant capacities of the molecules, with DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay showing an IC<sub>50</sub> of 6.2 ± 0.1 µg/mL, similar to the solution. Skin penetration studies revealed a 2.4-fold increase in quercetin (Q) accumulation in the stratum corneum and a 3.5-fold increase in the delivery to viable epidermis and dermis (ED) after a 12 h-treatment with the ME compared to control solutions; α-lipoic acid (LA) penetration improved up to 1.9-fold in ED upon ME incorporation. Treatment with Q + LA co-loaded ME enhanced the antioxidant activity in the stratum corneum and ED by 1.3-fold and 2.0-fold, respectively, compared to solutions. Treatment with the ME for 24 h also reduced oxidative species levels by 55% in H<sub>2</sub>O<sub>2</sub>-exposed keratinocytes compared to the control (untreated) cells. Taken together, these results suggest that ME-50 is a promising delivery system for enhancing the cutaneous co-delivery of quercetin and α-lipoic acid and the antioxidant effects in the tissue, offering a potential topical treatment for oxidative stress-related skin conditions.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143496760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Nanoparticle Based Targeted mRNA Vaccine Delivery as a Novel Therapy for Glioblastoma Multiforme
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-21 DOI: 10.1208/s12249-025-03065-z
Tanvir Ahmed, Kazi Tasnuva Alam

The prognosis for patients with glioblastoma multiforme (GBM), an aggressive and deadly brain tumor, is poor due to the limited therapeutic options available. Biomimetic nanoparticles have emerged as a promising vehicle for targeted mRNA vaccine delivery, thanks to recent advances in nanotechnology. This presents a novel treatment method for GBM. This review explores the potential of using biomimetic nanoparticles to improve the specificity and effectiveness of mRNA vaccine against GBM. These nanoparticles can evade immune detection, cross the blood–brain barrier, & deliver mRNA directly to glioma cells by mimicking natural biological structures. This allows glioma cells to produce tumor-specific antigens that trigger strong immune responses against the tumor. This review discusses biomimetic nanoparticle design strategies, which are critical for optimizing transport and ensuring targeted action. These tactics include surface functionalization and encapsulation techniques. It also highlights the ongoing preclinical research and clinical trials that demonstrate the therapeutic advantages and challenges of this strategy. Biomimetic nanoparticles for mRNA vaccine delivery represent a new frontier in GBM treatment, which could impact the management of this deadly disease and improve patient outcomes by integrating cutting-edge nanotechnology with immunotherapy.

Graphical Abstract

{"title":"Biomimetic Nanoparticle Based Targeted mRNA Vaccine Delivery as a Novel Therapy for Glioblastoma Multiforme","authors":"Tanvir Ahmed,&nbsp;Kazi Tasnuva Alam","doi":"10.1208/s12249-025-03065-z","DOIUrl":"10.1208/s12249-025-03065-z","url":null,"abstract":"<div><p>The prognosis for patients with glioblastoma multiforme (GBM), an aggressive and deadly brain tumor, is poor due to the limited therapeutic options available. Biomimetic nanoparticles have emerged as a promising vehicle for targeted mRNA vaccine delivery, thanks to recent advances in nanotechnology. This presents a novel treatment method for GBM. This review explores the potential of using biomimetic nanoparticles to improve the specificity and effectiveness of mRNA vaccine against GBM. These nanoparticles can evade immune detection, cross the blood–brain barrier, &amp; deliver mRNA directly to glioma cells by mimicking natural biological structures. This allows glioma cells to produce tumor-specific antigens that trigger strong immune responses against the tumor. This review discusses biomimetic nanoparticle design strategies, which are critical for optimizing transport and ensuring targeted action. These tactics include surface functionalization and encapsulation techniques. It also highlights the ongoing preclinical research and clinical trials that demonstrate the therapeutic advantages and challenges of this strategy. Biomimetic nanoparticles for mRNA vaccine delivery represent a new frontier in GBM treatment, which could impact the management of this deadly disease and improve patient outcomes by integrating cutting-edge nanotechnology with immunotherapy.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral pH-Sensitive Solid Self-Microemulsion of Norcantharidin Wrapped in Colon-Coated Capsule for Selective Therapy of Colorectal Carcinoma
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-20 DOI: 10.1208/s12249-025-03056-0
Xia Liu, Wenyou Fang, Wenjie Lu, Mingchao Xu, Zijun Wu, Dan Su, Lingzhen Ding, Qing Zhang, Jinguang Ouyang, Tianming Wang, Lingfeng Sun, Song Gao, Hui Cheng, Rongfeng Hu

