首页 > 最新文献

AAPS PharmSciTech最新文献

英文 中文
Development of a Versatile High-through-put Oligonucleotide LC–MS Method to Accelerate Drug Discovery 开发多功能高通量寡核苷酸 LC-MS 方法,加速药物发现。
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-10 DOI: 10.1208/s12249-024-02934-3
Changhong Yun, Hyun Chong Woo, Ditte Lovatt, Craig A. Parish, Daniel S. Spellman, Honglue Shen

Liquid chromatography-mass spectrometry (LC–MS) is an effective tool for high-throughput quantification of oligonucleotides that is crucial for understanding their biological roles and developing diagnostic tests. This paper presents a high-throughput LC–MS/MS method that may be versatilely applied for a wide range of oligonucleotides, making it a valuable tool for rapid screening and discovery. The method is demonstrated using an in-house synthesized MALAT-1 Antisense oligonucleotide (ASO) as a test case. Biological samples were purified using a reversed liquid–liquid extraction process automated by a liquid handling workstation and analyzed with ion-pairing LC–MS/MS. The assay was evaluated for sensitivity (LLOQ = 2 nM), specificity, precision, accuracy, recovery, matrix effect, and stability in rat cerebrospinal fluid (CSF) and plasma. Besides some existing considerations such as column selection, ion-pairing reagent, and sample purification, our work focused on the following four subtopics: 1) selecting the appropriate Multiple Reaction Monitoring (MRM) transition to maximize sensitivity for trace-level ASO in biological samples; 2) utilizing a generic risk-free internal standard (tenofovir) to avoid crosstalk interference from the oligo internal standard commonly utilized in the LC–MS assay; 3) automating the sample preparation process to increase precision and throughput; and 4) comparing liquid–liquid extraction (LLE) and solid-phase extraction (SPE) as sample purification methods in oligo method development. The study quantified the concentration of MALAT-1 ASO in rat CSF and plasma after intrathecal injection and used the difference between the two matrices to evaluate the injection technique. The results provide a solid foundation for further internal oligonucleotide discovery and development.

Graphical Abstract

液相色谱-质谱法(LC-MS)是高通量定量寡核苷酸的有效工具,对于了解寡核苷酸的生物学作用和开发诊断测试至关重要。本文介绍了一种高通量 LC-MS/MS 方法,该方法可广泛应用于多种寡核苷酸,是快速筛选和发现寡核苷酸的重要工具。该方法以内部合成的 MALAT-1 反义寡核苷酸 (ASO) 为测试案例进行了演示。生物样品通过液体处理工作站自动进行反向液液萃取纯化,并通过离子配对 LC-MS/MS 进行分析。对该检测方法在大鼠脑脊液(CSF)和血浆中的灵敏度(LLOQ = 2 nM)、特异性、精确度、准确度、回收率、基质效应和稳定性进行了评估。除了现有的一些考虑因素,如色谱柱选择、离子配对试剂和样品纯化,我们的工作还集中在以下四个子课题上:1)选择合适的多重反应监测(MRM)转换,以最大限度地提高生物样本中痕量水平 ASO 的灵敏度;2)使用通用无风险内标(替诺福韦),以避免 LC-MS 检测中常用的寡核苷酸内标串扰;3)实现样本制备过程自动化,以提高精度和通量;4)比较液液萃取(LLE)和固相萃取(SPE)作为寡核苷酸方法开发中的样本纯化方法。该研究对大鼠鞘内注射后 CSF 和血浆中 MALAT-1 ASO 的浓度进行了定量,并利用两种基质之间的差异对注射技术进行了评估。研究结果为进一步发现和开发内部寡核苷酸奠定了坚实的基础。
{"title":"Development of a Versatile High-through-put Oligonucleotide LC–MS Method to Accelerate Drug Discovery","authors":"Changhong Yun,&nbsp;Hyun Chong Woo,&nbsp;Ditte Lovatt,&nbsp;Craig A. Parish,&nbsp;Daniel S. Spellman,&nbsp;Honglue Shen","doi":"10.1208/s12249-024-02934-3","DOIUrl":"10.1208/s12249-024-02934-3","url":null,"abstract":"<div><p>Liquid chromatography-mass spectrometry (LC–MS) is an effective tool for high-throughput quantification of oligonucleotides that is crucial for understanding their biological roles and developing diagnostic tests. This paper presents a high-throughput LC–MS/MS method that may be versatilely applied for a wide range of oligonucleotides, making it a valuable tool for rapid screening and discovery. The method is demonstrated using an in-house synthesized MALAT-1 Antisense oligonucleotide (ASO) as a test case. Biological samples were purified using a reversed liquid–liquid extraction process automated by a liquid handling workstation and analyzed with ion-pairing LC–MS/MS. The assay was evaluated for sensitivity (LLOQ = 2 nM), specificity, precision, accuracy, recovery, matrix effect, and stability in rat cerebrospinal fluid (CSF) and plasma. Besides some existing considerations such as column selection, ion-pairing reagent, and sample purification, our work focused on the following four subtopics: 1) selecting the appropriate Multiple Reaction Monitoring (MRM) transition to maximize sensitivity for trace-level ASO in biological samples; 2) utilizing a generic risk-free internal standard (tenofovir) to avoid crosstalk interference from the oligo internal standard commonly utilized in the LC–MS assay; 3) automating the sample preparation process to increase precision and throughput; and 4) comparing liquid–liquid extraction (LLE) and solid-phase extraction (SPE) as sample purification methods in oligo method development. The study quantified the concentration of MALAT-1 ASO in rat CSF and plasma after intrathecal injection and used the difference between the two matrices to evaluate the injection technique. The results provide a solid foundation for further internal oligonucleotide discovery and development.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Material-Sparing Approach to Predict Tablet Capping Under Processing Compression Conditions Based on Mechanical and Molecular Properties Derived from Compaction Simulation and Crystal Structural Analysis 基于压实模拟和晶体结构分析得出的机械和分子特性的材料比较法,用于预测加工压缩条件下的片剂封盖。
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-10 DOI: 10.1208/s12249-024-02950-3
Pratap Basim, Harsh S. Shah, Robert Sedlock, Bhavin V. Parekh, Rutesh H. Dave