Due to the poor solubility, permeability, stability and tumor-targeting ability of norcantharidin (NCTD), currently commercially available NCTD formulations require patients to take the medicine more frequently. Moreover, the formulation of NCTD themselves have certain toxicity, thus showing unsatisfactory therapeutic outcomes and serious systemic side effects. Based on the specific acidic environment at the tumor site, in this study, the pH-sensitive NCTD solid self-microemulsion (NCTD@CS-DMMA SSME) was prepared by introducing 2,3-dimethylmaleic acid amide modified chitosan (CS-DMMA), and it was wrapped in colon-coated capsule to achieve stable and controlled drug release in the acidic environment of colonic tumors. After self-emulsification, it had a particle size of 75.88 ± 0.85 nm and carried a negative charge. Under the condition of pH 6.5, NCTD@CS-DMMA SSME exhibited first-order release kinetics characteristics. Moreover, the cumulative release under the condition of pH 6.5 was 2.04-fold higher than that under the condition of pH 7.4. The in situ intestinal absorption assay elucidated that the prepared formulation could effectively improve the absorption rate constant and apparent permeability coefficients of NCTD in colon tumor site. The antitumor effect in vivo and in vitro showed that it could not only improve the inhibition ability of tumor growth, migration and invasion in mice, but also increase the tumor-infiltrating T lymphocytes in mice with colon cancer, thus inhibiting tumor growth. In summary, the NCTD@CS-DMMA SSME can deliver drugs to the site of colon tumors and continuously release drugs, providing new insights into improving the treatment effectiveness of colon cancer.

Graphical Abstract

{"title":"Oral pH-Sensitive Solid Self-Microemulsion of Norcantharidin Wrapped in Colon-Coated Capsule for Selective Therapy of Colorectal Carcinoma","authors":"Xia Liu,&nbsp;Wenyou Fang,&nbsp;Wenjie Lu,&nbsp;Mingchao Xu,&nbsp;Zijun Wu,&nbsp;Dan Su,&nbsp;Lingzhen Ding,&nbsp;Qing Zhang,&nbsp;Jinguang Ouyang,&nbsp;Tianming Wang,&nbsp;Lingfeng Sun,&nbsp;Song Gao,&nbsp;Hui Cheng,&nbsp;Rongfeng Hu","doi":"10.1208/s12249-025-03056-0","DOIUrl":"10.1208/s12249-025-03056-0","url":null,"abstract":"<div><p>Due to the poor solubility, permeability, stability and tumor-targeting ability of norcantharidin (NCTD), currently commercially available NCTD formulations require patients to take the medicine more frequently. Moreover, the formulation of NCTD themselves have certain toxicity, thus showing unsatisfactory therapeutic outcomes and serious systemic side effects. Based on the specific acidic environment at the tumor site, in this study, the pH-sensitive NCTD solid self-microemulsion (NCTD@CS-DMMA SSME) was prepared by introducing 2,3-dimethylmaleic acid amide modified chitosan (CS-DMMA), and it was wrapped in colon-coated capsule to achieve stable and controlled drug release in the acidic environment of colonic tumors. After self-emulsification, it had a particle size of 75.88 ± 0.85 nm and carried a negative charge. Under the condition of pH 6.5, NCTD@CS-DMMA SSME exhibited first-order release kinetics characteristics. Moreover, the cumulative release under the condition of pH 6.5 was 2.04-fold higher than that under the condition of pH 7.4. The <i>in situ</i> intestinal absorption assay elucidated that the prepared formulation could effectively improve the absorption rate constant and apparent permeability coefficients of NCTD in colon tumor site. The antitumor effect <i>in vivo</i> and <i>in vitro</i> showed that it could not only improve the inhibition ability of tumor growth, migration and invasion in mice, but also increase the tumor-infiltrating T lymphocytes in mice with colon cancer, thus inhibiting tumor growth. In summary, the NCTD@CS-DMMA SSME can deliver drugs to the site of colon tumors and continuously release drugs, providing new insights into improving the treatment effectiveness of colon cancer.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocrystals for Intravenous Drug Delivery: Composition Development, Preparation Methods and Applications in Oncology
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-20 DOI: 10.1208/s12249-025-03064-0
Wanjiao Chen, Jingyi Huang, Yankun Guo, Xinyv Wang, Zhizhe Lin, Ruting Wei, Jianming Chen, Xin Wu

Intravenous routes of drug delivery are widely used in clinical practice due to the advantages of fast onset of action and avoidance of first-pass effect. Still, it is difficult to develop poorly water-soluble drugs for intravenous administration. In recent years, the application of nanocrystal technology has become more and more widespread, mainly involving reducing the particle size to the nanoparticle size range and improving its physicochemical properties to enhance the bioavailability of drugs. Intravenous nanocrystals (INCs) can show unique advantages in the vasculature, with their high drug loading capacity, low toxicity, and overcoming low solubility, which makes them a new solution in tumor therapy. In addition, INCs are mainly suspended in aqueous/oil phase media, which makes them easy to inject. Therefore, INCs may serve as a novel strategy to address poor water solubility, low bioavailability, and associated toxicity. This review contains the compositional development of INCs, and preparation methods, and provides some insights into their application in oncology.

Graphical Abstract

{"title":"Nanocrystals for Intravenous Drug Delivery: Composition Development, Preparation Methods and Applications in Oncology","authors":"Wanjiao Chen,&nbsp;Jingyi Huang,&nbsp;Yankun Guo,&nbsp;Xinyv Wang,&nbsp;Zhizhe Lin,&nbsp;Ruting Wei,&nbsp;Jianming Chen,&nbsp;Xin Wu","doi":"10.1208/s12249-025-03064-0","DOIUrl":"10.1208/s12249-025-03064-0","url":null,"abstract":"<div><p>Intravenous routes of drug delivery are widely used in clinical practice due to the advantages of fast onset of action and avoidance of first-pass effect. Still, it is difficult to develop poorly water-soluble drugs for intravenous administration. In recent years, the application of nanocrystal technology has become more and more widespread, mainly involving reducing the particle size to the nanoparticle size range and improving its physicochemical properties to enhance the bioavailability of drugs. Intravenous nanocrystals (INCs) can show unique advantages in the vasculature, with their high drug loading capacity, low toxicity, and overcoming low solubility, which makes them a new solution in tumor therapy. In addition, INCs are mainly suspended in aqueous/oil phase media, which makes them easy to inject. Therefore, INCs may serve as a novel strategy to address poor water solubility, low bioavailability, and associated toxicity. This review contains the compositional development of INCs, and preparation methods, and provides some insights into their application in oncology.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hansen Solubility Parameters, Computational, and Thermodynamic Models for Tofacitinib Citrate Solubility in Neat Mono Solvents, and GastroPlus Based Predicted In Vivo Performance of Subcutaneous Solution in Humans
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-18 DOI: 10.1208/s12249-025-03048-0
Iman Ehsan, Mudassar Shahid, Subramanian Natesan, Abdul Faruk, Ashwani Kumar Sood, Tasneem Khan

We investigated the experimental solubility of tofacitinib citrate (TNF) in HSPiP predicted mono solvents at varied temperature points, followed by validation with various models (computational and thermodynamic) and GastroPlus based predicted in-vivo performance in individuals (adult humans). HSPiP (Hansen software) predicted five mono solvents (N-methyl-2-pyrrolidone as NMP, ethanol, polyethylene glycol 400 as PEG400, chloroform, and water). The thermally stable drug was solubilized in these solvents. Computational (Van't Hoff and Apelblat) models were applied to validate the experimental solubility data (mole fraction solubility, Xe). The selected solvent (NMP) was used as a vehicle for subcutaneous (sub-Q) formulation development and compared against conventional tablet for high effectiveness in terms of pharmacokinetic parameters (PK) in humans. Results showed that the drug solubility in NMP was “endothermic and entropy” driven as evidenced with the applied models (computational and thermodynamic). The optimized components for sub-Q delivery were NMP (21.5% v/v), PEG400 (10.0% v/v), and PBS (phosphate buffer solution at pH 7.4). GastroPlus predicted 0.036 µg/mL and 0.042 µg/mL values of Cmax (maximum drug reached in the blood) in the blood after sub-Q and oral delivery, respectively. In vivo access of the drug was maximally extended in sub-Q delivery as compared to tablets as predicted in GastroPlus considering humans (fast condition). Conclusively, the sub-Q administration of TNF can be a promising alternative to the conventional tablets.