Present study evaluates the usability of compaction simulation-based mechanical models as a material-sparing approach to predict tablet capping under processing compression conditions using Acetaminophen (APAP) and Ibuprofen (IBU). Measured mechanical properties were evaluated using principal component analysis (PCA) and principal component regression (PCR) models. PCR models were then utilized to predict the capping score (CS) from compression pressure (CP). APAP formulations displayed a quadratic correlation between CS and CP, with CS rank order following CP of 200MPa < 300MPa < 100MPa, indicating threshold compression pressure (TCP) limit between 200 and 300 MPa, resulting in higher CS at 300 than 200 MPa regardless of increased CP. IBU formulations displayed a linear correlation between CS and CP, with CS rank order following CP of 100MPa < 200MPa < 300MPa, indicating TCP limit between 100 and 200 MPa, resulting in higher CS at 200 and 300 than 100 MPa regardless of increased CP. Molecular models were developed as validation methods to predict capping from CP. Measured XRPD patterns of compressed tablets were linked with calculated Eatt and d-spacing of slip planes and analyzed using variable component least square methods to predict TCP triggering cleavage in slip planes and leading to capping. In APAP and IBU, TCP values were predicted at 245 and 175 MPa, meaning capped tablets above these TCP limits regardless of increased CP. A similar trend was observed in CS predictions from mechanical assessment, confirming that compaction simulation-based mechanical models can predict capping risk under desired compression conditions rapidly and accurately.

Graphical Abstract

本研究评估了以压实模拟为基础的机械模型的可用性,该模型是一种节省材料的方法,可用于预测使用对乙酰氨基酚(APAP)和布洛芬(IBU)的片剂在加工压缩条件下的压盖情况。使用主成分分析 (PCA) 和主成分回归 (PCR) 模型对测量的机械性能进行评估。然后利用 PCR 模型从压缩压力 (CP) 预测封盖得分 (CS)。APAP 配方显示出 CS 与 CP 之间的二次相关性,CS 在 CP 值为 200MPa < 300MPa < 100MPa 时排序,表明阈值压缩压力(TCP)限制在 200 和 300 MPa 之间,因此无论 CP 值是否增加,300 MPa 时的 CS 值均高于 200 MPa。IBU 配方的 CS 值与 CP 值呈线性相关,CS 值的排名顺序为 CP 值 100MPa < 200MPa < 300MPa,表明阈值压缩压力(TCP)极限在 100 和 200 MPa 之间,因此无论 CP 值如何增加,200 和 300 MPa 时的 CS 值均高于 100 MPa。开发了分子模型作为验证方法来预测 CP 的封盖。将测量到的压缩片剂 XRPD 图样与计算出的滑移面 Eatt 和 d 间距联系起来,并使用变分最小二乘法进行分析,以预测 TCP 触发滑移面裂解并导致封盖。在 APAP 和 IBU 中,预测的 TCP 值分别为 245 和 175 MPa,这意味着无论 CP 是否增加,封盖片剂都会超过这些 TCP 限制。机械评估的 CS 预测值也呈现出类似的趋势,这证实了基于压实模拟的机械模型可以快速准确地预测理想压缩条件下的压盖风险。
{"title":"Material-Sparing Approach to Predict Tablet Capping Under Processing Compression Conditions Based on Mechanical and Molecular Properties Derived from Compaction Simulation and Crystal Structural Analysis","authors":"Pratap Basim,&nbsp;Harsh S. Shah,&nbsp;Robert Sedlock,&nbsp;Bhavin V. Parekh,&nbsp;Rutesh H. Dave","doi":"10.1208/s12249-024-02950-3","DOIUrl":"10.1208/s12249-024-02950-3","url":null,"abstract":"<div><p>Present study evaluates the usability of compaction simulation-based mechanical models as a material-sparing approach to predict tablet capping under processing compression conditions using Acetaminophen (APAP) and Ibuprofen (IBU). Measured mechanical properties were evaluated using principal component analysis (PCA) and principal component regression (PCR) models. PCR models were then utilized to predict the capping score (CS) from compression pressure (CP). APAP formulations displayed a quadratic correlation between CS and CP, with CS rank order following CP of 200MPa &lt; 300MPa &lt; 100MPa, indicating threshold compression pressure (TCP) limit between 200 and 300 MPa, resulting in higher CS at 300 than 200 MPa regardless of increased CP. IBU formulations displayed a linear correlation between CS and CP, with CS rank order following CP of 100MPa &lt; 200MPa &lt; 300MPa, indicating TCP limit between 100 and 200 MPa, resulting in higher CS at 200 and 300 than 100 MPa regardless of increased CP. Molecular models were developed as validation methods to predict capping from CP. Measured XRPD patterns of compressed tablets were linked with calculated Eatt and d-spacing of slip planes and analyzed using variable component least square methods to predict TCP triggering cleavage in slip planes and leading to capping. In APAP and IBU, TCP values were predicted at 245 and 175 MPa, meaning capped tablets above these TCP limits regardless of increased CP. A similar trend was observed in CS predictions from mechanical assessment, confirming that compaction simulation-based mechanical models can predict capping risk under desired compression conditions rapidly and accurately.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote Regulatory Assessments of Bioavailability/Bioequivalence Study Conduct by the Office of Study Integrity and Surveillance 研究完整性和监督办公室对生物利用率/生物等效性研究行为的远程监管评估。
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-10 DOI: 10.1208/s12249-024-02967-8
Monica Javidnia, Hasan A. Irier, Sean Kassim, Seongeun Julia Cho