Graphical Abstract

{"title":"Hansen Solubility Parameters, Computational, and Thermodynamic Models for Tofacitinib Citrate Solubility in Neat Mono Solvents, and GastroPlus Based Predicted In Vivo Performance of Subcutaneous Solution in Humans","authors":"Iman Ehsan,&nbsp;Mudassar Shahid,&nbsp;Subramanian Natesan,&nbsp;Abdul Faruk,&nbsp;Ashwani Kumar Sood,&nbsp;Tasneem Khan","doi":"10.1208/s12249-025-03048-0","DOIUrl":"10.1208/s12249-025-03048-0","url":null,"abstract":"<div><p>We investigated the experimental solubility of tofacitinib citrate (TNF) in HSPiP predicted mono solvents at varied temperature points, followed by validation with various models (computational and thermodynamic) and GastroPlus based predicted <i>in-vivo</i> performance in individuals (adult humans). HSPiP (Hansen software) predicted five mono solvents (N-methyl-2-pyrrolidone as NMP, ethanol, polyethylene glycol 400 as PEG400, chloroform, and water). The thermally stable drug was solubilized in these solvents. Computational (Van't Hoff and Apelblat) models were applied to validate the experimental solubility data (mole fraction solubility, X<sub>e</sub>). The selected solvent (NMP) was used as a vehicle for subcutaneous (sub-Q) formulation development and compared against conventional tablet for high effectiveness in terms of pharmacokinetic parameters (PK) in humans. Results showed that the drug solubility in NMP was “endothermic and entropy” driven as evidenced with the applied models (computational and thermodynamic). The optimized components for sub-Q delivery were NMP (21.5% v/v), PEG400 (10.0% v/v), and PBS (phosphate buffer solution at pH 7.4). GastroPlus predicted 0.036 µg/mL and 0.042 µg/mL values of C<sub>max</sub> (maximum drug reached in the blood) in the blood after sub-Q and oral delivery, respectively. <i>In vivo</i> access of the drug was maximally extended in sub-Q delivery as compared to tablets as predicted in GastroPlus considering humans (fast condition). Conclusively, the sub-Q administration of TNF can be a promising alternative to the conventional tablets.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Materials Compatibility Considerations for the Transition to Low Global Warming Potential Propellants for Pressurized Metered Dose Inhalers
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-18 DOI: 10.1208/s12249-025-03060-4
Dan Dohmeier, Atish Sen, Alessandro Cavecchi, João Matos, Richard Lostritto, Lee Nagao

Pressurized metered dose inhalers (pMDI) are a vital therapy for the treatment of lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). In pMDI, the propellants used to deliver the drug to the lungs are hydrofluorocarbons (HFC). However, the current HFCs in use have large global warming potential (GWP). In order to reduce or eliminate the use of propellants with large global warming potential, efforts are underway within the pharmaceutical industry to transition to the use of low GWP propellants in pMDI, while maintaining their effectiveness in treating disease. The current switch from higher GWP propellants mirrors the switch from chlorofluorocarbon (CFC) propellants to HFCs undertaken in the 1990’s, which was driven by ozone depletion concerns. In this paper, the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) discusses aspects of the switch to low GWP propellants from the perspective of materials compatibility of pMDI components with low GWP propellants. Leveraging the learnings and advances in pMDI component materials implemented following the switch from CFCs, industry is well positioned to make the change. This paper describes the utility of the low GWP propellants being developed for use in pMDI and the learnings from the previous transition that are being leveraged by industry. The current state of development will be described, including a review of available literature supporting the transition to low GWP propellants.

{"title":"Materials Compatibility Considerations for the Transition to Low Global Warming Potential Propellants for Pressurized Metered Dose Inhalers","authors":"Dan Dohmeier,&nbsp;Atish Sen,&nbsp;Alessandro Cavecchi,&nbsp;João Matos,&nbsp;Richard Lostritto,&nbsp;Lee Nagao","doi":"10.1208/s12249-025-03060-4","DOIUrl":"10.1208/s12249-025-03060-4","url":null,"abstract":"<div><p>Pressurized metered dose inhalers (pMDI) are a vital therapy for the treatment of lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). In pMDI, the propellants used to deliver the drug to the lungs are hydrofluorocarbons (HFC). However, the current HFCs in use have large global warming potential (GWP). In order to reduce or eliminate the use of propellants with large global warming potential, efforts are underway within the pharmaceutical industry to transition to the use of low GWP propellants in pMDI, while maintaining their effectiveness in treating disease. The current switch from higher GWP propellants mirrors the switch from chlorofluorocarbon (CFC) propellants to HFCs undertaken in the 1990’s, which was driven by ozone depletion concerns. In this paper, the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) discusses aspects of the switch to low GWP propellants from the perspective of materials compatibility of pMDI components with low GWP propellants. Leveraging the learnings and advances in pMDI component materials implemented following the switch from CFCs, industry is well positioned to make the change. This paper describes the utility of the low GWP propellants being developed for use in pMDI and the learnings from the previous transition that are being leveraged by industry. The current state of development will be described, including a review of available literature supporting the transition to low GWP propellants.</p></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-025-03060-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Mucoadhesive Vaginal Films for Metronidazole Delivery Using Methacryloylated, Crotonoylated, and Itaconoylated Gelatin Blends with Poly(vinyl alcohol)
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-12 DOI: 10.1208/s12249-025-03055-1
Elvira O. Shatabayeva, Daulet B. Kaldybekov, Zarina A. Kenessova, Rysgul N. Tuleyeva, Sarkyt E. Kudaibergenov, Vitaliy V. Khutoryanskiy

Purpose

This work reports the development and characterisation of polymeric films composed of gelatin or its chemically modified derivatives (crotonoylated, itaconoylated, and methacryloylated gelatins) blended with polyvinyl alcohol (PVA). Metronidazole served as an antimicrobial drug in these formulations.

Methods

The films were produced by casting aqueous solutions of polymers, followed by solvent evaporation. Their structure and physicochemical characteristics were studied using Fourier transform infrared spectroscopy, scanning electron microscopy, and mechanical testing. The thickness of the films, their folding endurance, the surface pH, and transparency were also evaluated. The mucoadhesive performance of the films was evaluated through an ex vivo detachment technique involving freshly excised sheep vaginal tissues. In vitro cumulative drug release studies were conducted using Franz diffusion cells.

Results

The results demonstrate that incorporating unsaturated functional groups into gelatin improves its mucoadhesive properties compared to native gelatin. The drug release experiments conducted in vitro showed that the cumulative release from pure gelatin/PVA films was found to be 49 ± 2%, whereas modified gelatins/PVA (70:30) films released ~ 64–71%.

Conclusion

These findings suggest that modified gelatins could serve as effective excipients in designing mucoadhesive formulations for vaginal administration, with potential applications extending to other transmucosal drug delivery systems.

Graphical Abstract

{"title":"Development of Mucoadhesive Vaginal Films for Metronidazole Delivery Using Methacryloylated, Crotonoylated, and Itaconoylated Gelatin Blends with Poly(vinyl alcohol)","authors":"Elvira O. Shatabayeva,&nbsp;Daulet B. Kaldybekov,&nbsp;Zarina A. Kenessova,&nbsp;Rysgul N. Tuleyeva,&nbsp;Sarkyt E. Kudaibergenov,&nbsp;Vitaliy V. Khutoryanskiy","doi":"10.1208/s12249-025-03055-1","DOIUrl":"10.1208/s12249-025-03055-1","url":null,"abstract":"<div><h3>Purpose</h3><p>This work reports the development and characterisation of polymeric films composed of gelatin or its chemically modified derivatives (crotonoylated, itaconoylated, and methacryloylated gelatins) blended with polyvinyl alcohol (PVA). Metronidazole served as an antimicrobial drug in these formulations.</p><h3>Methods</h3><p>The films were produced by casting aqueous solutions of polymers, followed by solvent evaporation. Their structure and physicochemical characteristics were studied using Fourier transform infrared spectroscopy, scanning electron microscopy, and mechanical testing. The thickness of the films, their folding endurance, the surface pH, and transparency were also evaluated. The mucoadhesive performance of the films was evaluated through an <i>ex vivo</i> detachment technique involving freshly excised sheep vaginal tissues. <i>In vitro</i> cumulative drug release studies were conducted using Franz diffusion cells.</p><h3>Results</h3><p>The results demonstrate that incorporating unsaturated functional groups into gelatin improves its mucoadhesive properties compared to native gelatin. The drug release experiments conducted <i>in vitro</i> showed that the cumulative release from pure gelatin/PVA films was found to be 49 ± 2%, whereas modified gelatins/PVA (70:30) films released ~ 64–71%.</p><h3>Conclusion</h3><p>These findings suggest that modified gelatins could serve as effective excipients in designing mucoadhesive formulations for vaginal administration, with potential applications extending to other transmucosal drug delivery systems.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-025-03055-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Design and Optimization of Multi-Compound Multivesicular Liposomes for Co-Delivery of Traditional Chinese Medicine Compounds
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-11 DOI: 10.1208/s12249-025-03042-6
Mengjie Rui, Yali Su, Haidan Tang, Yinfeng Li, Naying Fang, Yingying Ge, Qiuqi Feng, Chunlai Feng