The Office of Study Integrity and Surveillance (OSIS) in CDER in FDA coordinates and conducts inspections of sites conducting bioavailability and/or bioequivalence (BA/BE) studies supporting regulatory submissions. In response to travel restrictions during the SARS-CoV-2 (COVID-19) public health emergency, OSIS developed and began conducting remote assessments of BA/BE sites in 2020. This paper provides an overview of remote regulatory assessments (RRAs) and OSIS’s approach to RRAs, including procedures, experiences, and examples of findings during RRAs. In addition, as OSIS continues to utilize RRAs while resuming inspections, some areas for improvement are discussed.

美国食品及药物管理局 CDER 研究完整性和监督办公室 (OSIS) 负责协调和开展对开展生物可用性和/或生物等效性 (BA/BE) 研究的研究机构的检查,以支持提交监管申请。为应对 SARS-CoV-2 (COVID-19) 公共卫生紧急事件期间的旅行限制,OSIS 制定并于 2020 年开始对 BA/BE 研究机构进行远程评估。本文概述了远程监管评估 (RRA) 和 OSIS 的 RRA 方法,包括程序、经验和 RRA 期间发现的实例。此外,随着 OSIS 继续利用 RRA 恢复检查,本文还讨论了一些需要改进的领域。
{"title":"Remote Regulatory Assessments of Bioavailability/Bioequivalence Study Conduct by the Office of Study Integrity and Surveillance","authors":"Monica Javidnia,&nbsp;Hasan A. Irier,&nbsp;Sean Kassim,&nbsp;Seongeun Julia Cho","doi":"10.1208/s12249-024-02967-8","DOIUrl":"10.1208/s12249-024-02967-8","url":null,"abstract":"<div><p>The Office of Study Integrity and Surveillance (OSIS) in CDER in FDA coordinates and conducts inspections of sites conducting bioavailability and/or bioequivalence (BA/BE) studies supporting regulatory submissions. In response to travel restrictions during the SARS-CoV-2 (COVID-19) public health emergency, OSIS developed and began conducting remote assessments of BA/BE sites in 2020. This paper provides an overview of remote regulatory assessments (RRAs) and OSIS’s approach to RRAs, including procedures, experiences, and examples of findings during RRAs. In addition, as OSIS continues to utilize RRAs while resuming inspections, some areas for improvement are discussed.</p></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Insight for Enhanced Topical Targeting of Caffeine for Effective Cellulite Treatment: In Vitro Characterization, Permeation Studies, and Histological Evaluation in Rats 增强咖啡因局部靶向性以有效治疗脂肪团的新见解:大鼠体外表征、渗透研究和组织学评估。
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-09 DOI: 10.1208/s12249-024-02943-2
Shahinaze A. Fouad, Taher A. Badr, Ahmed Abdelbary, Maha Fadel, Rehab Abdelmonem, Bhaskara R. Jasti, Mohamed El-Nabarawi

Cellulite (CLT) is one of the commonly known lipodystrophy syndromes affecting post-adolescent women worldwide. It is topographically characterized by an orange-peel, dimpled skin appearance hence, it is an unacceptable cosmetic problem. CLT can be modulated by surgical procedures such as; liposuction and mesotherapy. But, these options are invasive, expensive and risky. For these reasons, topical CLT treatments are more preferred. Caffeine (CA), is a natural alkaloid that is well-known for its prominent anti-cellulite effects. However, its hydrophilicity hinders its cutaneous permeation. Therefore, in the present study CA was loaded into solid lipid nanoparticles (SLNs) by high shear homogenization/ultrasonication. CA-SLNs were prepared using Compritol® 888 ATO and stearic acid as solid lipids, and span 60 and brij™35, as lipid dispersion stabilizing agents. Formulation variables were adjusted to obtain entrapment efficiency (EE > 75%), particle size (PS < 350 nm), zeta potential (ZP < −25 mV) and polydispersity index (PDI < 0.5). CA-SLN-4 was selected and showed maximized EE (92.03 ± 0.16%), minimized PS (232.7 ± 1.90 nm), and optimum ZP (−25.15 ± 0.65 mV) and PDI values (0.24 ± 0.02). CA-SLN-4 showed superior CA release (99.44 ± 0.36%) compared to the rest CA-SLNs at 1 h. TEM analysis showed spherical, nanosized CA-SLN-4 vesicles. Con-LSM analysis showed successful CA-SLN-4 permeation transepidermally and via shunt diffusion. CA-SLN-4 incorporated into Noveon AA−1® hydrogel (CA-SLN-Ngel) showed accepted physical/rheological properties, and in vitro release profile. Histological studies showed that CA-SLN-Ngel significantly reduced mean subcutaneous fat tissue (SFT) thickness with 4.66 fold (p = 0.035) and 4.16 fold (p = 0.0001) compared to CA-gel, at 7th and 21st days, respectively. Also, significant mean SFT thickness reduction was observed compared to untreated group with 4.83 fold (p = 0.0005) and 3.83 fold (p = 0.0043), at 7th and 21st days, respectively. This study opened new avenue for CA skin delivery via advocating the importance of skin appendages. Hence, CA-SLN-Ngel could be a promising nanocosmeceutical gel for effective CLT treatment.