Study explored the synergistic anti-tumor effects of a combination of compounds from Traditional Chinese Medicine, including rosmarinic acid (RA), chlorogenic acid (CA), and scoparone (SCO), in the formulation of multivesicular liposomes (MVLs). Optimization of formulations and process parameters was essential to achieve effective liposomal encapsulation and optimal release profiles for these three compounds with diverse properties. Traditional trial-and-error approaches are inefficient for the optimization of complex multi-compound MVLs. We developed a new formulation optimization model, which could address this issue by predicting the optimal multi-compound MVLs formulation. Our machine learning model integrated support vector machine regression (SVR) algorithm and cuckoo search (CS) algorithm, resulting in three CS-SVR models to predict single-compound MVLs. The CS algorithm, with various weighting rules, was then applied to search the best formulation parameters across three CS-SVR models and to maximize the encapsulation efficiency for all three compounds. The multi-compound MLVs were subsequently prepared under the predicted conditions, achieving an optimized particle size of 15.12 µm, with encapsulation efficiencies of 82.93 ± 2.43% for CA, 82.22 ± 1.25% for RA, and 95.60 ± 0.18% for SCO. The predicted optimal multi-compound MVLs were further validated through in vitro characterization and in vivo anti-tumor experiments, showing a promising synergistic anti-tumor effect consistent with in vitro results. This model accurately predicted optimal encapsulation conditions, which were validated experimentally, demonstrating improved encapsulation efficiencies and reduced trial-and-error iterations. Collectively, our model provides a predictive pathway for multi-compound MVLs formulation, indicating the ability of this model to significantly reduce experimental burden and accelerate formulation development.

Graphical Abstract

{"title":"Computational Design and Optimization of Multi-Compound Multivesicular Liposomes for Co-Delivery of Traditional Chinese Medicine Compounds","authors":"Mengjie Rui,&nbsp;Yali Su,&nbsp;Haidan Tang,&nbsp;Yinfeng Li,&nbsp;Naying Fang,&nbsp;Yingying Ge,&nbsp;Qiuqi Feng,&nbsp;Chunlai Feng","doi":"10.1208/s12249-025-03042-6","DOIUrl":"10.1208/s12249-025-03042-6","url":null,"abstract":"<div><p>Study explored the synergistic anti-tumor effects of a combination of compounds from Traditional Chinese Medicine, including rosmarinic acid (RA), chlorogenic acid (CA), and scoparone (SCO), in the formulation of multivesicular liposomes (MVLs). Optimization of formulations and process parameters was essential to achieve effective liposomal encapsulation and optimal release profiles for these three compounds with diverse properties. Traditional trial-and-error approaches are inefficient for the optimization of complex multi-compound MVLs. We developed a new formulation optimization model, which could address this issue by predicting the optimal multi-compound MVLs formulation. Our machine learning model integrated support vector machine regression (SVR) algorithm and cuckoo search (CS) algorithm, resulting in three CS-SVR models to predict single-compound MVLs. The CS algorithm, with various weighting rules, was then applied to search the best formulation parameters across three CS-SVR models and to maximize the encapsulation efficiency for all three compounds. The multi-compound MLVs were subsequently prepared under the predicted conditions, achieving an optimized particle size of 15.12 µm, with encapsulation efficiencies of 82.93 ± 2.43% for CA, 82.22 ± 1.25% for RA, and 95.60 ± 0.18% for SCO. The predicted optimal multi-compound MVLs were further validated through <i>in vitro</i> characterization and <i>in vivo</i> anti-tumor experiments, showing a promising synergistic anti-tumor effect consistent with <i>in vitro</i> results. This model accurately predicted optimal encapsulation conditions, which were validated experimentally, demonstrating improved encapsulation efficiencies and reduced trial-and-error iterations. Collectively, our model provides a predictive pathway for multi-compound MVLs formulation, indicating the ability of this model to significantly reduce experimental burden and accelerate formulation development.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Capecitabine-Loaded Niosomes Using Factorial Design: An Approach for Enhanced Drug Release and Cytotoxicity in Breast Cancer
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-11 DOI: 10.1208/s12249-025-03037-3
Vidya Sabale, Ashwini Ingole, Rutuja Pathak, Prafulla Sabale

Capecitabine, an oral prodrug of 5-fluorouracil, is increasingly being loaded into various drug delivery system to enhance its bioavailability and cytotoxicity. This study aimed to prepare and evaluate capecitabine-loaded niosomes as a drug delivery system for breast cancer treatment. The niosomes were prepared by thin film hydration method using Span 60 and cholesterol. Optimization was done using 32 factorial design with the responses of particle size and entrapment efficiency. Scanning electron microscopy (SEM) was used to observe the morphology. Fourier transform infrared spectroscopy (FTIR) and ultraviolet (UV) spectrophotometry were used to confirm the nature of the interactions. The optimized batch was further assessed for percent cumulative drug release, nature of crystallinity using the X-ray diffraction method, and drug excipient compatibility using FTIR and Differential Scanning Calorimetry (DSC). The optimized batch (F8) exhibited a particle size of 118 nm, a zeta potential of 24.1 mV, an entrapment efficiency of 93%, and a polydispersibility index (PDI) of 0.25. The cumulative drug release in a pH of 6.8 indicated that 86.46 ± 0.45% of the drug was released in 24 h. Cytotoxicity testing using MTT assay on MCF-7 breast cancer cell lines showed that the capecitabine niosomes were 2.6 times more cytotoxic than the pure drug. The study demonstrates that capecitabine-niosomes significantly enhanced the anticancer activity of capecitabine, suggesting a promising approach for breast cancer treatment.

Graphical Abstract

{"title":"Optimization of Capecitabine-Loaded Niosomes Using Factorial Design: An Approach for Enhanced Drug Release and Cytotoxicity in Breast Cancer","authors":"Vidya Sabale,&nbsp;Ashwini Ingole,&nbsp;Rutuja Pathak,&nbsp;Prafulla Sabale","doi":"10.1208/s12249-025-03037-3","DOIUrl":"10.1208/s12249-025-03037-3","url":null,"abstract":"<div><p>Capecitabine, an oral prodrug of 5-fluorouracil, is increasingly being loaded into various drug delivery system to enhance its bioavailability and cytotoxicity. This study aimed to prepare and evaluate capecitabine-loaded niosomes as a drug delivery system for breast cancer treatment. The niosomes were prepared by thin film hydration method using Span 60 and cholesterol. Optimization was done using 3<sup>2</sup> factorial design with the responses of particle size and entrapment efficiency. Scanning electron microscopy (SEM) was used to observe the morphology. Fourier transform infrared spectroscopy (FTIR) and ultraviolet (UV) spectrophotometry were used to confirm the nature of the interactions. The optimized batch was further assessed for percent cumulative drug release, nature of crystallinity using the X-ray diffraction method, and drug excipient compatibility using FTIR and Differential Scanning Calorimetry (DSC). The optimized batch (F8) exhibited a particle size of 118 nm, a zeta potential of 24.1 mV, an entrapment efficiency of 93%, and a polydispersibility index (PDI) of 0.25. The cumulative drug release in a pH of 6.8 indicated that 86.46 ± 0.45% of the drug was released in 24 h. Cytotoxicity testing using MTT assay on MCF-7 breast cancer cell lines showed that the capecitabine niosomes were 2.6 times more cytotoxic than the pure drug. The study demonstrates that capecitabine-niosomes significantly enhanced the anticancer activity of capecitabine, suggesting a promising approach for breast cancer treatment.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Potential of Nanosuspension Formulation Strategy for Improved Oral Bioavailability of Gefitinib
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-10 DOI: 10.1208/s12249-025-03040-8
Parvez Sayyad, Shikha Jha, Reena Sharma, Vivek Yadav, Sanyog Jain