脂肪团(CLT)是常见的脂肪营养不良综合征之一,影响着全世界的青春期后女性。从外形上看,它的特点是皮肤呈橘皮状、凹陷,因此是一种难以接受的美容问题。CLT可以通过外科手术进行调节,如吸脂术和中胚层疗法。但是,这些方法都具有创伤性、昂贵性和风险性。因此,局部 CLT 治疗更受青睐。咖啡因(CA)是一种天然生物碱,以其显著的抗脂肪团效果而闻名。然而,咖啡因的亲水性阻碍了它的皮肤渗透。因此,在本研究中,通过高剪切均质/超声波处理,将咖啡因载入固体脂质纳米颗粒(SLNs)中。CA-SLNs 以 Compritol® 888 ATO 和硬脂酸为固体脂质,以 span 60 和 brij™35 为脂质分散稳定剂。对配方变量进行了调整,以获得夹带效率(EE > 75%)、粒度(PS
{"title":"New Insight for Enhanced Topical Targeting of Caffeine for Effective Cellulite Treatment: In Vitro Characterization, Permeation Studies, and Histological Evaluation in Rats","authors":"Shahinaze A. Fouad,&nbsp;Taher A. Badr,&nbsp;Ahmed Abdelbary,&nbsp;Maha Fadel,&nbsp;Rehab Abdelmonem,&nbsp;Bhaskara R. Jasti,&nbsp;Mohamed El-Nabarawi","doi":"10.1208/s12249-024-02943-2","DOIUrl":"10.1208/s12249-024-02943-2","url":null,"abstract":"<p>Cellulite (CLT) is one of the commonly known lipodystrophy syndromes affecting post-adolescent women worldwide. It is topographically characterized by an orange-peel, dimpled skin appearance hence, it is an unacceptable cosmetic problem. CLT can be modulated by surgical procedures such as; liposuction and mesotherapy. But, these options are invasive, expensive and risky. For these reasons, topical CLT treatments are more preferred. Caffeine (CA), is a natural alkaloid that is well-known for its prominent anti-cellulite effects. However, its hydrophilicity hinders its cutaneous permeation. Therefore, in the present study CA was loaded into solid lipid nanoparticles (SLNs) by high shear homogenization/ultrasonication. CA-SLNs were prepared using Compritol® 888 ATO and stearic acid as solid lipids, and span 60 and brij™35, as lipid dispersion stabilizing agents. Formulation variables were adjusted to obtain entrapment efficiency (EE &gt; 75%), particle size (PS &lt; 350 nm), zeta potential (ZP &lt; −25 mV) and polydispersity index (PDI &lt; 0.5). CA-SLN-4 was selected and showed maximized EE (92.03 ± 0.16%), minimized PS (232.7 ± 1.90 nm), and optimum ZP (−25.15 ± 0.65 mV) and PDI values (0.24 ± 0.02). CA-SLN-4 showed superior CA release (99.44 ± 0.36%) compared to the rest CA-SLNs at 1 h. TEM analysis showed spherical, nanosized CA-SLN-4 vesicles. Con-LSM analysis showed successful CA-SLN-4 permeation transepidermally and <i>via</i> shunt diffusion. CA-SLN-4 incorporated into Noveon AA−1® hydrogel (CA-SLN-Ngel) showed accepted physical/rheological properties, and <i>in vitro</i> release profile. Histological studies showed that CA-SLN-Ngel significantly reduced mean subcutaneous fat tissue (SFT) thickness with 4.66 fold (<i>p</i> = 0.035) and 4.16 fold (<i>p</i> = 0.0001) compared to CA-gel, at 7th and 21st days, respectively. Also, significant mean SFT thickness reduction was observed compared to untreated group with 4.83 fold (<i>p</i> = 0.0005) and 3.83 fold (<i>p</i> = 0.0043), at 7th and 21st days, respectively. This study opened new avenue for CA skin delivery <i>via</i> advocating the importance of skin appendages. Hence, CA-SLN-Ngel could be a promising nanocosmeceutical gel for effective CLT treatment.</p>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-02943-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in Colon-Targeted Drug Delivery: A Comprehensive Review on Recent Techniques with Emphasis on Hot-Melt Extrusion and 3D Printing Technologies 结肠靶向给药的进展:以热熔挤压和 3D 打印技术为重点的最新技术综述》。
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-08 DOI: 10.1208/s12249-024-02965-w
Nouf D. Alshammari, Rasha Elkanayati, Sateesh Kumar Vemula, Esraa Al Shawakri, Prateek Uttreja, Mashan Almutairi, Michael A. Repka

This review investigates the progression and effectiveness of colon-targeted drug delivery systems, offering a comprehensive understanding of the colon's anatomy and physiological environment. Recognizing the distinctive features of the colon is crucial for successfully formulating oral dosage forms that precisely target specific areas in the gastrointestinal tract (GIT) while minimizing side effects through mitigating off-target sites. This understanding forms the basis for designing effective targeted drug delivery systems. The article extensively examines diverse approaches to formulating drugs for colonic targeting, highlighting key polymers and excipients in their production. Special emphasis is given to innovative approaches such as hot-melt extrusion (HME) and three-dimensional printing (3D-P), renowned for their accuracy in drug release kinetics and intricate dosage form geometry. However, challenges arise regarding material standardization and the complex network of regulatory clearances required to confirm safety and effectiveness. The review provides insights into each application’s advantages and potential challenges. Furthermore, it sheds light on the local diseases that necessitate colon targeting and the available marketed products, providing an overview of the current state of colon-targeted drug delivery systems. Additionally, the review emphasizes the importance of testing drugs in a controlled in vitro environment during the development phase. It also discusses the future directions for successful development in this field. By integrating knowledge across anatomy, formulation techniques, and assessment methodologies, this review is a valuable resource for researchers navigating the dynamic field of colonic drug delivery.