Gefitinib (GB), an oral tyrosine kinase inhibitor suffers major setbacks in clinical application due to limited aqueous solubility leading to poor oral bioavailability. Nanosuspension serves as a promising formulation strategy to overcome the above-mentioned drawbacks. Hence, the present study involves the development of gefitinib nanosuspension (GB-NS) using High-pressure homogenization (HPH) to increase its aqueous solubility and maximize oral bioavailability. GB-NS was optimized by utilizing the quality-by-design strategy to optimize independent variables such as homogenization pressure, drug-to-stabilizer ratio, and number of cycles. Lecithin was found to stabilize the nanosuspension with optimal particle size, PDI, and zeta potential of 157 ± 18.77 nm, 0.296 ± 0.040, and -33.25 respectively. Intriguingly, a drug-to-stabilizer ratio significantly influenced (p < 0.005) particle size and PDI, establishing its crucial role in optimization. The morphological characterization by SEM of GB-NS revealed a rod-shaped structure. Thereafter, the thermal and powder X-ray analysis depicted the crystalline nature of gefitinib in GB-NS. Additionally, GB-NS exhibited enhanced saturation solubility (~ 2.4- and ~ 3.4-fold) and dissolution rate (~ 2.5- and ~ 3.5-fold) compared to pure GB in 0.1 N HCl and PBS 6.8 respectively. GB-NS remained stable under both storage conditions ( 25°C and 4°C). Finally, the pharmacokinetic study depicted a considerable increase in Cmax (~ 2.84-fold) and AUC(0-t) (~ 3.87-fold) of GB-NS when compared to free GB. Therefore, developed formulations showed a competent solution for enhancing the oral bioavailability of poor water-soluble drugs.

Graphical Abstract

{"title":"Unveiling the Potential of Nanosuspension Formulation Strategy for Improved Oral Bioavailability of Gefitinib","authors":"Parvez Sayyad,&nbsp;Shikha Jha,&nbsp;Reena Sharma,&nbsp;Vivek Yadav,&nbsp;Sanyog Jain","doi":"10.1208/s12249-025-03040-8","DOIUrl":"10.1208/s12249-025-03040-8","url":null,"abstract":"<div><p>Gefitinib (GB), an oral tyrosine kinase inhibitor suffers major setbacks in clinical application due to limited aqueous solubility leading to poor oral bioavailability. Nanosuspension serves as a promising formulation strategy to overcome the above-mentioned drawbacks. Hence, the present study involves the development of gefitinib nanosuspension (GB-NS) using High-pressure homogenization (HPH) to increase its aqueous solubility and maximize oral bioavailability. GB-NS was optimized by utilizing the quality-by-design strategy to optimize independent variables such as homogenization pressure, drug-to-stabilizer ratio, and number of cycles. Lecithin was found to stabilize the nanosuspension with optimal particle size, PDI, and zeta potential of 157 ± 18.77 nm, 0.296 ± 0.040, and -33.25 respectively. Intriguingly, a drug-to-stabilizer ratio significantly influenced (p &lt; 0.005) particle size and PDI, establishing its crucial role in optimization. The morphological characterization by SEM of GB-NS revealed a rod-shaped structure. Thereafter, the thermal and powder X-ray analysis depicted the crystalline nature of gefitinib in GB-NS. Additionally, GB-NS exhibited enhanced saturation solubility (~ 2.4- and ~ 3.4-fold) and dissolution rate (~ 2.5- and ~ 3.5-fold) compared to pure GB in 0.1 N HCl and PBS 6.8 respectively. GB-NS remained stable under both storage conditions ( 25°C and 4°C). Finally, the pharmacokinetic study depicted a considerable increase in C<sub>max</sub> (~ 2.84-fold) and AUC<sub>(0-t)</sub> (~ 3.87-fold) of GB-NS when compared to free GB. Therefore, developed formulations showed a competent solution for enhancing the oral bioavailability of poor water-soluble drugs.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 2","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
AAPS PharmSciTech
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1