Graphical Abstract

这篇综述研究了结肠靶向给药系统的发展和有效性,全面介绍了结肠的解剖结构和生理环境。认识结肠的独特特征对于成功配制精确靶向胃肠道(GIT)特定区域的口服剂型至关重要,同时还能通过减少脱靶部位将副作用降至最低。这种认识为设计有效的靶向给药系统奠定了基础。文章广泛探讨了配制结肠靶向药物的各种方法,重点介绍了生产过程中的关键聚合物和辅料。文章特别强调了热熔挤出(HME)和三维打印(3D-P)等创新方法,这些方法因其药物释放动力学的准确性和复杂的剂型几何形状而闻名。然而,材料标准化以及确认安全性和有效性所需的复杂监管许可网络也带来了挑战。本综述深入探讨了每种应用的优势和潜在挑战。此外,它还揭示了有必要进行结肠靶向治疗的局部疾病以及现有的上市产品,为结肠靶向给药系统的现状提供了一个概览。此外,该综述还强调了在开发阶段在受控体外环境中测试药物的重要性。它还讨论了这一领域成功开发的未来方向。通过整合解剖学、制剂技术和评估方法等方面的知识,这篇综述为研究人员在动态的结肠给药领域导航提供了宝贵的资源。
{"title":"Advancements in Colon-Targeted Drug Delivery: A Comprehensive Review on Recent Techniques with Emphasis on Hot-Melt Extrusion and 3D Printing Technologies","authors":"Nouf D. Alshammari,&nbsp;Rasha Elkanayati,&nbsp;Sateesh Kumar Vemula,&nbsp;Esraa Al Shawakri,&nbsp;Prateek Uttreja,&nbsp;Mashan Almutairi,&nbsp;Michael A. Repka","doi":"10.1208/s12249-024-02965-w","DOIUrl":"10.1208/s12249-024-02965-w","url":null,"abstract":"<div><p>This review investigates the progression and effectiveness of colon-targeted drug delivery systems, offering a comprehensive understanding of the colon's anatomy and physiological environment. Recognizing the distinctive features of the colon is crucial for successfully formulating oral dosage forms that precisely target specific areas in the gastrointestinal tract (GIT) while minimizing side effects through mitigating off-target sites. This understanding forms the basis for designing effective targeted drug delivery systems. The article extensively examines diverse approaches to formulating drugs for colonic targeting, highlighting key polymers and excipients in their production. Special emphasis is given to innovative approaches such as hot-melt extrusion (HME) and three-dimensional printing (3D-P), renowned for their accuracy in drug release kinetics and intricate dosage form geometry. However, challenges arise regarding material standardization and the complex network of regulatory clearances required to confirm safety and effectiveness. The review provides insights into each application’s advantages and potential challenges. Furthermore, it sheds light on the local diseases that necessitate colon targeting and the available marketed products, providing an overview of the current state of colon-targeted drug delivery systems. Additionally, the review emphasizes the importance of testing drugs in a controlled <i>in vitro</i> environment during the development phase. It also discusses the future directions for successful development in this field. By integrating knowledge across anatomy, formulation techniques, and assessment methodologies, this review is a valuable resource for researchers navigating the dynamic field of colonic drug delivery.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-02965-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations on the Impacts of Drugs or Excipients with Different Physicochemical and Compaction Properties on the Disintegration Behavior of Kollidon®SR-Based Binary Controlled Release Matrix Tablets 基于 Kollidon®SR 的二元控释基质片剂的崩解行为:不同理化性质和压实性质的药物或辅料的影响研究
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-07 DOI: 10.1208/s12249-024-02933-4
Wasfy M. Obeidat, Shadi F. F. Gharaibeh

The objective of this study was to examine the impact of the physicochemical properties of the loaded drug or excipient, the concentration of Kollidon®SR (KSR), and the mechanical characteristics of KSR compacts on their disintegration times. Using disintegration apparatus, a two-hour constraint was chosen as the process's end point. Lactose-KSR compacts subjected to the highest compression pressure and Microcrystalline cellulose-KSR compacts with KSR concentrations exceeding 30% exhibited disintegration times of less than ten minutes. Likewise, compacts containing Diltiazem HCl-KSR demonstrated brief disintegration times across all tested KSR concentrations and compression pressures. Compacts of Modafinil, Metformin HCl, and Ascorbic acid-KSR displayed disintegration times ranging from fast to moderate, contingent upon the levels of KSR and compression pressure applied. Compacts containing KSR with Aspirin, Salicylic acid, or Ibuprofen did not exhibit significant disintegration even at minimal amounts of KSR (0.5%). Theophylline-KSR tablets also showed prolonged dissolution times, even at very low concentrations of KSR. The disintegration times of Dic-KSR tablets were roughly close to an hour and were predominantly unaffected by varying KSR levels and only marginally influenced by compression pressures. It is possible to draw the conclusion that different drugs or excipients have different minimum KSR requirements to resist compacts’ disintegration process. Compounds that demonstrate low solubility in water can result in extended disintegration times for KSR compacts. The melting points of these compounds, in conjunction with the Py values of the compacts and their compaction properties, could affect the disintegration process, although a precise evaluation is necessary.

Graphical Abstract

本研究的目的是考察负载药物或赋形剂的理化特性、Kollidon®SR(KSR)的浓度以及 KSR 压片的机械特性对其崩解时间的影响。使用崩解仪器,选择两小时作为过程的终点。压缩压力最高的乳糖-KSR 密实物和 KSR 浓度超过 30% 的微晶纤维素-KSR 密实物的崩解时间均少于十分钟。同样,在所有测试的 KSR 浓度和压缩压力下,含有盐酸地尔硫卓-KSR 的压制物的崩解时间都很短。含有莫达非尼、盐酸二甲双胍和抗坏血酸-KSR 的复方制剂的崩解时间从快速到适中不等,取决于所使用的 KSR 浓度和压缩压力。含有阿司匹林、水杨酸或布洛芬的 KSR 复方片,即使 KSR 含量极低(0.5%),也不会出现明显的崩解。茶碱-KSR 片也显示出较长的崩解时间,即使 KSR 的浓度很低。Dic-KSR 药片的崩解时间大致接近一小时,主要不受不同 KSR 含量的影响,仅受压缩压力的轻微影响。由此可以得出结论,不同的药物或辅料对抵抗压片崩解过程的最低 KSR 要求不同。在水中溶解度低的化合物可能会导致 KSR 压片崩解时间延长。这些化合物的熔点与压制物的 Py 值及其压制特性结合在一起,可能会影响崩解过程,不过还需要进行精确的评估。
{"title":"Investigations on the Impacts of Drugs or Excipients with Different Physicochemical and Compaction Properties on the Disintegration Behavior of Kollidon®SR-Based Binary Controlled Release Matrix Tablets","authors":"Wasfy M. Obeidat,&nbsp;Shadi F. F. Gharaibeh","doi":"10.1208/s12249-024-02933-4","DOIUrl":"10.1208/s12249-024-02933-4","url":null,"abstract":"<div><p>The objective of this study was to examine the impact of the physicochemical properties of the loaded drug or excipient, the concentration of Kollidon®SR (KSR), and the mechanical characteristics of KSR compacts on their disintegration times. Using disintegration apparatus, a two-hour constraint was chosen as the process's end point. Lactose-KSR compacts subjected to the highest compression pressure and Microcrystalline cellulose-KSR compacts with KSR concentrations exceeding 30% exhibited disintegration times of less than ten minutes. Likewise, compacts containing Diltiazem HCl-KSR demonstrated brief disintegration times across all tested KSR concentrations and compression pressures. Compacts of Modafinil, Metformin HCl, and Ascorbic acid-KSR displayed disintegration times ranging from fast to moderate, contingent upon the levels of KSR and compression pressure applied. Compacts containing KSR with Aspirin, Salicylic acid, or Ibuprofen did not exhibit significant disintegration even at minimal amounts of KSR (0.5%). Theophylline-KSR tablets also showed prolonged dissolution times, even at very low concentrations of KSR. The disintegration times of Dic-KSR tablets were roughly close to an hour and were predominantly unaffected by varying KSR levels and only marginally influenced by compression pressures. It is possible to draw the conclusion that different drugs or excipients have different minimum KSR requirements to resist compacts’ disintegration process. Compounds that demonstrate low solubility in water can result in extended disintegration times for KSR compacts. The melting points of these compounds, in conjunction with the Py values of the compacts and their compaction properties, could affect the disintegration process, although a precise evaluation is necessary.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosuvastatin Flexible Chitosomes: Development, In Vitro Evaluation and Enhancement of Anticancer Efficacy Against HepG2 and MCF7 Cell Lines 瑞舒伐他汀柔性壳质体:开发、体外评估和增强对 HepG2 和 MCF7 细胞株的抗癌功效
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-07 DOI: 10.1208/s12249-024-02957-w
Nermin E. Eleraky, Abeer S. Hassan, Ghareb M. Soliman, Mohammed M. H. Al-Gayyar, Mohamed A. Safwat

Rosuvastatin (ROS), a statin drug with promising anticancer properties has a low bioavailability of approximately 20% due to lipophilicity and first-pass metabolism. This study aimed to enhance ROS anticancer efficacy through loading into flexible chitosomes. The chitosomes were prepared starting from negatively charged liposomes through electrostatic interactions with chitosan. The conversion of zeta potential from negative to positive confirmed the successful formation of chitosomes. The chitosan coating increased the particle size and zeta potential, which ranged from 202.0 ± 1.7 nm to 504.7 ± 25.0 nm and from − 44.9 ± 3.0 mV to 50.1 ± 2.6 mV, respectively. Chitosan and drug concentrations had an important influence on the chitosome properties. The optimum chitosome formulation was used to prepare ROS-loaded flexible chitosomes using different concentrations of four edge activators. The type and concentration of edge activator influenced the particle size, drug entrapment efficiency, and drug release rate of the flexible chitosomes. Flexible chitosomes significantly increased drug permeation through rat abdominal skin compared to control transferosomes and drug solution. The optimal ROS flexible chitosomes containing sodium deoxycholate as an edge activator had a 2.23-fold increase in ROS cytotoxic efficacy against MCF7 cells and a 1.84-fold increase against HepG2 cells. These results underscore the potential of flexible chitosomes for enhancing ROS anticancer efficacy.

Graphical Abstract

瑞舒伐他汀(ROS)是一种具有良好抗癌作用的他汀类药物,但由于其亲脂性和首过代谢,其生物利用度较低,约为 20%。本研究旨在通过将 ROS 装入柔性壳质体来增强其抗癌功效。壳聚糖是由带负电荷的脂质体通过与壳聚糖的静电相互作用制备而成的。zeta电位由负转正证实了壳质体的成功形成。壳聚糖涂层增加了粒径和 zeta 电位,分别从 202.0 ± 1.7 nm 到 504.7 ± 25.0 nm,从 - 44.9 ± 3.0 mV 到 50.1 ± 2.6 mV。壳聚糖和药物浓度对壳聚糖的特性有重要影响。使用四种不同浓度的边缘活化剂,以最佳壳聚糖配方制备负载 ROS 的柔性壳聚糖。边缘活化剂的类型和浓度影响了柔性壳质体的粒径、药物包载效率和药物释放率。与对照转运体和药液相比,柔性壳质体能明显提高药物在大鼠腹部皮肤的渗透率。含有脱氧胆酸钠作为边缘激活剂的最佳ROS柔性壳质体对MCF7细胞的ROS细胞毒性效力提高了2.23倍,对HepG2细胞的ROS细胞毒性效力提高了1.84倍。这些结果凸显了柔性壳聚糖增强 ROS 抗癌功效的潜力。
{"title":"Rosuvastatin Flexible Chitosomes: Development, In Vitro Evaluation and Enhancement of Anticancer Efficacy Against HepG2 and MCF7 Cell Lines","authors":"Nermin E. Eleraky,&nbsp;Abeer S. Hassan,&nbsp;Ghareb M. Soliman,&nbsp;Mohammed M. H. Al-Gayyar,&nbsp;Mohamed A. Safwat","doi":"10.1208/s12249-024-02957-w","DOIUrl":"10.1208/s12249-024-02957-w","url":null,"abstract":"<div><p>Rosuvastatin (ROS), a statin drug with promising anticancer properties has a low bioavailability of approximately 20% due to lipophilicity and first-pass metabolism. This study aimed to enhance ROS anticancer efficacy through loading into flexible chitosomes. The chitosomes were prepared starting from negatively charged liposomes through electrostatic interactions with chitosan. The conversion of zeta potential from negative to positive confirmed the successful formation of chitosomes. The chitosan coating increased the particle size and zeta potential, which ranged from 202.0 ± 1.7 nm to 504.7 ± 25.0 nm and from − 44.9 ± 3.0 mV to 50.1 ± 2.6 mV, respectively. Chitosan and drug concentrations had an important influence on the chitosome properties. The optimum chitosome formulation was used to prepare ROS-loaded flexible chitosomes using different concentrations of four edge activators. The type and concentration of edge activator influenced the particle size, drug entrapment efficiency, and drug release rate of the flexible chitosomes. Flexible chitosomes significantly increased drug permeation through rat abdominal skin compared to control transferosomes and drug solution. The optimal ROS flexible chitosomes containing sodium deoxycholate as an edge activator had a 2.23-fold increase in ROS cytotoxic efficacy against MCF7 cells and a 1.84-fold increase against HepG2 cells. These results underscore the potential of flexible chitosomes for enhancing ROS anticancer efficacy.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Docetaxel-tethered di-Carboxylic Acid Derivatised Fullerenes: A Promising Drug Delivery Approach for Breast Cancer 多西他赛系链二羧酸衍生富勒烯:一种治疗乳腺癌的有效给药方法。
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-02 DOI: 10.1208/s12249-024-02955-y
Charu Misra, Jasleen Kaur, Manish Kumar, Lokesh Kaushik, Deepak Chitkara, Simran Preet, Muhammad Wahajuddin, Kaisar Raza

Docetaxel (DTX) has become widely accepted as a first-line treatment for metastatic breast cancer; however, the frequent development of resistance provides challenges in treating the disease.C60 fullerene introduces a unique molecular form of carbon, exhibiting attractive chemical and physical properties. Our study aimed to develop dicarboxylic acid-derivatized C60 fullerenes as a novel DTX delivery carrier. This study investigated the potential of water-soluble fullerenes to deliver the anti-cancer drug DTX through a hydrophilic linker. The synthesis was carried out using the Prato reaction. The spectroscopic analysis confirmed the successful conjugation of DTX molecules over fullerenes. The particle size of nanoconjugate was reported to be 122.13 ± 1.63 nm with a conjugation efficiency of 76.7 ± 0.14%. The designed conjugate offers pH-dependent release with significantly less plasma pH, ensuring maximum release at the target site. In-vitro cell viability studies demonstrated the enhanced cytotoxic nature of the developed nanoconjugate compared to DTX. These synthesized nanoscaffolds were highly compatible with erythrocytes, indicating the safer intravenous route administration. Pharmacokinetic studies confirmed the higher bioavailability (~ 6 times) and decreased drug clearance from the system vis-à-vis plain drug. The histological studies reveal that nanoconjugate-treated tumour cells exhibit similar morphology to normal cells. Therefore, it was concluded that this developed formulation would be a valuable option for clinical use.

Graphical Abstract

多西他赛(DTX)已被广泛接受为转移性乳腺癌的一线治疗药物,然而,耐药性的频繁产生给该疾病的治疗带来了挑战。C60富勒烯是一种独特的碳分子形式,具有诱人的化学和物理特性。我们的研究旨在开发二羧酸衍生化 C60 富勒烯作为新型 DTX 递送载体。本研究探讨了水溶性富勒烯通过亲水连接体递送抗癌药物 DTX 的潜力。合成采用了普拉托反应。光谱分析证实了 DTX 分子与富勒烯的成功结合。据报道,纳米共轭物的粒径为 122.13 ± 1.63 nm,共轭效率为 76.7 ± 0.14%。所设计的共轭物可根据血浆 pH 值进行释放,大大降低了血浆 pH 值,确保在目标部位的最大释放量。体外细胞活力研究表明,与 DTX 相比,所开发的纳米共轭物具有更强的细胞毒性。这些合成的纳米支架与红细胞高度相容,表明通过静脉途径给药更为安全。药代动力学研究证实,与普通药物相比,纳米缀合物的生物利用度更高(约为普通药物的 6 倍),药物从体内清除率更低。组织学研究表明,纳米共轭物处理过的肿瘤细胞与正常细胞形态相似。因此,该制剂将成为临床使用的重要选择。
{"title":"Docetaxel-tethered di-Carboxylic Acid Derivatised Fullerenes: A Promising Drug Delivery Approach for Breast Cancer","authors":"Charu Misra,&nbsp;Jasleen Kaur,&nbsp;Manish Kumar,&nbsp;Lokesh Kaushik,&nbsp;Deepak Chitkara,&nbsp;Simran Preet,&nbsp;Muhammad Wahajuddin,&nbsp;Kaisar Raza","doi":"10.1208/s12249-024-02955-y","DOIUrl":"10.1208/s12249-024-02955-y","url":null,"abstract":"<div><p>Docetaxel (DTX) has become widely accepted as a first-line treatment for metastatic breast cancer; however, the frequent development of resistance provides challenges in treating the disease.C<sub>60</sub> fullerene introduces a unique molecular form of carbon, exhibiting attractive chemical and physical properties. Our study aimed to develop dicarboxylic acid-derivatized C<sub>60</sub> fullerenes as a novel DTX delivery carrier. This study investigated the potential of water-soluble fullerenes to deliver the anti-cancer drug DTX through a hydrophilic linker. The synthesis was carried out using the Prato reaction. The spectroscopic analysis confirmed the successful conjugation of DTX molecules over fullerenes. The particle size of nanoconjugate was reported to be 122.13 ± 1.63 nm with a conjugation efficiency of 76.7 ± 0.14%. The designed conjugate offers pH-dependent release with significantly less plasma pH, ensuring maximum release at the target site. <i>In-vitro</i> cell viability studies demonstrated the enhanced cytotoxic nature of the developed nanoconjugate compared to DTX. These synthesized nanoscaffolds were highly compatible with erythrocytes, indicating the safer intravenous route administration. Pharmacokinetic studies confirmed the higher bioavailability (~ 6 times) and decreased drug clearance from the system <i>vis-à-vis</i> plain drug. The histological studies reveal that nanoconjugate-treated tumour cells exhibit similar morphology to normal cells. Therefore, it was concluded that this developed formulation would be a valuable option for clinical use.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Microbicidal Polymer Nanoparticles Containing Clotrimazole for Treatment of Vulvovaginal Candidiasis 更正:含克霉唑的杀菌聚合物纳米粒子用于治疗外阴阴道念珠菌病。
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-02 DOI: 10.1208/s12249-024-02939-y
María del Rocío Lara-Sánchez, Adriana Ganem-Rondero, María Guadalupe Nava-Arzaluz, Andrea Angela Becerril-Osnaya, Laura Abril Pérez-Carranza, Sergio Alcalá-Alcalá, Néstor Mendoza-Muñoz, Elizabeth Piñón-Segundo
{"title":"Correction: Microbicidal Polymer Nanoparticles Containing Clotrimazole for Treatment of Vulvovaginal Candidiasis","authors":"María del Rocío Lara-Sánchez,&nbsp;Adriana Ganem-Rondero,&nbsp;María Guadalupe Nava-Arzaluz,&nbsp;Andrea Angela Becerril-Osnaya,&nbsp;Laura Abril Pérez-Carranza,&nbsp;Sergio Alcalá-Alcalá,&nbsp;Néstor Mendoza-Muñoz,&nbsp;Elizabeth Piñón-Segundo","doi":"10.1208/s12249-024-02939-y","DOIUrl":"10.1208/s12249-024-02939-y","url":null,"abstract":"","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-02939-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Synthesis of Quarternized Chitosans and Their Potential Applications in the Solubility Enhancement of Indomethacin by Solid Dispersion 更正:Quarternized Chitosans 的合成及其在通过固体分散提高吲哚美辛溶解度方面的潜在应用。
IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-02 DOI: 10.1208/s12249-024-02953-0
Sasikarn Sripetthong, Sirinporn Nalinbenjapun, Abdul Basit, Chitchamai Ovatlarnporn
{"title":"Correction: Synthesis of Quarternized Chitosans and Their Potential Applications in the Solubility Enhancement of Indomethacin by Solid Dispersion","authors":"Sasikarn Sripetthong,&nbsp;Sirinporn Nalinbenjapun,&nbsp;Abdul Basit,&nbsp;Chitchamai Ovatlarnporn","doi":"10.1208/s12249-024-02953-0","DOIUrl":"10.1208/s12249-024-02953-0","url":null,"abstract":"","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
AAPS PharmSciTech
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1